锂硫电池综述资料
锂硫电池简介

锂硫电池简介简介:锂离子电池(LiCoO2)是单电子脱嵌,锂硫电池是8电子氧化还原,因而有7-8倍的理论容量。
前言:锂电池目前已经广泛应用于日常生活中。
近几年新能源产业被政府大力支持,短时间内锂电领域不论是科研界还是商业圈都被闹得沸沸扬扬。
没拿到诺贝尔奖,老爷子Good Enough哭晕在厕所;三星Note7爆炸门,iphone6S冻死关机;比亚迪放弃磷酸锂铁,转投三元材料;董大妈(董明珠)下台,私人投资珠海银隆;还有最让人闹心的新能源骗保事件,2016,锂电走在风口浪尖。
锂电的简史:锂电池,简称锂电,包含金属锂电池,锂离子电池,锂硫电池,锂空电池等,多数情况下大家指的是目前商业应用的钴酸锂(LiCoO2)。
二十世纪80年代,朝日化学制品公司最早开始研发锂离子电池体系(Li-ion)[1]。
1980年,Good Enough发表了正极层状材料LiCoO2的专利。
1990年sony首先推出技术较为成熟的商业化锂离子电池[15]。
1991年,索尼引入18650电池,并在1992-2006年之间快速发展[2]。
在此之后,锂离子电池以极其惊人的发展速度,迅速取代市场上的Ni-Cd和Ni-MH电池(目前人们意识里充电电池=锂电池,大多数人甚至不知道有这两类可充电电池)。
最为直观的感受就是,换了智能手机之后,大家是每天充电,甚至充电宝不离手的状态。
当今社会更需要一种低成本,无污染,性能稳定,比容量大,能量密度高的新型锂离子电池[7-10]。
就像某手机广告里那样,充电5分钟,通话俩小时。
锂硫电池发展史:锂离子电池有30多年的历史,而锂硫电池更年轻。
1962年,Herbet和Ulam首次提出使用硫作为正极材料,以碱性高氯酸盐为电解质[24]。
早期锂硫体系作为一次电池被研究,甚至还一度商业化生产,但后来被可充电电池取代搁置。
2009年Linda F. Nazar在Nature Materials上提出关于锂硫二次可充放电池,并用CMK-3实现了1320mAh/g的高比容量。
锂硫电池概述

锂硫电池概述锂硫电池(LSBs)是一种以硫为正极活性物质,金属锂为负极的新型二次电池。
受益于硫相态变化的多电子反应,锂硫电池拥有高达1675mAhg-1和2600Whkg-1的理论比容量和比能量,相当于商用锂离子电池数倍,并且硫储量丰富、价格低、环境友好,因而锂硫电池被认为是极具开发潜力和应用前景的新一代二次电池技术。
一、锂硫电池的结构锂硫电池主要由硫正极、锂负极、隔膜和电解质等组成。
硫正极是由活性物质硫与导电剂及粘结剂等按照一定比例均匀混合制备而成;锂负极为普通商用锂片;正负极之间放置隔膜,隔膜材质为聚合物且具有多孔隙、不导电的特点,目的是选择性通过离子而隔绝电子;电解液为含硝酸锂的非水类电解液体系,为锂硫电池内部氧化还原反应提供液态环境。
下图展示了锂硫电池的结构。
二、锂硫电池的储能机理LSBs的工作原理是单质硫与锂离子之间发生的可逆氧化还原反应。
放电时负极反应为锂失去电子变为锂离子,正极反应为硫与锂离子及电子反应生成硫化锂,正极和负极反应的电势差即为锂硫电池所提供的放电电压。
在外加电压作用下,锂硫电池的正极和负极反应逆向进行,即为充电过程。
图1.2为电池充放电过程单质硫的可逆转化示意图,其中放电时大致包括以下反应过程:正极反应:图 1.2可以看出,放电曲线有两个较为明显的平台,分别位于2.4-2.1V和2.1-1.5V。
放电前,正极活性硫的初始状态为环形分子(S8),放电开始后,S8分子发生开环反应并与锂离子结合生成Li2S8分子(式1-1),随着反应的进行,Li2S8进一步与锂离子结合生成长链多硫化锂Li2S6和Li2S4(式1-2和1-3),这一过程对应位于2.4-2.1V的第一放电平台;长链多硫化锂在有机电解液中溶解并在隔膜两侧扩散迁移,随着电化学反应的继续进行,长链多硫化锂在反应过程中得到电子被还原为短链多硫化锂(Li2S2和Li2S)(式1-4和1-5),这个反应过程在放电曲线中对应于第二个较长的平台(2.1-1.5V附近),这一过程贡献了LSBs大部分的理论容量,因此第二平台的反应深度很大程度上决定了LSBs的性能。
