用积分法求梁的变形
工程力学第2节 确定梁位移的积分法

例10-3 如图图示简支梁, l 4m ,弯曲刚度EI 1640N m2。在无限接近右支座 B 处受到矩为的集中 力偶 M e 120 N m 作用,试求 (1)转角方程和位移方 程;(2)梁的最大挠度。
解:(1)转角方程和 位移方程 x
Me FA FB l
梁的弯矩方程为
5
3
4
令 x 0,得B截面的挠度为
ql yB ( ) 30 EI
Me 2 x C (1) 将上式一次积分得转角 y' 2EIl
Me M ( x) x l
转角方程
Me 2 y' x C 2EIl
(1)
再次积分,可得挠度方程:
Me 3 y x Cx D (2) 6EIl 边界条件: x 0 时,y0 0 ; x l 时,yl 0 M el D0 C 6EI M e 2 M el 2 0 . 00915 x 0.0488 x 2EIl 6EI M e 3 M el 3 x 0.0488x y x x 0.00305 6EIl 6EI
再次积分,可得挠度方程:
1 1 1 3 4 y ( qlx qx ) Cx D EI 12 24
1 1 1 3 2 ( qlx qx ) C EI 4 6 1 1 1 3 4 y ( qlx qx ) Cx D EI 12 24 边界条件: x 0 时,y0 0 ; x l 时,yl 0
补充例 悬臂梁AB在三角形分布载荷作用下,跨 度为l,抗弯刚度为EI,如图所示。试求B截面的挠度。 解:与B截面距离为 x 的任一截面的载荷集度为
x q( x) q l
(0 x l )
用积分法求梁的变形

M ( x) EI Z
d 2 M ( x) 2 dx EI Z
d 2 M ( x) 2 dx EI Z
o
M
M
x
o
x
d2y 0 2 dx
y y
M
d2y 0 2 dx
M
d 2 M ( x) 2 dx EI Z
梁挠曲线近似微分方程
d 2 M ( x) 2 dx EI Z
x0
x0
L b 3
1 L 2
一般认为梁的最大挠度就发生在跨中
b0
3 L 0.577 L 3
例题 5.4
画出挠曲线大致形状。图中C为中间铰。
F
A
两根梁由中间铰连接,挠曲线在 中间铰处,挠度连续,但转角不 连续。
1 2
1 2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
y
A
C
B
x
C
B
tan
d dx
d dx
M ( x) EI Z dx C1
M ( x ) 在小变形情况下,任一截面的转角等于挠曲线 在该截面处的切线斜率。 dx dx C1 x C2 EI Z
通过积分求弯曲位移的特征: 1、适用于细长梁在线弹性范围内、小变形情况下的对称弯曲。
B
2M ( x ) d d Fx dx C C EI Fxdx EI C z 11 z 1 dx dx 2 EI Z
x
y
边界条件
2 3 Fx C xC Fx EI dx z 2 EI z 1 x C2 26 C1
结构位移和刚度—梁的刚度计算(建筑力学)

二、用积分法求梁的变形
1.挠曲线近似微分方程
y( x)
M (x) EI
2.用积分法求变形 EI (x) M (x)dx C1
三、用叠加法求梁的变形
EIy(x) [ M (x)dx C1]dx C2
叠加法—梁截面的总变形,就等于各个荷载单独作用时产生变形的代数和。
四、梁的刚度计算 ymax [ f ]
梁的刚度计算
主要内容
梁的刚度条件和设计准则 梁的刚度计算 梁的刚度计算工程实例
梁的刚度计算
➢ 如果梁的弯曲变形过大,即使强度满足要求,也不能正常工作。例如:房 屋的楼面板或者梁长时间受较大荷载作用,导致变形过大,会造成抹灰面 出现裂缝,工业厂房的吊车梁变形过大,会影响吊车梁的正常使用等。设 计梁时,除了进行强度计算外,还应考虑进行刚度计算,需要把梁的最大 挠度和最大转角限制在一定的允许范围内。
l
l
课后作业:《建筑力学练习册》 练习二十五
3.6 4 4
3.6kN m
2、按正应力强度设计。查强度准则
3.6kNm
max
M max Wz
M max 0.1d 3
