微生物分子技术ppt
合集下载
微生物学实验ppt课件

器材与试剂的选用原则
03
如无菌操作、适用性、经济性等
02
细菌形态与结构观察
细菌培养及形态特征
01
02
03
细菌培养方法
包括需氧培养、厌氧培养 和兼性厌氧培养等,不同 种类的细菌需要不同的培 养条件。
细菌菌落特征
观察细菌在固体培养基上 形成的菌落,了解其形状、 大小、颜色、透明度等特 征。
细菌细胞形态
05
微生物代谢活性测定
生长曲线测定方法
直接计数法
通过显微镜直接观察并计数微生物数量,适用于较大微生物如细 菌、酵母菌等。
比浊法
利用微生物生长引起培养液浊度变化来测定生长曲线,操作简便 但易受杂质干扰。
平板菌落计数法
将待测样品稀释后涂布于固体培养基表面,培养后计数形成的菌 落数,适用于可形成菌落的微生物。
原理
病毒必须寄生在活细胞内才能增 殖,通过提供适宜的细胞环境, 使病毒在细胞内复制并产生子代
病毒。
病毒检测技术及应用
免疫学方法
利用抗原抗体特异性结合的原理,通过酶联免疫吸附试验 (ELISA)、免疫荧光技术等检测病毒抗原或抗体。
分子生物学方法
基于病毒核酸的特异性,利用PCR、实时荧光定量PCR等技术扩增 并检测病毒核酸。
微生物学实验ppt课件
contents
目录
• 实验基础知识 • 细菌形态与结构观察 • 真菌形态与结构观察 • 病毒培养与检测技术 • 微生物代谢活性测定 • 微生物遗传与变异研究 • 微生物生态学及环境因子影响研究
01
实验基础知识
微生物学概述
类生活中的作用:如 生态平衡、发酵工业 等
生理生化鉴定
利用真菌的生理生化特性,如营养需 求、代谢产物等,进行进一步的分类 鉴定。
《微生物纯培养技术》课件

纯培养技术可用于病原微生物的分离、鉴 定和药物敏感性试验,为临床诊断和治疗 提供依据。
微生物纯培养技术
02
的基本原理
微生物的分离与纯化
微生物的分离
通过选择合适的培养基和培养条件, 将混合的微生物群体分离成单一的微 生物个体。
微生物的纯化
通过反复划线、稀释接种等方法,获 得纯培养的微生物,即同一菌种或纯 种微生物的培养。
微生物的培养基
培养基的组成
培养基是由水、碳源、氮源、无机盐 等组成,根据不同微生物的需求,培 养基的成分和比例会有所不同。
培养基的制备
根据配方和操作步骤,将各种成分混 合在一起,经过灭菌处理后,制成适 合微生物生长的培养基。
微生物的培养条件
温度
不同微生物对温度的需求不同,适宜的 温度可以促进微生物的生长和代谢。
生理生化特性分析
测定微生物的生理生化特性,如氧化酶试验 、糖发酵试验等。
应用前景探讨
探讨微生物纯培养技术在生产、科研等领域 的应用前景和潜在价值。
微生物纯培养技术04Fra bibliotek的应用实例
在医学领域的应用
抗生素生产
01
微生物纯培养技术用于分离和培养具有抗生素产生能力的菌株
,为医学领域提供大量抗生素。
疾病诊断
《微生物纯培养技术》 ppt课件
目 录
• 微生物纯培养技术概述 • 微生物纯培养技术的基本原理 • 微生物纯培养技术的实验操作 • 微生物纯培养技术的应用实例 • 微生物纯培养技术的挑战与展望
微生物纯培养技术
01
概述
微生物纯培养技术的定义
01
微生物纯培养技术是指通过一定 的物理、化学手段,将自然界中 混杂的微生物群体分离出来,获 得纯种微生物的技术。
微生物基础知识培训ppt完整版

分类
根据形态和结构,微生物可分为 细菌、真菌、病毒、原生动物和 藻类等几大类。
微生物的特点与功能
特点
微生物具有体积小、比表面积大、代 谢旺盛、繁殖快、易变异等特点。
功能
微生物在自然界中发挥着重要作用, 如参与物质循环、促进生物地球化学 循环、降解有机物质等。
微生物的研究历史与现状
研究历史
自17世纪列文虎克发现微生物以来,人类对微生物的研究经历了漫长的历程, 逐渐揭示了微生物的奥秘。