锂硫电池

锂电池的一种
目录
01 充放电原理
03 解决方法
02 存在的问题 04 新进展
锂硫电池是锂电池的一种,截止2013年尚处于科研阶段。锂硫电池是以硫元素作为电池正极,金属锂作为负 极的一种锂电池。单质硫在地球中储量丰富,具有价格低廉、环境友好等特点。利用硫作为正极材料的锂硫电池, 其材料理论比容量和电池理论比能量较高,分别达到 1675m Ah/g和 2600Wh/kg,远远高于商业上广泛应用的钴 酸锂电池的容量(<150mAh/g)。
新进展
近几十年来,为了提高活性物质硫的利用率,限制多硫化锂的溶解以及电池循环性能差的问题,研究者在电 解质及复合正极材料改性等方面进行了大量探索研究。对于电解质的改性,主要是采用固体电解质、凝胶电解质 或在电解液中添加LiNO3离子液体等措施,以限制电极反应过程中产生的多硫化锂溶解和减小“飞梭效应”,提 高了活性物质硫的利用率,从而达到改善锂硫电池的循环性能的目的。对于硫基复合正极材料的改性,主要是将 具有良好导电性能及特定结构的基质材料与单质硫复合制备高性能的硫基复合正极材料。其中,引入的基质材料 应具有以下功能:
(1)良好的导电性;
(2)活性物质硫可以在基质材料上均匀分散,以确保活性物质的高利用率;
(3)要对硫及多硫化物的溶解具有抑制作用。研究发现,通过将活性物质硫与活性炭、介孔碳、纳米碳纤维 (CNF)、多壁碳纳米管(MWCNTs)、石墨烯、聚丙烯腈(PAN)、聚苯胺(PAn)、聚吡咯(PPy)、聚噻吩 (PTh)等具有特定结构的基质材料制备硫基复合正极材料,可以显著改善锂硫电池的循环性能和倍率性能。
2014年8月22日,中科院大连化物所陈剑研究员带领先进二次电池研究团队,在高比能量锂二次电池方面取 得重要进展,研制成功了额定容量15Ah的锂硫电池,并形成了小批量制备能力。
锂硫电池综述

高性能锂硫电池的研究进展摘要:目前传统的锂离子电池在电子产品中发挥着重要作用。
然而受到其较低的理论比容量的限制(约150~200Wh/kg),锂离子电池将难以满足人类发展的长远需求,例如电动汽车行业的发展。
锂硫电池的理论能量密度为2600Wh/kg,是锂离子二次电池的3~5倍,是极具应用前景的电化学储能体系,近年来引起了研究人员的广泛关注。
人们提高电极导电性、维持电极结构稳定性、提高硫的负载率和利用率以及加强电池循环寿命等方面开展了大量的研究工作。
本文将就近几年锂硫电池的发展进行相关介绍和讨论。
关键词:锂硫电池正极材料纳米结构材料改性电解质电池结构Research progress in High-Performance Lithium-SulphurBatteriesRen Guodong(School of Metallurgy and Environment, Central South University,0507110402)Abstract:Lithium-ion batteries has played an important role in the electronics at present.But due to its low theoretical energy density ,which is only 150~200Wh/kg,therefore the lithium-ion batteries cannot meet the long-term needs of society in the future,just in the case of the development of electric vehicles.Lithium-sulphur battery is a promising