积分法求梁的位移

合集下载

工程力学第2节 确定梁位移的积分法

工程力学第2节 确定梁位移的积分法

例10-3 如图图示简支梁, l 4m ,弯曲刚度EI 1640N m2。在无限接近右支座 B 处受到矩为的集中 力偶 M e 120 N m 作用,试求 (1)转角方程和位移方 程;(2)梁的最大挠度。
解:(1)转角方程和 位移方程 x
Me FA FB l
梁的弯矩方程为
5
3
4
令 x 0,得B截面的挠度为
ql yB ( ) 30 EI
Me 2 x C (1) 将上式一次积分得转角 y' 2EIl
Me M ( x) x l
转角方程
Me 2 y' x C 2EIl
(1)
再次积分,可得挠度方程:
Me 3 y x Cx D (2) 6EIl 边界条件: x 0 时,y0 0 ; x l 时,yl 0 M el D0 C 6EI M e 2 M el 2 0 . 00915 x 0.0488 x 2EIl 6EI M e 3 M el 3 x 0.0488x y x x 0.00305 6EIl 6EI
再次积分,可得挠度方程:
1 1 1 3 4 y ( qlx qx ) Cx D EI 12 24
1 1 1 3 2 ( qlx qx ) C EI 4 6 1 1 1 3 4 y ( qlx qx ) Cx D EI 12 24 边界条件: x 0 时,y0 0 ; x l 时,yl 0
补充例 悬臂梁AB在三角形分布载荷作用下,跨 度为l,抗弯刚度为EI,如图所示。试求B截面的挠度。 解:与B截面距离为 x 的任一截面的载荷集度为
x q( x) q l
(0 x l )

结构位移和刚度—梁的刚度计算(建筑力学)

结构位移和刚度—梁的刚度计算(建筑力学)

二、用积分法求梁的变形
1.挠曲线近似微分方程
y( x)
M (x) EI
2.用积分法求变形 EI (x) M (x)dx C1
三、用叠加法求梁的变形
EIy(x) [ M (x)dx C1]dx C2
叠加法—梁截面的总变形,就等于各个荷载单独作用时产生变形的代数和。
四、梁的刚度计算 ymax [ f ]
梁的刚度计算
主要内容
梁的刚度条件和设计准则 梁的刚度计算 梁的刚度计算工程实例
梁的刚度计算
➢ 如果梁的弯曲变形过大,即使强度满足要求,也不能正常工作。例如:房 屋的楼面板或者梁长时间受较大荷载作用,导致变形过大,会造成抹灰面 出现裂缝,工业厂房的吊车梁变形过大,会影响吊车梁的正常使用等。设 计梁时,除了进行强度计算外,还应考虑进行刚度计算,需要把梁的最大 挠度和最大转角限制在一定的允许范围内。
l
l
课后作业:《建筑力学练习册》 练习二十五
3.6 4 4
3.6kN m
2、按正应力强度设计。查强度准则
3.6kNm
max
M max Wz
M max 0.1d 3
[ ]
得:
d3
M max
3
3.6 106 mm 153.3mm
0.1[ ] 0.110
取d=160mm
梁的刚度计算
3、按梁的刚度准则校核。
查变形表得
ymax
Fl 3 48EI
为:
ymax [ f ]
l
l
式中 ymax 为最大相对挠度,[ f ] 为许用相对挠度,其值可
l
l
根据梁的工作情况及要求查阅有关设计手册。土建工程中的许
用相对挠度值 [ f ] 常限制在

第七章-梁的位移-转角、挠度

第七章-梁的位移-转角、挠度
19
第七章 梁的弯曲变形
例 7-4 试用叠加原理求图示弯曲刚度为EIz的简支梁的跨
中截面挠度ωc和梁端截面的转角θA,θB.
Fq
B 解 yc yqcyFc
A
C EI z
l2
l2
yqc
5qL4 384EI z
yFc
FL3 48EI z
q
B
yc
5qL4 384EIz
FL3 48EIz
A
C EI z
l2
axL
L
AC段
E EzIyzI''11 M 2F1 Lbxx2CF 1Lb x
CB段
E E zy'I z'2 I 2 M 2 F 2 L x x b 2 1 2 F F L x xb a F 2 x C a 2
E zy 2 I 6 F L x 3 b 1 6F x a 3 C 2 x D 2
A
AA A A A
A
~
~
~
~~
A
AA
~
~
yA 0
yA 0
A 0
yALyAR
ALAR
10
第七章 梁的弯曲变形
例7-1 求图所示悬臂梁A端的挠度与转角。
F
x
A
yA
A
l
M xFx
B
x
d d EE Ix zy zId dFx y 2x 2M E (CF IZ x1)x dd x C x C11
i 1
由于梁的边界条件不变,因此
n
y y i
i1
重要结论:
n
i ,
i1
梁在若干个载荷共同作用时的挠度或转角,等
于在各个载荷单独作用时的挠度或转角的代数和。 这就是计算弯曲变形的叠加原理。