[ ]
得:
d3
M max
3
3.6 106 mm 153.3mm
0.1[ ] 0.110
取d=160mm
梁的刚度计算
3、按梁的刚度准则校核。
查变形表得
ymax
Fl 3 48EI
为:
ymax [ f ]
l
l
式中 ymax 为最大相对挠度,[ f ] 为许用相对挠度,其值可
l
l
根据梁的工作情况及要求查阅有关设计手册。土建工程中的许
用相对挠度值 [ f ] 常限制在
10.2 梁的挠曲线近似微分方程及其积分

10.2 梁的挠曲线近似微分方程及其积分纯弯曲 EIM =ρ1挠曲线曲率()322"1w w κ=⎡⎤'+⎣⎦EIM ±=d θFFxd xyxρ O正负号的确定xyOxyOM > 0w ″< 0M < 0w ″>0M 与 w ″异号()322"1w w κ=⎡⎤'+⎣⎦EIM ±=()3221w M EIw ''=-⎡⎤'+⎣⎦小变形:转角 w ′ ≈ 0 适用条件: 1. 坐标系,正负号;2. 忽略剪力 F S 对变形的影响;3. 线弹性,小变形,w′ ≈ 0。
M w EI''=-EI ——梁的抗弯刚度, 若为等直梁,EI =C ,则 EIw M''=-挠曲线近似微分方程1'd Mw x C EIθ==-+⎰12d d M w x x C x C EI ⎛⎫=-++ ⎪⎝⎭⎰⎰一次积分:二次积分:积分法计算梁的变形BAlw A = 0 w B = 0BAlw A = 0 θA =0EIw M''=-挠曲线近似微分方程 由边界条件,确定积分常数光滑连续条件——相邻挠曲线必须光滑连续。
挠曲线近似微分方程及其积分w C2= w C3θC2=θC2w B1= w B2θB1=θB2挠曲线近似微分方程及其积分——例题[例题1] 已知悬臂梁的抗弯刚度为EI,求在荷载P 作用下梁的挠曲线方程,并确定梁上的最大挠度和转角。
BAxL P有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)[解] (1)建立弯矩方程 ()()M x P L x =-()()E Iw M x P L x ''=-=--21()2xEIw P Lx C '=--+2312()26Lx x EIw P C x C =--++(3)确定积分常数 0,0x w ==0,0x w '==20C=10C=挠曲线近似微分方程及其积分——例题BALxPx(2)代入挠曲线方程并积分挠曲线近似微分方程222PLx Pxw EIθ-'==-23(3)6P Lx x w EI-=-最大挠度和转角3max()3PL f EI=↑2max2PL EIθ=挠曲线近似微分方程及其积分——例题B ALxPxmaxθmaxw挠曲线近似微分方程及其积分——例题[例题2] 已知:EI = 常数,求:1. 挠度、转角方程; 2. |θmax |, |w max |。
积分法计算梁的变形

积分法计算梁的变形
步骤:(EI为常量) 1、根据荷载分段列出弯矩方程 M(x)。 2、根据弯矩方程列出挠曲线的近似微分方程并进行积分
EIw(x) M (x)
EIw(x) M (x)dx C1 EIw (x) ( M (x)dx)dx C1x C2
积分法计算梁的变形
3、根据弯曲梁变形的边界条件和连续条件确
C1
C2
Fb 6L
(L2
b2 );
D1 D2 0
确定挠曲线和转角方程
w1
F b x1 6LEI
L2 b2 x12
w2
Fb 6LEI
L b
(x2
a)3
x23
(L2
b2
)x2
1
w1
Fb 6LEI
(L2 b2 ) 6x12
2
w2
Fb 2LEI
L b
(x2
a)2
x22
1 3
(L2
5、计算任意截面的挠度、转角;挠度的最大 值、转角的最大值。
例:求图示悬臂梁自由端的挠度及转角( EI=常数)。
w
x
L
F
x
解:建立坐标系并写出弯矩方程
M (x) F(L x)
写出微分方程并积分 EIw FL Fx
EIw
FLx
1 2
Fx
2
C1
EIw
FLx2 2
Fx3 6
C1x
C2
EIw
q
确定积分常数
x =0 , w=0 ; x=L , w=0 .