electrochemical energy storage system which has high theoretical energy density of 2600Wh/kg,that is 3~5 times to lithium-ion battery.And it has arised more and more attentions recently.Great efforts have been made by reseachers to improve the conductivity of the electrode , the stability of electrode structure,the loading capicity of sulphur ,the utilization efficiency of sulfur in the cathode and the enhancement of cycle life of the battery.In this paper,the recent research of lithium-sulphur battery will be analyzed and discussed.Keywords:lithium-sulphur battery cathode material nano-structure modification electrolyte cell configuration1.前言电能储存技术和设备将会在未来社会发展中成为一项十分重要的需求。
锂硫电池硫基复合正极材料发展综述

锂硫电池硫基复合正极材料发展综述锂硫电池,嘿,这可真是个炙手可热的话题,听说过吗?就像科技界的“黑马”,它可把传统电池甩在了后头。
这种电池的核心就是硫,这可不是普通的硫,简直是个“宝藏”材料。
想想看,硫的丰富程度就像“海量的宝藏”,用得上它,简直是“事半功倍”。
它的能量密度高得吓人,放电能力也棒得不得了,就像一辆狂飙的跑车,开起来真是爽快。
可是,事情总是没那么简单,对吧?硫虽然好,但它可有“脾气”。
它的导电性差得让人捉急,简直让人“欲哭无泪”。
想要把它的优势发挥出来,得好好琢磨琢磨。
这时候,各种硫基复合正极材料就应运而生了,像是“百花齐放”,真是眼花缭乱。
这些材料通过不同的方式增强了硫的性能,比如说,有的给硫加上个“保护罩”,有的则是搭配其他材料一起“联手作战”。
在这场“硫的革命”中,碳基材料就是个大明星。
它们就像“活力满满的小伙伴”,帮助硫提高导电性。
可别小看这碳,虽然外表看起来平平无奇,实际上它的“内在”可是大有可为。
通过一些巧妙的搭配,比如用石墨烯、活性炭等,硫的性能就能瞬间“翻身”。
想想这效果,真是让人觉得“不可思议”。
再说说这些复合材料的制造工艺,这可是个“技术活”。
研究人员们如同“工匠精神”,一丝不苟。
他们不断试验各种方法,希望找到最优的搭配。
像是做菜一样,材料的比例、温度,甚至环境都得把握得恰到好处。
要是稍微“马虎”了一下,成果就可能“泡汤”。
这可真是个“刀尖上舞蹈”的过程,既刺激又紧张。
硫基复合正极材料的应用范围也让人眼前一亮。
电动车、手机、储能设备,这些都能用上这项新技术。
想象一下,未来的电池能量密度高,使用时间长,这简直是让人“心潮澎湃”。
在节能减排的大背景下,锂硫电池更是为绿色科技贡献了一份力量,真是“为社会做贡献”啊。
任何事情都有“阴影”。
锂硫电池的循环寿命不太理想,就像是“韧性不足”的小孩子,容易受伤。
硫在充放电过程中容易溶解,造成容量衰减,简直是“伤筋动骨”。
为了解决这个问题,科学家们也没闲着,他们在寻找各种解决方案,比如说,添加一些可以抑制溶解的材料,或者是改进电解液。
硫化亚铁锂硫电池-概述说明以及解释

硫化亚铁锂硫电池-概述说明以及解释1.引言1.1 概述硫化亚铁锂电池是一种新型的高性能锂硫电池,其以硫化亚铁(FeS2)作为正极材料,锂金属或锂合金作为负极材料。