材料力学第五章梁弯曲时的位移

材料力学第五章梁弯曲时的位移
第五章 梁弯曲时的位移
工程实例
7-1
工程实例
工程实例
5-1 梁的位移——挠度及转角
建立坐标系,oxy为梁对称面,外力作用在对 称面内。所以,挠曲线为o xy面内的平面曲线。
挠度
y 向下为正。
y
x
y
转角
x
挠曲线
挠曲线方程:
7-2
w= f (x)
挠度
略去剪力的影响,则平面假设成立,发
y
5.2 积分法求梁的挠度和转角
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度, 梁的EI已知。
解 1)由梁的整体平衡分析可得:
2)写出x截面的弯矩方程
FAx 0, FAy F (), M A Fl (
)
A
x
l
yB
F B
B
x
M ( x ) F (l x ) F ( x l )
A
FAx 0, FAy
Fb Fa , FBy l l
2)弯矩方程
FAy x1
ymax
x2
FBy
AC 段:
M x1 FAy x1 Fb x1 ,0 x1 a l
y
a
b
CB 段:
Fb M x2 FAy x2 F ( x2 a ) x2 F ( x2 a ), l
目录
a x2 l
5.2 积分法求梁的挠度和转角
A d 2 w1 Fb EI M ( x1 ) x1 2 dx1 l FAy x1 dw1 Fb 2 EI EI ( x1 ) x1 C1 x2 dx1 2l Fb 3 a EIw1 x C1 x1 D1 6l a x2 l CB 段: y d 2 w2 Fb EI M ( x2 ) x2 F ( x2 a) 2 dx2 l dw Fb 2 F EI 2 EI ( x2 ) x 2 ( x2 a ) 2 C 2 dx2 2l 2 Fb 3 F EIw2 x 2 ( x2 a)3 C2 x2 D2 6l 6

第七章 梁的位移-转角、挠度解读

第七章 梁的位移-转角、挠度解读
第七章 梁的弯曲变形
第七章 梁的位移-转角、挠度
7.1 工程中梁的变形 转角 挠度 7.2 梁挠曲线的近似微分方程 7.3 利用积分法求梁的位移 7.4 利用叠加法求梁的位移 7.5 梁的刚度条件与校核 7.6 简单超静定梁的计算 7.7 提高抗弯刚度的措施
1
第七章 梁的弯曲变形
2
第七章 梁的弯曲变形
A
AA A A A
A
~
~
~
~~
A
AA
~
~
yA 0
yA 0
A 0
yAL yAR
AL AR
10
第七章 梁的弯曲变形
例7-1 求图所示悬臂梁A端的挠度与转角。
F
x
A
yA
A
l
M x Fx
B
x
ddEExyIzIzddFxyx22MEI(CFZx1x)ddxxCC11
Fb L
x
F b
C
l
y
x
最大转角 y'' 0 M x 0
A