C1
ql3 24,C2 0A NhomakorabeaB
L
最大挠度及最大转角
确定挠曲线和转角方程 w qx (l3 2lx2 x3 )
讲梁的挠曲线方程与积分解法

②积分常数的确定——边界条件和连续条件:
边界条件:梁在其支承处的挠度或转角是已知的, 这样的已知条件称为边界条件。 连续条件:梁的挠曲线是一条连续、光滑、平坦 的曲线。因此,在梁的同一截面上不可能有两个 不同的挠度值或转角值,这样的已知条件称为连 续条件。
边界条件
积分常数2n个=2n个
连续条件
列出图示结构的边界条件和连续条件。
8
代入(1)(2)得:
1 ( 1 qx3 1 qL3)
EI 6 6
1 ( 1 qx4 qL3 x qL4 )
EI 24
68
将 x 0 代入得:
A
qL3 6EI
(与C比较知E:I A C)
A
qL4 8EI
(与D比较知E:IA )D
因此
常数C表示起始截面的转角×刚度(EI)
常数D表示起始截面的挠度×刚度(EI)
x L
2
2、
d 2
dx 2
M (x) EI z
EI" 1 qx2
2
积分一次: EI' EI 1 qx3 C (1)
积分二次:
6
EI 1 qx4 Cx D (2)
24
B X``
3、确定常数C、D.
由边界条件: x L, 0 代入(1)得: C 1 qL3
6
x L, y 0 代入(2)得: D 1 qL4
支座反力,分段列弯矩方程; 分段的原则:
①凡载荷有突变处(包括中间支座),应作为分段点;
②凡截面有变化处,或材料有变化处,应作为分段点;
③中间铰视为两个梁段间的联系,此种联系体现为两部分之间 的相互作用力,故应作为分段点;
(2)分段列出梁的挠曲线近似微分方程,并对其积分 两次
积分法求变形

版权所有 钟艳玲 张强
(3) 确定转角和挠度方程 (AB 段)
0 x1 l :
EI z
y1
M (x1)
Fx1 2
EIz1 EIz y1 M (x1) dx1
Fx1 2
dx1
Fx12 4
C1
1
1 EI z
(
Fx12 4
C1)
EIz y1
26
2
2
版权所有 钟艳玲 张强
例 1 求如图所示悬臂梁的最大挠度和转角。
y
工 程 力 学
第 7 章
弯 曲 变
5. 挠曲线和转角方程
EIy Fl x2 F x3 26
EI EIy ' Flx F x2
2
6. 最大挠度和转角 (在 B 截面处)
xl:
MA y
F
Ax
Bx
FA
l
MA A
1 2
M
0x2
Cx
D
y
1 EI z
(1 2
M0x2
Cx
D)
1 EI z
(M 0 x
C)
工 程 力
y
1 EI z
(1 2
M0x2
Cx
D)
学 (3) 确定积分常数
M0
第
A
7
x 0: 0 C 0
B
章
y0 D0
l
弯 曲 变 形
M0x
EI z
y M0x2 2EI z
F
用积分法求梁的挠和转角

d2y dx 2
M (x) EI
EI
d2y dx2
M
(x)
积分一次得转角方程为:
EIy M (x)
dy dx
M (x) EI
dx
C
再积分一次得挠度方程为:
y
M (x) EI
dx
dx
Cx
D
§8-3 用积分法求梁的挠度和转角
梁截面的已知位移条件或位移约束条件,称为梁位移的边界条件。 积分常数C、D 由梁的位移边界条件和光滑连续条件确定。
5ql 4
ymax
y
x l 2
384EI
max
A
B
ql3 24 EI
§8-3 用积分法求梁的挠度和转角 外伸梁,承受集中载荷作用,试绘制挠曲线的大致形状图。
设弯矩刚度EI为常数。
§8-3 用积分法求梁的挠度和转角
解:1、绘制挠曲线的基本依据
1 y M (x)
(x)
EI z
根据弯矩的正、负、零值点或零值区,确定挠曲线的凹、
凸、拐点或直线区。