相比传统的锂离子电池,硫化亚铁锂电池具有更高的能量密度和较低的成本,被认为是未来可持续能源存储和电动汽车领域的重要技术之一。
硫化亚铁锂电池的工作原理基于锂-硫反应,通过在正极和负极之间嵌入锂离子来存储和释放电能。
当电池充电时,锂离子从负极向正极移动,在正极的硫材料中发生反应形成Li2S2或Li2S的锂-硫化物。
在放电过程中,锂离子从正极释放出来,重新嵌入到负极中,使得硫材料逐渐还原为硫化物,同时释放出电能。
硫化亚铁锂电池具有多种优势。
首先,硫化亚铁作为正极材料具有较高的比容量和较低的成本,能够提高电池的能量密度和经济效益。
其次,硫化亚铁锂电池具有良好的循环寿命和循环稳定性,能够实现长时间的充放电循环而不损失性能。
此外,硫化亚铁锂电池的工作温度范围宽广,能够在较低温度下仍然保持良好的性能。
这些优势使得硫化亚铁锂电池在可再生能源储存和电动车辆领域具有广泛的应用前景。
本文将详细介绍硫化亚铁锂电池的原理和优势,并对其应用前景进行展望。
深入了解和掌握硫化亚铁锂电池的特点和性能,有助于我们更好地利用和发展这一高性能能源储存技术,推动清洁能源的发展和应用。
1.2 文章结构文章结构部分主要介绍本篇文章的组织架构和各个章节的内容概述。
本文总共分为引言、正文和结论三个部分。
在引言部分,本文首先概述了硫化亚铁锂硫电池的背景和基本概念,以引发读者的兴趣。
接着,文章结构部分对整篇文章进行了概括,为读者提供了整体的框架。
正文部分是本文的核心部分,主要介绍了硫化亚铁锂电池的原理和优势。
在2.1节中,详细解释了硫化亚铁锂电池的工作原理,包括其反应过程和电化学反应机制。
2.2节则着重介绍了硫化亚铁锂电池相较于传统锂离子电池的优势,包括高能量密度、长循环寿命和低成本等方面。
硫空位和氧空位 锂硫电池 综述

硫空位和氧空位锂硫电池综述硫空位和氧空位是与锂硫电池有关的重要概念。
本文将以简体中文为基础,综述这两种空位对锂硫电池的性能和特性的影响。
1.锂硫电池概述锂硫电池是一种高能量密度和环境友好的电池技术,作为下一代储能系统备受研究关注。
锂硫电池的正极材料是硫,负极材料是锂,电池的反应过程是锂离子在正极和负极之间的转移。
2.硫空位硫空位是指硫正极中的一种缺陷或缺失结构,其中的硫原子没有与周围的硫原子形成键合。
硫空位能影响锂硫电池的电化学性能,包括充放电容量、循环寿命和电化学稳定性。
硫空位的形成可以通过硫化反应中的过程条件(如反应温度、反应时间和反应介质等)来控制。
硫空位在电化学过程中可以提供反应的活性中心,促进锂离子和硫化物之间的转移,从而增加电池的充放电容量。
此外,硫空位的存在还可以降低锂硫电池的内阻,提高电池的能量效率。
然而,硫空位也存在一些负面影响。
首先,硫空位会导致硫正极材料的体积膨胀,造成电极结构的变形和破裂,降低电池的循环寿命。
其次,硫空位与电解液中的锂离子形成复杂的化学物质,降低了电池的电化学稳定性。
为克服硫空位带来的负面影响,研究人员提出了一系列的解决方案。
例如,引入多孔硫材料可以增加硫空位的数量,提高充放电容量。
通过合成多阴离子硫材料(如硫氮化物和硫化碳化硅),可以减少硫空位的形成,并提高电池的稳定性。
3.氧空位氧空位是指锂硫电池中的负极材料中出现结构缺陷或缺失的氧原子。
氧空位的形成可以通过氧化反应中的过程条件(如反应温度和氧化剂浓度等)来控制。
氧空位能够促进氧化还原反应的进行,增加电池的容量和能量密度。
与硫空位类似,氧空位也可以降低电池的内阻,并提高电池的能量效率。
此外,氧空位还可以稳定锂硫簇的结构,防止硫正极材料的溶解和析出,从而提高锂硫电池的循环寿命和稳定性。
然而,氧空位也存在一些问题。
氧空位的形成需要高温氧化条件,这会增加制备过程的复杂性和能耗。
另外,氧空位的稳定性和可控性仍然是一个挑战,在实际应用中还需要进一步的研究和开发。
全固态锂硫电池综述

全固态锂硫电池综述
全固态锂硫电池是一种新型的高能量密度电池,具有广阔的应用前景。