微生物的代谢类型与特点
01
02
03
04
异养型微生物
利用有机物作为碳源和能源, 包括腐生和寄生两种生活方式
。
自养型微生物
能够利用无机物合成自身所需 的有机物,如硝化细菌、硫化
细菌等。
兼性自养型微生物
既可利用有机物,也可利用无 机物作为碳源和能源,如酵母
菌。
微生物代谢特点
多样性、相互依存性、对环境 条件的敏感性。
07
CATALOGUE
微生物的分类与鉴定
微生物的分类方法与系统发育
传统分类法
基于形态学、生理生化特性和生态学特征进行分类,如细菌的形态 、革兰氏染色反应、生长条件等。
数值分类法
运用数学方法分析微生物的多个性状,通过计算机进行聚类分析, 确定微生物间的亲缘关系。
分子生物学方法
基于微生物的基因序列、蛋白质结构等分子水平信息进行分类,如 16S rRNA基因序列分析、DNA-DNA杂交等。
微生物的繁殖方式与特点
繁殖方式
包括无性繁殖(如裂殖、芽殖)和有性繁殖(如接合、卵式生殖 )。
繁殖特点
繁殖速度快,产生大量后代;易变异,适应环境能力强;保持亲代 优良性状。
根据形态和结构,微生物可分为 细菌、真菌、病毒、原生动物和 藻类等几大类。
微生物的特点与功能
特点
微生物具有体积小、比表面积大、代 谢旺盛、繁殖快、易变异等特点。
功能
微生物在自然界中发挥着重要作用, 如参与物质循环、促进生物地球化学 循环、降解有机物质等。
微生物的研究历史与现状
研究历史
自17世纪列文虎克发现微生物以来,人类对微生物的研究经历了漫长的历程, 逐渐揭示了微生物的奥秘。
微生物的代谢类型与特点
01
02
03
04
异养型微生物
利用有机物作为碳源和能源, 包括腐生和寄生两种生活方式
。
自养型微生物
能够利用无机物合成自身所需 的有机物,如硝化细菌、硫化
细菌等。
兼性自养型微生物
既可利用有机物,也可利用无 机物作为碳源和能源,如酵母
菌。
微生物代谢特点
多样性、相互依存性、对环境 条件的敏感性。
07
CATALOGUE
微生物的分类与鉴定
微生物的分类方法与系统发育
传统分类法
基于形态学、生理生化特性和生态学特征进行分类,如细菌的形态 、革兰氏染色反应、生长条件等。
数值分类法
运用数学方法分析微生物的多个性状,通过计算机进行聚类分析, 确定微生物间的亲缘关系。
分子生物学方法
基于微生物的基因序列、蛋白质结构等分子水平信息进行分类,如 16S rRNA基因序列分析、DNA-DNA杂交等。
微生物的繁殖方式与特点
繁殖方式
包括无性繁殖(如裂殖、芽殖)和有性繁殖(如接合、卵式生殖 )。
繁殖特点
繁殖速度快,产生大量后代;易变异,适应环境能力强;保持亲代 优良性状。
微生物总结_PPT幻灯片

五种有益微生物的应用形式微生物发酵原料灭菌接种微生物发酵发酵产品提取纯化代谢产物微生物代谢产物的修饰和改造菌体有益微生物在食品工业中的应用形式?微生物菌体的应用?微生物发酵食品的应用?微生物代谢产物的应用?微生物酶制剂的应用?微生物在食品工厂废弃物处理方面的应用第二部分微生物分类鉴定进展微生物的命名学名scientificname林奈的双名法binominalnomenclature生物界的分类及微生物在生物界中位置六界系统五界系统1969年whittaker三大领域woese16srrna序列分析比较提出将生物分成为三界kingdom后来改称三个域
2021/3/10
25
第九版伯杰氏细菌鉴定手册设立35个群,将古 细菌部改编为5个群,全书描写了约500个属。
划分为四大类: 第一类 具细胞壁的革兰氏阴性真细菌 第二类 具细胞壁的革兰氏阳性真细菌 第三类 无细胞壁的真细菌 第四类 古细菌
1984-1989年陆续出版的四卷册《伯杰氏系统 细菌学手册》第一版,在着重于表观特征描述 的基础上,结合化学分类、数值分类特别是 DNA相关性分析,及16S rRNA寡核苷酸编目 在生物种群间的亲缘关系研究中的应用作了详 细的阐述,体现了细菌分类的研究从表观向系 统发育体系的发展。除此,还附有每个菌群的 生态、分离、保藏及鉴定的方法。