在梁的被约束处,应满足位移边界条件;在分段处,则 应满足位移连续条件。
§8-3 用积分法求梁的挠度和转角
三、使用视频 1.可使用的视频文件类型 常用格式为AVI,另一种为RealAudio。 2.加入视频 1)定位光标 2)选择“插入/图片/视频”菜单命令,弹出
“视频”对话框 3)选择视频文件 3.修改视频属性 1)选定视频位置上出现的图片 2)单击右键选择“图片属性” 3)在“图片属性”对话框中设置视频的属性
C ql3 24
EIy ql x3 q x4 Cx D 12 24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共有四个积分常数
A
EI z
a
B
C
L
x
边界条件
x0 x aL
A 0
y
A 0 C 0
连续条件
xa
B1 B 2
Fb 2 Fb EI C1 x z 1 M x x EI z 1 1L 2 L Fb 3 EI z1 x C1 x D1
例题 5.3
求图示简支梁在集中荷载F的作用下(F力在右半跨)的最大挠度。
a
F
A
Fb L
b
B
l
C
x x
最大转角
Fb L b A 6 EI z L
2
Fb 3 Fb L2 b 2 EI z1 x x 6L 6L Fa Fb 2 1 Fb L2 b 2 2 L EI z 2 x F x a 2L 2 6L
x
Fb 2 Fb L2 b 2 EI z1 x 2L 6L
d 2 M ( x) 2 dx EI Z
o
M
M
x
o
x
d2y 0 2 dx
y y
M
d2ห้องสมุดไป่ตู้ 0 2 dx
M
d 2 M ( x) 2 dx EI Z
梁挠曲线近似微分方程
d 2 M ( x) 2 dx EI Z
y
A
C
B
x
C
B
tan
d dx
挠曲线方程应分两段AB,BC.
F A
a
q
B
L
共有四个积分常数
EI z
C
x
边界条件
xa
x aL
连续条件
B 0
C 0
y
xa
B1 B 2
B1 B 2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
§6-8-2 梁的挠曲线近似微分方程及积分
M ( x) EI Z
d 2 dx 2 d 2 1 ( ) dx
3
1
1
d 2 dx 2 d 2 1 ( ) dx
3
M ( x) EI Z
d 2 M ( x) 2 dx EI Z
q 3 L x L3 6 EI z
qL4 B 8EI z
q L x 4 4 L3 x L4 24 EI z
例题 5.3
求图示简支梁在集中荷载F的作用下(F力在右半跨)的最大挠度。
a
F
A
Fb L
b
B
x
M 1 x
Fb x L
0 xa
3、积分常数由位移边界条件确定。
积分常数C1、C2由边界条件确定
X
x0
xL
0
X
0
y
x0
0
y
0
例题 5.1
F A A
A
求图所示悬臂梁A端的挠度与转角。
x
l
M x Fx
B
2M ( x ) d d Fx dx C C EI Fxdx EI C z 11 z 1 dx dx 2 EI Z
最大挠度 0
令x=a
力靠近哪个支座,哪边的转角最大。
C
Faba b 3L
2 2
Fb 2 Fb L2 b 2 EI z C a 2L 6L Fb 2 Fb L2 b 2 x0 0 2L 6L
转角为零的点在AC段
1 b L 2 x0
l
C
x x
CB段
Fa L
M 2 x
Fb x F x a L axL
AC段
y