本文综述了全固态锂硫电池的研究进展和挑战。
全固态锂硫电池由固态电解质、锂金属阳极和硫正极组成。
与传统液体电解质锂硫电池相比,全固态锂硫电池具有更高的能量密度、更长的循环寿命和更好的安全性能。
目前,全固态锂硫电池的电解质主要包括固态聚合物电解质和固态氧化物电解质。
固态聚合物电解质具有良好的离子导电性和机械强度,但在高温下容易熔化。
固态氧化物电解质具有较高的离子导电性和化学稳定性,但制备成本较高。
全固态锂硫电池的硫正极材料主要包括硫化物、硫化合物和硫/碳复合物。
硫化物和硫化合物具有较高的硫质量比,但容易析出多硫化物并导致电池失活。
硫/碳复合物具有良好的电化学性能和稳定性。
全固态锂硫电池面临一些挑战。
首先,全固态电解质的热稳定性和机械强度需要进一步提高。
其次,锂金属阳极的表面稳定性需要改善,以防止金属锂的表面反应和析出。
同时,硫正极材料的小颗粒尺寸和高活性也需要解决。
总之,全固态锂硫电池具有巨大的潜力,但还需要进一步的研究和开发,以解决其面临的挑战,并实现商业化应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高性能锂硫电池的研究进展摘要:目前传统的锂离子电池在电子产品中发挥着重要作用。
然而受到其较低的理论比容量的限制(约150~200Wh/kg),锂离子电池将难以满足人类发展的长远需求,例如电动汽车行业的发展。
锂硫电池的理论能量密度为2600Wh/kg,是锂离子二次电池的3~5倍,是极具应用前景的电化学储能体系,近年来引起了研究人员的广泛关注。
人们提高电极导电性、维持电极结构稳定性、提高硫的负载率和利用率以及加强电池循环寿命等方面开展了大量的研究工作。
本文将就近几年锂硫电池的发展进行相关介绍和讨论。
关键词:锂硫电池正极材料纳米结构材料改性电解质电池结构Research progress in High-Performance Lithium-SulphurBatteriesRen Guodong(School of Metallurgy and Environment, Central South University,0507110402)Abstract:Lithium-ion batteries has played an important role in the electronics at present.But due to its low theoretical energy density ,which is only 150~200Wh/kg,therefore the lithium-ion batteries cannot meet the long-term needs of society in the future,just in the case of the development of electric vehicles.Lithium-sulphur battery is a promising electrochemical energy storage system which has high theoretical energy density of 2600Wh/kg,that is 3~5 times to lithium-ion battery.And it has arised more and more attentions recently.Great efforts have been made by reseachers to improve the conductivity of the electrode , the stability of electrode structure,the loading capicity of sulphur ,the utilization efficiency of sulfur