B:核酸分子杂交——DNA-DNA和DNA-RNA 杂交
C:16SrRNA寡核苷酸编目分析
微生物分类方法
1.传统分类法(classical classification) 以细菌的形态和生理生化特征为依据。
2.数值分类法(numerical classification) 20世纪60年代兴起,细菌的各种生物学性状“等重要 原则”分类,性状数量超过50个。
2021/3/10
25
第九版伯杰氏细菌鉴定手册设立35个群,将古 细菌部改编为5个群,全书描写了约500个属。
划分为四大类: 第一类 具细胞壁的革兰氏阴性真细菌 第二类 具细胞壁的革兰氏阳性真细菌 第三类 无细胞壁的真细菌 第四类 古细菌
1984-1989年陆续出版的四卷册《伯杰氏系统 细菌学手册》第一版,在着重于表观特征描述 的基础上,结合化学分类、数值分类特别是 DNA相关性分析,及16S rRNA寡核苷酸编目 在生物种群间的亲缘关系研究中的应用作了详 细的阐述,体现了细菌分类的研究从表观向系 统发育体系的发展。除此,还附有每个菌群的 生态、分离、保藏及鉴定的方法。
B:核酸分子杂交——DNA-DNA和DNA-RNA 杂交
C:16SrRNA寡核苷酸编目分析
微生物分类方法
1.传统分类法(classical classification) 以细菌的形态和生理生化特征为依据。
2.数值分类法(numerical classification) 20世纪60年代兴起,细菌的各种生物学性状“等重要 原则”分类,性状数量超过50个。
分子生物学(共19张PPT)

04
蛋白质的结构与功能
蛋白质的分子组成与结构
氨基酸通过肽键连 接形成多肽链,即 蛋白质的一级结构 。
多条多肽链组合在 一起,形成蛋白质 的三级结构。
蛋白质的基本组成 单位是氨基酸,共 有20种常见氨基酸 。
多肽链经过盘绕、 折叠形成二级结构 ,主要形式包括α螺旋和β-折叠等。
在特定条件下,蛋 白质可形成四级结 构,由多个亚基组 成。
发展历程
从20世纪50年代DNA双螺旋结构 的发现开始,分子生物学经历了 飞速的发展,成为现代生命科学 中最为活跃和前沿的领域之一。
分子生物学的研究对象与任务
研究对象
主要包括DNA、RNA、蛋白质Байду номын сангаас生 物大分子,以及它们之间的相互作用 和调控机制。
研究任务
揭示生物大分子的结构、功能及其相 互作用机制;阐明基因表达调控的分 子机制;探索生物大分子在生命过程 中的作用和意义。
转录因子
01
真核生物中存在大量转录因子,它们与DNA特定序列结合,激
活或抑制基因转录。
表观遗传学调控
02
通过DNA甲基化、组蛋白修饰等方式,改变染色质结构,影响
基因表达。
microRNA调控
03
microRNA是一类小分子RNA,通过与mRNA结合,抑制其翻
译或促进其降解,从而调节基因表达。
基因表达调控的分子机制
发育生物学研究生物体的发育过程,而分子 生物学则揭示了发育过程中基因表达和调控 的分子机制。
02
DNA的结构与功能
DNA的分子组成与结构
DNA的基本组成单位
脱氧核糖核苷酸,由磷酸、脱氧核糖 和碱基组成。
DNA的碱基
DNA的双螺旋结构
《分子生物工程》课件

05
分子生物工程的挑 战与未来发展
技术挑战与解决方案
技术挑战
分子生物工程技术在应用过程中面临着许多技术挑战,如基 因编辑技术的精确性、基因表达调控的复杂性以及细胞命运 决定的机制等。
解决方案
针对这些挑战,科研人员正在探索新的技术和方法,如开发 更精确的基因编辑工具、深入研究基因表达调控机制以及揭 示细胞命运决定的过程等。
生物能源领域
生物燃料
利用分子生物工程技术,开发新型生物燃料,替代化石燃料,减少碳排放。