6L Fb 2 1 Fb 2 EI zz x F x xC M 2x xa F 22 2 a D 0 2L 2 L x 0 1 0 0 x L L 0 Fb 3 1 3 EI z2 x F x a C2 x D2 a1 D 22 a 1 aC 1 C a x a 1 D 2 2 6L 6 FbFb 1 2 2 3 Fb Fb 1a 3 C L3 0 2 F3 2 3 L Fb Fb L b EI L L 2 C C L b Z 2 Fb a 62 a 1 F a a Fb 2 C2 a D2 1 2D 3C1a 1 EI z1 x 6 L a C a F a a C2 6L 6 6L 6L 1 2L 6L 2L 2L 2 2 2 Fb 2 1 Fb L b 2 EI z 2 x F x a Fb 3 Fb L2 b 2 EI z1 x x 2L 2 6L 6L 6L 2 2 Fb 3 1 Fb L b 3 EI z2 x F x a x 6L 6 6L
挠曲线方程应分两段AB,BC.
EIz1
F
EI z 2
B
共有四个积分常数 x
边界条件
A
L2 L2
C
x0
连续条件
A 0
A 0
L x 2
y
B1 B 2
B1 B 2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
1 q Lx 2
2
1 3 EI z EI z qL x C1 6
y
边界条件
EI z
1 4 qL x C1 x C2 24
x0 x0 xL
0
qL3 C1 6 EI z
0
qL3 B 6 EI z
qL3 C2 24 EI z
d dx
M ( x) EI Z dx C1
M ( x ) 在小变形情况下,任一截面的转角等于挠曲线 在该截面处的切线斜率。 dx dx C1 x C2 EI Z
通过积分求弯曲位移的特征: 1、适用于细长梁在线弹性范围内、小变形情况下的对称弯曲。
2、积分应遍及全梁。在梁的弯矩方程或弯曲刚度不连续处,其挠曲线的近似 微分方程应分段列出,并相应地分段积分。
x0
x0
L b 3
1 L 2
一般认为梁的最大挠度就发生在跨中
b0
3 L 0.577 L 3
例题 5.4
画出挠曲线大致形状。图中C为中间铰。
F
A
两根梁由中间铰连接,挠曲线在 中间铰处,挠度连续,但转角不 连续。
1 2
1 2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
挠曲线方程应分两段AB,BC. 共有四个积分常数
q
A
B
EI z
C
x
边界条件
k
l 2
x0 xL
L x 2
A 0
l 2
y
Fc qL C k 8k
连续条件
B1 B 2
B1 B 2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
x
y
边界条件
2 3 Fx C xC Fx EI dx z 2 EI z 1 x C2 26 C1
xL xL x0
B 0
B 0
A
FL 2 EI z
2
FL2 C1 2 EI z FL3 C2 3EI z
Fx 2 FL2 2 EI z 2 EI z Fx3 FL2 FL3 x 6 EI z 2 EI z 3EI z
FL3 A 3EI z
例题 5.2
求图所示悬臂梁B端的挠度与转角。
B
1 2 M x q L x 2
A
x
l
x
EI z M x
y
0
2
FabL b
6 EI z L
M x 0
x0
Fb 2 Fab 1 L a 2 Fb L2 b 2 EI z B B L F L a 2L 2 6 EI z L 6L
xL
Fb 3 1 Fb L2 b 2 3 EI z2 x F x a x 6L 6 6L
全梁仅一个挠曲线方程 共有两个积分常数
L1
q
C EA
边界条件
B
A
x
x0 xL
A 0
EIZ
L
y
qLL1 B LBC 2 EA
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
挠曲线方程应分两段AB,BC.