Fb L2 b2 6EIz L
Fab L b 6EIz L
最大挠度 y' 0 令x=a
B
x
EI z1


Fb 2L
x2

Fb
L2 6L
b2
EIz
y1


Fb 6L
x3

Fb
EIz
y2


Fb 6L
x3

1 6
F x

a3

Fb
L2 6L
b2

材料力学 积分法求梁的变形

材料力学  积分法求梁的变形
一、挠曲线近似微分方程
M ( x ) = r EI Z 1
1 = ± r d 2 w dx 2 d w é 2 ù 1 + ( ) ê ú dx ë û
3
±
d 2 w dx 2 d w 2 ù é 1 + ( ) ú ê dx û ë
3
M ( x ) = EI Z
边界条件、连续条件应用举例
弯矩图分三段,共6 个积分常数需6个边界条 件和连续条件 A B
P C D
w
铰连接
ω A点: A = 0, q A = 0
B 点 : w B 左 = w B 右
C点 : w C左 = w C右
D点:w D = 0
q C 左 = q C 右
边界条件、连续条件应用举例
y
边界条件
3 qL C1 = 6 EI z
EI zw =
1 (L - x )4 + C q 1 x + C 2 24
x = 0 x = 0 x = L
q = 0 w = 0
qL3 q B = 6 EI z
q =-
3 qL C2 =24 EI z
挠曲线方程应分两段AB,BC.
F A
a
q
B
EI z
L
共有四个积分常数
C
x
边界条件
x = a x = a + L
连续条件
w B = 0 wC = 0
y
x = a
w B1 = w B 2 q B1 = q B 2
例题 5.4 &
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件

材料力学(土木类)第五章 梁弯曲时的位移(2)

材料力学(土木类)第五章  梁弯曲时的位移(2)
逆时针) (逆时针)
3 3 3
利用叠加原理求图示弯曲刚度为EI的悬臂梁 例5-6 利用叠加原理求图示弯曲刚度为 的悬臂梁 自由端B截面的挠度和转角 截面的挠度和转角。 自由端 截面的挠度和转角。
F A l C EI l F D l B
原荷载可看成为图a和 两种荷载的叠加 两种荷载的叠加, 解:原荷载可看成为图 和 b两种荷载的叠加,对应 的变形和相关量如图所示。 的变形和相关量如图所示。
Fl θ C1 = 2 EI
2
3
由位移关系可得此时B截面的挠度和转角为: 由位移关系可得此时 截面的挠度和转角为: 截面的挠度和转角为
Fl 3 Fl 2 4 Fl 3 wB1 = wC1 + θ C1 ⋅ BC = + × 2l = 向下) (向下) 3EI 2 EI 3EI Fl θ B1 = θ C1 = 2 EI
q ( x) x 2 dθ B = dθ ( x) = dx 2 EI
范围对q(x)dx的作用进行叠加,相当于 的作用进行叠加, 在x=0, l范围对 范围对 的作用进行叠加 对上两式在前述范围内积分, 对上两式在前述范围内积分,即:
wB = ∫ d wB = ∫
0
l
l
0
11q 0 l q ( x ) x (3l − x ) dx = 6 EI 120 EI
上次课回顾: 上次课回顾:
1、度量梁变形的两个基本位移量:挠度和转角 度量梁变形的两个基本位移量: 2、挠曲线近似微分方程
EIw′′ = − M ( x )
3、挠曲线近似微分方程的积分 、
EIw ' ( x ) = ∫ ( − M ( x )) dx + C1
EIw ( x ) =

第六章 梁的位移

第六章 梁的位移

可解出
Fa 2 c2 , 2
1 1 1 EI z v ql 2 x 2 qlx3 qx 4 c1 x c2 4 6 24
(2)
2.16
第6章
梁的位移
6.2 用积分法求梁的位移
考虑边界条件,对于悬臂梁来说,悬臂端的转角和挠度为0,即
x0 x0
v 0
v0
将上述2个边界条件代入式(1)和式(2),可解出积分常数为
1 1 EI z v qlx 2 qx3 c1 4 6
(2)
2.20
第6章
该梁的边界条件为
梁的位移
6.2 用积分法求梁的位移
x0 x 1
v0 v0
先将第1个边界条件代入式(2),解出积分常数c2:
c2 0
再将第2个边界条件代入式(2),可解出积分常数c1:
ql 3 c1 24
tan v f ( x)
即有
f ( x)
(c)
2.6
Qm
第6章
梁的位移
6.1 梁的挠曲线微分方程
式(c)称为转角方程,它表达了梁各横截面转角与挠度的关系。 在第5章,我们曾建立了挠曲线曲率(curvature)与弯矩的关系,即式 (5.1)所示 1 M EI z 在高等数学中,我们有曲率公式如下:
2.9
第6章
梁的位移
6.1 梁的挠曲线微分方程
x M (a) M (b) M M
x
M<0
vⅱ >0
y y
M>0
vⅱ <0
图6.2 曲率正负号的规定 (a) 梁受负弯矩作用;(b)梁受正弯矩作用
2.10
第6章
梁的位移
6.2 用积分法求梁的位移
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档