生物质能
利用分子生物工程技术,实现生物质的高效转化和利用,提高能源利用效率。
04
分子生物工程的前 沿研究
基因编辑技术
基因编辑技术
CRISPR-Cas9系统是目前最常用 的基因编辑技术,它能够精确地
定位和修改生物体的基因组。
未来发展方向
随着分子生物工程技术的不断进步和 应用领域的拓展,未来发展方向将更 加多元化和个性化,如精准医疗、生 物制药、农业生物技术以及环境生物 技术等。
前景展望
分子生物工程技术将在未来继续发挥 重要作用,为人类带来更多的福祉和 创新。同时,需要加强科研合作和人 才培养,推动技术的可持续发展和广 泛应用。
医药领域
01
02
03
基因治疗
利用基因工程技术修复、 替换或增减人类基因,以 达到治疗疾病的目的。
药物研发
利用分子生物工程技术, 快速筛选和优化药物候选 物,提高药物研发效率。
诊断技术
基于分子生物工程技术, 开发新型诊断试剂和仪器 ,提高疾病诊断的准确性 和灵敏度。
农业领域
转基因作物
通过转基因技术改良作物 ,提高抗逆性、产量和品 质。
历史
医学微生物学ppt课件完整版

病毒缺乏独立的代谢和能量系统 ,必须利用宿主细胞的酶系统、 原料和能量进行复制。
形态多样 结构简单 寄生生活
严格细胞内寄生
病毒粒子形态各异,有球形、杆 状、砖形、蝌蚪形等。
病毒必须寄生在活细胞内才能复 制和增殖。
病毒的复制与变异
复制周期
包括吸附、注入、脱壳、生物合 成、组装与释放等步骤。
变异机制
病毒的变异机制包括错误复制、 基因重组和基因重配等。
通过接种疫苗可以预防某些由微生物引起的疾病,如麻疹、流感等 。
微生物与药物的关系
微生物是药物的重要来源
许多抗生素、抗真菌药物等都来源于微生物或其代谢产物。
微生物在药物生产中的应用
利用微生物发酵技术可以生产多种药物,如青霉素、维生素等。
微生物与药物相互作用
某些药物可以影响微生物的生长和代谢,同时微生物也可以影响药 物的吸收、分布和代谢。
06
实验诊断与防治原则
Chapter
实验诊断方法与技术
细菌学诊断方法
包括细菌培养、生化反应、血 清学试验等,用于鉴定细菌种
类和检测细菌感染。
病毒学诊断方法
包括病毒分离、病毒抗原检测 、病毒核酸检测等,用于鉴定 病毒种类和检测病毒感染。
免疫学诊断方法
包括抗原抗体反应、免疫荧光 技术、酶联免疫吸附试验等, 用于检测病原体特异性抗原或 抗体。
03
人类通过培养有益微生物和消灭有害微生物来维护自身健康,
如疫苗接种、消毒灭菌等。
02
细菌学
Chapter
细菌的形态与结构
细菌的基本形态
球菌、杆菌、螺形菌
细菌的结构
细胞壁、细胞膜、细胞质、核质
特殊结构
荚膜、鞭毛、菌毛、芽孢
形态多样 结构简单 寄生生活
严格细胞内寄生
病毒粒子形态各异,有球形、杆 状、砖形、蝌蚪形等。
病毒必须寄生在活细胞内才能复 制和增殖。
病毒的复制与变异
复制周期
包括吸附、注入、脱壳、生物合 成、组装与释放等步骤。
变异机制
病毒的变异机制包括错误复制、 基因重组和基因重配等。
通过接种疫苗可以预防某些由微生物引起的疾病,如麻疹、流感等 。
微生物与药物的关系
微生物是药物的重要来源
许多抗生素、抗真菌药物等都来源于微生物或其代谢产物。
微生物在药物生产中的应用
利用微生物发酵技术可以生产多种药物,如青霉素、维生素等。
微生物与药物相互作用
某些药物可以影响微生物的生长和代谢,同时微生物也可以影响药 物的吸收、分布和代谢。
06
实验诊断与防治原则
Chapter
实验诊断方法与技术
细菌学诊断方法
包括细菌培养、生化反应、血 清学试验等,用于鉴定细菌种
类和检测细菌感染。
病毒学诊断方法
包括病毒分离、病毒抗原检测 、病毒核酸检测等,用于鉴定 病毒种类和检测病毒感染。
免疫学诊断方法
包括抗原抗体反应、免疫荧光 技术、酶联免疫吸附试验等, 用于检测病原体特异性抗原或 抗体。
03