in the cathode and the enhancement of cycle life of the battery.In this paper,the recent research of lithium-sulphur battery will be analyzed and discussed.Keywords:lithium-sulphur battery cathode material nano-structure modification electrolyte cell configuration1.前言电能储存技术和设备将会在未来社会发展中成为一项十分重要的需求。
传统锂离子电池具有具有安全性好、无记忆效应、循环寿命长以及无污染等优点,目前已经成为各类电子产品的首选电源。
在锂离子二次电池体系中,相比于负极材料(如石墨和硅负极材料),低比能量的正极材料(LiFePO4和LiCoO2理论比容量分别的170mAh/g 、274mAh/g),一直是制约其发展的主要因素[1]。
为此,人们将目光转向新型二次电池体系以期望获得更高的能量密度。
在目前已知的正极材料中,硫具较高的比容量(1675mAh/g),与金属锂负极构成的Li/S电池的理论能量密度高达2600 Wh/kg,是传统锂离子电池的3~5倍[2]。
同时,相比于常见的锂离子电池正极材料(LiCoO2、LiMnO2和LiFePO4等),硫具有来源广泛、成本低、高安全性、对环境友好等特点,是一种具有巨大前景的高比能量正极材料。
正因如此,锂硫电池引起了广大科研工作者极大的研究热情,成为近几年的研究及专利申请的热点[3]。
然而,锂硫电池存在活性物质利用率低、循环寿命短、倍率性能差、自放电严重等问题,严重制约了其产业的化应用[4]。
本文将分别从正极材料、电极材料改性、电解质、锂硫电池新型设计等方面介绍锂硫电池近几年的研究现状。
2.锂硫电池正极材料的研究单质硫和硫化物在室温下是电子与离子的绝缘体[4],因此目前的研究过程中,为了保证电池能在高电流密度下发生可逆的电化学反应,需要将硫与其他导电介质进行复合。
常用的正极材料有:二元金属硫化物、硫/金属氧化物复合材料、硫/碳复合材料等[1]。
2.1二元金属硫化物二元金属硫化物是锂硫电池发展初期研究比较多的材料,它们一般具有较大的理论比容量,并且合成简单。
但是由于安全问题、功率密度较低、电活性以及硫利用率较低等问题而受到限制。
二元金属硫化物的合成方法除了常见的高温固相合成、机械球磨法外,还有溶剂热法、电化学沉积法等。
V. A. Dusheiko[5]等,在600~1050℃温度范围内,采用不同的升温和降温速率发生反应得到TiS2、MoS3、V2S2等二元硫化物,并将得到的材料进行电化学性能测试。
通过对比不同条件下合成的正极活性物质的电化学测试数据,总结得出了化学反应条件对材料电化学性能的影响。
2.2硫/金属氧化物的复合材料锂硫电池反应过程不同于锂离子电池,锂硫电池放电过程对应两个放电平台。
首先是环形S8分子还原生成S 2(对应第一个放电平台2.1~2.4V)[6],与此同4时生成易溶于电解质溶液的多硫化物(Li2S n, n =4~8)[7];第二个平台(约1.5~2.1V)对应可溶性的Li2S4转变成不溶性的Li2S。
反应过程中生成的多硫化物溶解于电解液中的多硫化物在电池正负极之间发生穿梭往复,造成活性物质的不可逆损失,并明显降低了充放电效率,降低循环稳定性[8]。
李亚娟等[9]采用密度泛涵的方法对S8和硫化锂分子的结构和性质进行理论研究,发现八种具有稳定构型的硫化锂分子。
而Li2S分子中S-Li键键长相比其它硫化锂而言具有最小,该分子中锂原子和硫原子间作用力很强。
在锂硫二次电池体系中,这会导致硫电极放电产物在充电过程中锂离子不容易脱出。
这也是锂硫二次电池深度放电后,再充电电池极化增大的主要原因。
研究人员抑制多硫化物在电解质中的溶解,在硫正极中引入了金属纳米氧化物。