人类通过培养有益微生物和消灭有害微生物来维护自身健康,
如疫苗接种、消毒灭菌等。
02
细菌学
Chapter
细菌的形态与结构
细菌的基本形态
球菌、杆菌、螺形菌
细菌的结构
细胞壁、细胞膜、细胞质、核质
特殊结构
荚膜、鞭毛、菌毛、芽孢
微生物技术及应用PPT课件-2024鲜版

生长曲线的调控与优化 讲解如何通过改变培养条件或使用特定的生长因子等手段, 调控和优化微生物的生长曲线,以满足实验或生产需求。
10
03
微生物代谢与发酵技术
2024/3/28
11
微生物的代谢途径与调控
糖代谢途径
包括糖酵解、三羧酸循 环等,产生ATP和还原
力。
2024/3/28
氮代谢途径
包括氨基酸、核苷酸和 蛋白质的代谢,合成细
2024/3/28
33
微生物在医药工业中的应用
生产抗生素
利用微生物发酵技术生产抗生素,如青霉素、链霉素等,用于治疗 各种细菌感染。
生产疫苗
利用微生物培养技术生产疫苗,如麻疹疫苗、流感疫苗等,用于预 防传染病。
生产酶制剂
利用微生物发酵技术生产酶制剂,如淀粉酶、蛋白酶等,用于促进药 物合成和分解。
2024/3/28
研究微生物生长、底物消耗和 产物生成的动力学关系。
发酵设备与技术
包括发酵罐设计、传质与传热、 在线监测与控制等。
2024/3/28
13
发酵产品的分离与纯化
预处理
去除发酵液中的菌体、杂质等, 提高后续分离纯化效率。
2024/3/28
分离方法
包括萃取、吸附、膜分离等,根 据目标产物的性质选择合适的分 离方法。
医学领域
利用微生物技术生产疫苗和诊断试剂, 预防和治疗各种传染病和慢性病。此 外,基因工程和细胞工程等技术在医 学领域也有广泛应用。
2024/3/28
农业领域
利用微生物肥料和生物农药等技术, 提高农作物产量和品质,减少化学肥 料和农药的使用。
环境领域
利用微生物处理污水和废气等环境污 染物,以及进行环境监测和评价等工 作。
10
03
微生物代谢与发酵技术
2024/3/28
11
微生物的代谢途径与调控
糖代谢途径
包括糖酵解、三羧酸循 环等,产生ATP和还原
力。
2024/3/28
氮代谢途径
包括氨基酸、核苷酸和 蛋白质的代谢,合成细
2024/3/28
33
微生物在医药工业中的应用
生产抗生素
利用微生物发酵技术生产抗生素,如青霉素、链霉素等,用于治疗 各种细菌感染。
生产疫苗
利用微生物培养技术生产疫苗,如麻疹疫苗、流感疫苗等,用于预 防传染病。
生产酶制剂
利用微生物发酵技术生产酶制剂,如淀粉酶、蛋白酶等,用于促进药 物合成和分解。
2024/3/28
研究微生物生长、底物消耗和 产物生成的动力学关系。
发酵设备与技术
包括发酵罐设计、传质与传热、 在线监测与控制等。
2024/3/28
13
发酵产品的分离与纯化
预处理
去除发酵液中的菌体、杂质等, 提高后续分离纯化效率。
2024/3/28
分离方法
包括萃取、吸附、膜分离等,根 据目标产物的性质选择合适的分 离方法。
医学领域
利用微生物技术生产疫苗和诊断试剂, 预防和治疗各种传染病和慢性病。此 外,基因工程和细胞工程等技术在医 学领域也有广泛应用。
2024/3/28
农业领域
利用微生物肥料和生物农药等技术, 提高农作物产量和品质,减少化学肥 料和农药的使用。
环境领域
利用微生物处理污水和废气等环境污 染物,以及进行环境监测和评价等工 作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的发展揭示了许多动物细胞信号交流和传导途径。 长期认为微生物只能感受环境变化,微生物间没有交
流,但群体感应的发现表明微生物细胞之间存在信息交流。
microbe
microbe
信息素
microbe
microbe
抗生素
微生物与细胞间的信息交流,探讨的是微生物在生物 细胞内环境的分子生态效应,可以进一步揭示细菌、病毒 对人和动植物感染的调控作用,以及微生物次级代谢产物 对其它生物的拮抗、抑制和杀灭的分子机制,探索寄生、 共生、腐生等原理,为生物防治和健康医学注入新的活力。
SARS:严重急性呼吸综合征(Severe Acute Respiratory Syndrome),也叫传染性非典型性肺炎,SARS是一种冠状 RNA病毒。
MERS: 中东呼吸综合征( Middle East Respiratory Syndrome ),MERS-CoV,一种新型冠状病毒。截止2015 年5月25日,全球累计实验室确诊病例共1139例,其中431例 死亡(病死率37.8%)。
已知的光合色素有三类:叶绿素或细菌叶绿素、类胡 萝卜素和藻胆素。光合细菌因所含的细菌叶绿素和类胡萝 卜素的量和比例不同,其菌体呈现红、橙、绿、蓝绿、紫 红、紫或褐等颜色。
光
microbe
氧化/还原电位
水活度
磁性
(1)营养因子对微生物的影响
微生物新陈代谢和一切生命活动赖以进行的基础。 营养缺乏,导致微生物生长所需的能量、碳源、氮源、 无机盐等成分不足,机体停止生长和繁殖,代谢停顿。
➢ 碳源 • 用于构成微生物细胞和代谢产物中碳素的来源,并为微
生物的生长繁殖和代谢活动提供能源。 • 主要功能
① 提供微生物生长繁殖所需的能源; ② 提供微生物合成菌体的碳成分; ③ 提供合成目的产物的碳成分。
➢ 氮源
• 氮源是指无构机成氮微源生物细胞物质和代谢有产机物氮的源氮素的来源。
• 1)主氨要基功氮能:是N:H4OH
1)合成产物:尿素
① 构成微生(N物H细4)胞2S结O构4 物质,如氨2基)酸天、然蛋原白料质:、核酸等;
硝化细菌 硫细菌 污染物降解菌
遵循这一原理,在污水处理过程中,碳氮比要维持在 一定水平,如果保证碳氮比合适,可促进正常微生物菌群 的生长,抑制球衣细菌等丝状菌的生长引起的污泥膨胀等 问题。
(2)光影响微生物的分子生态学
光合微生物利用光能通 过光合磷酸化同化CO2生成 碳水化合物产生构建细胞的 物质和能量。
营养因子对微生物的影响符合Liebig定律。
Liebig定律也称最小量定律, 由德国农业化学家Justus Liebig 提出,认为任何生物的总产量或 生物量取决于外界供给的所需养 分中数量最少的那一种。
遵循这一原理,我们可以有目的的促进有益微生物、 抑制有害微生物的生长。
遵循这一原理,我们可以有针对性的对环境样品进行 富集,得到所需的功能细菌。
微生物分子生态学研究范围
微生物进化
不可培养微生物
群落结构与多样性 极端环境微生物
基因转移
微生物与人类健康
抗生素抗药性
微生物资源
信号传递
等。
致病与免疫
2.2:微生物分子生态学理论基础
(1)微生物与外界因子之间的环境和遗传分子生态效应 微生物对环境以及环境中物质的耐受性和适应性是任
何其它生物不可比拟的,因此探讨微生物与环境之间的分 子生态效应是微生物分子生态学的根本任务。
② ③ ④
合作调成为节含酶渗氮的透NN代组压HH谢成、44N产 分PCHOl物或值3;维、持氧酶化的还活原性植 棉 玉电;位物 籽 米等蛋 饼 浆;白 粉 、:、 玉黄菜 米豆籽麸饼饼质粉粉粉、、花麦生麸饼、粉、
2)⑤硝态当氮培:养基N中a碳N源O3不足时,可作为动补物充蛋碳白源:。蛋白胨、鱼粉、蚕蛹
(3)分子生态病毒学 分子生态病毒学是由分子生物学、分子生态学和分子
病毒学融合而成的新兴分子学科。
肿瘤病毒 癌基因致癌特征
RNA病毒的复制和致病
HIV
SARS
HIV:人类免疫缺陷病毒(Human Immunodeficiency Virus), 是一种RNA病毒,该病毒破坏人体的免疫力,导致免疫系 统失去抵抗力,从而使得各种疾病及癌症在人体内生存,并 致人死亡。
KNO3
粉、牛肉膏
微生物蛋白:酵母粉/浸膏、废
菌丝粉
其它:酒糟等
➢ 无机盐和微量元素 • 微生物在生长繁殖和代谢产物的合成过程中,还需要某