硫电极中掺入纳米金属氧化物增大了材料的比表面积,扩展了锂离子扩散至材料内部的通道,使电解液对活性物质有更好的浸润效果, 还能抑制多硫化物的溶解和硫的聚集。
部分纳米金属氧化物还对硫-硫键的断裂和键合反应有一定的催化作用,能够改善硫电极的动力学特征[10]。
Y. J. Choi等[11]将含有纳米r-Al2O3、硫( < 20μm )、乙炔黑的丙酮悬浮液超声降解后与粘结剂球磨, 得到具有较高比容量和较好循环稳定性的多孔硫电极材料。
Z. Wei Seh等[12]通过实验方法制作出具有核壳结构的S/TiO2复合材料,这种结构的材料不仅能有效吸附、固定硫,阻止多硫化物的溶解,还可以减小冲放电过程中硫化物改变引起的电极膨胀、破碎。
经电化学性能测试,展现出良好的循环稳定性和较高的比容量。
0.5C电流密度下,初始放电容量1030mAh/g,循环放电1000次,库仑效率为 98. 4%,平均每次容量衰减仅0. 033 %。
由此看出具有核壳结构的电极材料能够表现长循环性能。
2.3硫/碳复合材料碳作为良好的电子导体,碳材料的高比表面积可提供较大的电极反应面积,降低电化学极化,阻碍硫的聚集;高孔容可容纳大量的硫,保证电极材料中有足够的活性物质;碳材料与硫热复合后,丰富的孔结构可容纳硫颗粒,这些孔也是放电产物的容器,吸附性又能抑制多硫化物的溶解;碳材料的良好导电性也能弥补硫电绝缘性的缺点[10]。
目前通过研究合成具有不同纳米结构的碳材料作为载硫体,成为锂硫电池的研究重点。
Y. Qu等[13]以葡萄糖做碳源,以硅球作为模板,通过溶剂蒸发的方法,碳化后得到比表面积为614.4 m2/g ,孔容为1.34cm3/g,孔径范围在120~140nm的层级孔蜂窝碳材料。
材料与硫复合之后进行相关电化学测试,表现出较好的循环稳定性,以2C倍率恒流充放电测试,首次放电比容量为923mAh/g,循环100次后容量保持在564mAh/g。
K. Xi等[14]利用含锌的金属有机骨架材料(MOFs)经过碳化后,形成的具有层级多孔碳材料,与硫复合形成载硫率为55 wt%正极材料。
表现出良好的电化学性能,并且材料形成的介孔越多、孔容越大,材料的循环性能越好。
陈君政等[15]采用分段加热的方法合成了不同管径、不同硫含量的单质硫-多壁碳纳米管( S-MWCNT)复合材料,并筛选出以10 ~ 20 nm直径的MWCNT 为核, 质量分数85%硫为壳的最优化条件下的复合材料。
在最优化的条件下,复合材料首次放电比容量达1272.8mAh/g,活性物质利用率为76. 0%,循环至第8周时放电容量还保持在720. 1mAh/g,容量保持率高达64. 4%。
与未添加MWCNT 的单质硫电极相比,硫复合电极活性物质的利用率和循环性能都得到了较大的改善。
此外,袁艳等[16]以升华硫粉为原料,采用液相沉积法在水溶液体系下制备纳米硫材料。
结果表明:在以甲酸为沉淀剂、PEG-400为分散剂、多硫化钠溶液浓度为0.2 mol/L的合成条件下,可制备出粒径范围为50~80 nm、平均粒径约65 nm且分散性较好的类球形纳米硫材料。
该纳米硫组装的锂/硫电池在0.054mA/cm2电流密度下,首次放电比容量达1050 mAh/g,经10次循环后,放电容量仍可保持初始容量的70%左右(700 mAh/g)。
G. Zhou等[17]利用氧化石墨烯与二硫化碳的混合溶液采用一步合成方法制备了纤维状混合石墨烯-硫复合材料。
材料在合成过程中通过氧化石墨烯的还原反应将硫固定在石墨烯材料上,复合材料具有多孔的网络结构,能够允许锂离子的快速传输,同时相互连接的纤维状的石墨烯也提供了良好的电子通路。
硫与含氧基团具有较强的结合力,能有效阻止多硫化物的溶解,提高电池的循环稳定性。
3.锂硫电池正极材料的改性虽然人们通过合成各种具有不同纳米结构的导电材料实现对硫的有效吸附,但是目前来看仅仅依靠材料自身的结构性质来限制多硫化物的溶解是很困难的。