些无机离子如硫、磷、镁、钙、钠、钾、 (大量元素) 铁、铜、锌、锰、钼和钴等。(微量元素) • 各种不同的产生菌以及同一种产生菌在不同的生长阶段 对这些物质的需求浓度是不相同的。 • 无机盐及微量元素对微生物生理活性的作用与其浓度相 关,一般它们在低浓度时对微生物生长和目的产物的合 成有促进作用,在高浓度时常表现出明显的抑制作用。
(4)微生物在环境修复中的分子生态学 微生物修复(bioremediation)指通过微生物的作
用清除土壤和水体中的污染物,或是使污染物无害化的过 程。它包括自然和人为控制条件下的污染物降级或无害化 的过程。 微生物群落结构及其动态变化 微生物分子多态性 微生物遗传进化
2.3:微生物对外界环境的适应和调整
第2章:微生物分子生态学
➢2.1:微生物分子生态学概念 ➢2.2:微生物分子生态学理论基础 ➢2.3:微生物对外界环境的适应和调整 ➢2.4:极端环境微生物适应性的机制及应用 ➢2.5:微生物质粒的分子生态效应 ➢2.6:微生物分子生态学研究方法
2.1:微生物分子生态学概念
微生物分子生态学是分子生物学实验技术应用于微生 物生态学研究领域而发展形成的一门交叉学科,在分子水 平上探讨微生物生态系统组成结构、功能的机理以及微生 物与生物和非生物环境之间相互关系。其核心问题是研究 微生物生存的环境分子生态效应和遗传分子生态效应。
光
辐射
O2
pH
microbe
氧化/还原电位
氨氮
硫化氢
甲烷
环境造就生物,生物改造和修饰环境
微生物要适应和改造环境,通过改变和修饰遗传物质 达到改变生理表型,逐步形成响应环境的调节系统,在适 应过程中不断进化,并通过遗传将进化的结果传播下去。
(2)微生物与细胞间的信息交流 细胞信号传递一直是生物学研究的热点,分子生物学
流,但群体感应的发现表明微生物细胞之间存在信息交流。
microbe
microbe
信息素
microbe
microbe
抗生素
微生物与细胞间的信息交流,探讨的是微生物在生物 细胞内环境的分子生态效应,可以进一步揭示细菌、病毒 对人和动植物感染的调控作用,以及微生物次级代谢产物 对其它生物的拮抗、抑制和杀灭的分子机制,探索寄生、 共生、腐生等原理,为生物防治和健康医学注入新的活力。
SARS:严重急性呼吸综合征(Severe Acute Respiratory Syndrome),也叫传染性非典型性肺炎,SARS是一种冠状 RNA病毒。
MERS: 中东呼吸综合征( Middle East Respiratory Syndrome ),MERS-CoV,一种新型冠状病毒。截止2015 年5月25日,全球累计实验室确诊病例共1139例,其中431例 死亡(病死率37.8%)。
已知的光合色素有三类:叶绿素或细菌叶绿素、类胡 萝卜素和藻胆素。光合细菌因所含的细菌叶绿素和类胡萝 卜素的量和比例不同,其菌体呈现红、橙、绿、蓝绿、紫 红、紫或褐等颜色。
光
microbe
氧化/还原电位
水活度
磁性
(1)营养因子对微生物的影响
微生物新陈代谢和一切生命活动赖以进行的基础。 营养缺乏,导致微生物生长所需的能量、碳源、氮源、 无机盐等成分不足,机体停止生长和繁殖,代谢停顿。
➢ 碳源 • 用于构成微生物细胞和代谢产物中碳素的来源,并为微
生物的生长繁殖和代谢活动提供能源。 • 主要功能
① 提供微生物生长繁殖所需的能源; ② 提供微生物合成菌体的碳成分; ③ 提供合成目的产物的碳成分。
➢ 氮源
• 氮源是指无构机成氮微源生物细胞物质和代谢有产机物氮的源氮素的来源。
• 1)主氨要基功氮能:是N:H4OH
1)合成产物:尿素
① 构成微生(N物H细4)胞2S结O构4 物质,如氨2基)酸天、然蛋原白料质:、核酸等;
硝化细菌 硫细菌 污染物降解菌
遵循这一原理,在污水处理过程中,碳氮比要维持在 一定水平,如果保证碳氮比合适,可促进正常微生物菌群 的生长,抑制球衣细菌等丝状菌的生长引起的污泥膨胀等 问题。
(2)光影响微生物的分子生态学
光合微生物利用光能通 过光合磷酸化同化CO2生成 碳水化合物产生构建细胞的 物质和能量。
营养因子对微生物的影响符合Liebig定律。
Liebig定律也称最小量定律, 由德国农业化学家Justus Liebig 提出,认为任何生物的总产量或 生物量取决于外界供给的所需养 分中数量最少的那一种。
遵循这一原理,我们可以有目的的促进有益微生物、 抑制有害微生物的生长。
遵循这一原理,我们可以有针对性的对环境样品进行 富集,得到所需的功能细菌。
微生物分子生态学研究范围
微生物进化
不可培养微生物
群落结构与多样性 极端环境微生物
基因转移
微生物与人类健康
抗生素抗药性
微生物资源
信号传递
等。
致病与免疫
2.2:微生物分子生态学理论基础
(1)微生物与外界因子之间的环境和遗传分子生态效应 微生物对环境以及环境中物质的耐受性和适应性是任
何其它生物不可比拟的,因此探讨微生物与环境之间的分 子生态效应是微生物分子生态学的根本任务。
② ③ ④
合作调成为节含酶渗氮的透NN代组压HH谢成、44N产 分PCHOl物或值3;维、持氧酶化的还活原性植 棉 玉电;位物 籽 米等蛋 饼 浆;白 粉 、:、 玉黄菜 米豆籽麸饼饼质粉粉粉、、花麦生麸饼、粉、
2)⑤硝态当氮培:养基N中a碳N源O3不足时,可作为动补物充蛋碳白源:。蛋白胨、鱼粉、蚕蛹
(3)分子生态病毒学 分子生态病毒学是由分子生物学、分子生态学和分子
病毒学融合而成的新兴分子学科。
肿瘤病毒 癌基因致癌特征
RNA病毒的复制和致病
HIV
SARS
HIV:人类免疫缺陷病毒(Human Immunodeficiency Virus), 是一种RNA病毒,该病毒破坏人体的免疫力,导致免疫系 统失去抵抗力,从而使得各种疾病及癌症在人体内生存,并 致人死亡。
KNO3
粉、牛肉膏
微生物蛋白:酵母粉/浸膏、废
菌丝粉
其它:酒糟等
➢ 无机盐和微量元素 • 微生物在生长繁殖和代谢产物的合成过程中,还需要某
些无机离子如硫、磷、镁、钙、钠、钾、 (大量元素) 铁、铜、锌、锰、钼和钴等。(微量元素) • 各种不同的产生菌以及同一种产生菌在不同的生长阶段 对这些物质的需求浓度是不相同的。 • 无机盐及微量元素对微生物生理活性的作用与其浓度相 关,一般它们在低浓度时对微生物生长和目的产物的合 成有促进作用,在高浓度时常表现出明显的抑制作用。
(4)微生物在环境修复中的分子生态学 微生物修复(bioremediation)指通过微生物的作
用清除土壤和水体中的污染物,或是使污染物无害化的过 程。它包括自然和人为控制条件下的污染物降级或无害化 的过程。 微生物群落结构及其动态变化 微生物分子多态性 微生物遗传进化
2.3:微生物对外界环境的适应和调整
第2章:微生物分子生态学
➢2.1:微生物分子生态学概念 ➢2.2:微生物分子生态学理论基础 ➢2.3:微生物对外界环境的适应和调整 ➢2.4:极端环境微生物适应性的机制及应用 ➢2.5:微生物质粒的分子生态效应 ➢2.6:微生物分子生态学研究方法
2.1:微生物分子生态学概念
微生物分子生态学是分子生物学实验技术应用于微生 物生态学研究领域而发展形成的一门交叉学科,在分子水 平上探讨微生物生态系统组成结构、功能的机理以及微生 物与生物和非生物环境之间相互关系。其核心问题是研究 微生物生存的环境分子生态效应和遗传分子生态效应。
光
辐射
O2
pH
microbe
氧化/还原电位
氨氮
硫化氢
甲烷
环境造就生物,生物改造和修饰环境
微生物要适应和改造环境,通过改变和修饰遗传物质 达到改变生理表型,逐步形成响应环境的调节系统,在适 应过程中不断进化,并通过遗传将进化的结果传播下去。
(2)微生物与细胞间的信息交流 细胞信号传递一直是生物学研究的热点,分子生物学