材料力学-第八章叠加法求变形(3-4-5)
合集下载
《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4
材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
用叠加法求梁的变形

得:
y B y Bq y BRB
y Bq y BRB 0
(3).将(a)(b)代入(c)得:
(c)
RB L3 qL4 0 8EI Z 3EI Z
RB
3 qL 8
yBRB
A
RB
目录
§7-5 梁的刚度校核
一.刚度条件:
土建工程:以强度为主,一般强度条件满足了,刚度要求也
max
M max Wz
q 2
(其中:M max L2 45 KNm
Wz
b 2 2 3 h b ) 6 3
b3
3M max 178m m 2
h 2b 356 mm
(2).按刚度条件设计: 由附录查得:
f max f L L
就满足了,因此刚度校核在土建工程中处于从属地位。 机械工程:对二者的要求一般是平等的,在刚度方面对挠度 和转角都有一定的限制,如机床中的主轴,挠度过大影响加工 精度,轴端转角过大,会使轴承严重磨损。
桥梁工程:挠度过大,机车通过时将会产生很大的振动。
综上所述:在工程设计中,我们有必要对梁的挠度和转角进行限
MeL 3EI Z
Bq
BM
qL3 24EI Z
MeL 6 EI Z
yCq
5qL4 384EI Z
MeL2 16EI Z
yCM
(2).进行代数相加,求得:
yC yCq yCM
5qL4 MeL2 384EI Z 16EI Z
A Aq AM
§7-3 用叠加法求梁的变形
一.概述:
我们上面所讲的直接积分法是求梁变形的基本方法, 但在载荷复杂的情况下,要列多段弯矩方程,从而产生很 多的积分常数。运算非常复杂。现在我们将要介绍的叠加
y B y Bq y BRB
y Bq y BRB 0
(3).将(a)(b)代入(c)得:
(c)
RB L3 qL4 0 8EI Z 3EI Z
RB
3 qL 8
yBRB
A
RB
目录
§7-5 梁的刚度校核
一.刚度条件:
土建工程:以强度为主,一般强度条件满足了,刚度要求也
max
M max Wz
q 2
(其中:M max L2 45 KNm
Wz
b 2 2 3 h b ) 6 3
b3
3M max 178m m 2
h 2b 356 mm
(2).按刚度条件设计: 由附录查得:
f max f L L
就满足了,因此刚度校核在土建工程中处于从属地位。 机械工程:对二者的要求一般是平等的,在刚度方面对挠度 和转角都有一定的限制,如机床中的主轴,挠度过大影响加工 精度,轴端转角过大,会使轴承严重磨损。
桥梁工程:挠度过大,机车通过时将会产生很大的振动。
综上所述:在工程设计中,我们有必要对梁的挠度和转角进行限
MeL 3EI Z
Bq
BM
qL3 24EI Z
MeL 6 EI Z
yCq
5qL4 384EI Z
MeL2 16EI Z
yCM
(2).进行代数相加,求得:
yC yCq yCM
5qL4 MeL2 384EI Z 16EI Z
A Aq AM
§7-3 用叠加法求梁的变形
一.概述:
我们上面所讲的直接积分法是求梁变形的基本方法, 但在载荷复杂的情况下,要列多段弯矩方程,从而产生很 多的积分常数。运算非常复杂。现在我们将要介绍的叠加
材料力学梁的弯曲变形第3节 用叠加法求梁的变形

挠曲轴线 近似微分方程
y M (x) EI
• 叠加原理:当梁为小变形时,梁的挠度和转角均是 载荷的线性函数,可以使用叠加法计算梁的转角和 挠度,即梁在几个载荷同时作用下产生的挠度和转 角等于各个载荷单独作用下梁的挠度和转角的叠加 和,这就是计算梁弯曲变形的叠加原理。
• 叠加原理的步骤: ①分解载荷;②分别计算各载荷 单独作用时梁的变形;③叠加得最后结果。
a
x
5ql 4 384 EI
例6-5 悬臂梁AB上作用有均布载荷q,自由端作 用有集中力F = ql,梁的跨度为l,抗弯刚度为EI,如 图所示。试求截面B的挠度和转角。
解:(1)分解载荷
梁上载荷可分解成均布载 荷 q 与集中力 F 的叠加。
(2)查表得这两钟情况下
截面 B 的挠度和转角
yBq
ql3 2EI
2ql
3
(顺时针)
3EI
例6-6 如图所示,外伸梁在外伸段作用有均布 载荷q,梁的抗弯刚度为EI。求C截面的挠度。
解: 1)简化、分解载荷
2)分别计算 B 截面挠度:
悬臂梁因 B 截面产生转角引
起的挠度 yC1和悬臂梁在均布 载荷作用下产生的挠度 yC2
0.5qa2
qa
+
B
yA3
ql4 8EI
7ql 4 384EI
5Fl3 48EI
41ql4 5Fl3 384EI 48EI
代入数值得:
yA 3.89 103 m 3.89mm()
ql 4 8EI
+
Bq
ql3 6EI
y M (x) EI
• 叠加原理:当梁为小变形时,梁的挠度和转角均是 载荷的线性函数,可以使用叠加法计算梁的转角和 挠度,即梁在几个载荷同时作用下产生的挠度和转 角等于各个载荷单独作用下梁的挠度和转角的叠加 和,这就是计算梁弯曲变形的叠加原理。
• 叠加原理的步骤: ①分解载荷;②分别计算各载荷 单独作用时梁的变形;③叠加得最后结果。
a
x
5ql 4 384 EI
例6-5 悬臂梁AB上作用有均布载荷q,自由端作 用有集中力F = ql,梁的跨度为l,抗弯刚度为EI,如 图所示。试求截面B的挠度和转角。
解:(1)分解载荷
梁上载荷可分解成均布载 荷 q 与集中力 F 的叠加。
(2)查表得这两钟情况下
截面 B 的挠度和转角
yBq
ql3 2EI
2ql
3
(顺时针)
3EI
例6-6 如图所示,外伸梁在外伸段作用有均布 载荷q,梁的抗弯刚度为EI。求C截面的挠度。
解: 1)简化、分解载荷
2)分别计算 B 截面挠度:
悬臂梁因 B 截面产生转角引
起的挠度 yC1和悬臂梁在均布 载荷作用下产生的挠度 yC2
0.5qa2
qa
+
B
yA3
ql4 8EI
7ql 4 384EI
5Fl3 48EI
41ql4 5Fl3 384EI 48EI
代入数值得:
yA 3.89 103 m 3.89mm()
ql 4 8EI
+
Bq
ql3 6EI
用叠加法求弯曲变形

yC
3 i 1
yCi
5ql4 384EI
ql 4 48EI
ql4 16EI
11ql4 ( ) 384EI
B
3
Bi
i 1
ql3 24EI
ql3 16EI
ql3 3EI
11ql3 ( ) 48EI
目录
材料力学 材料力学
用叠加法求弯曲变形
例4 已知:悬臂梁受力如图示,q、l、
yC
EI均为已知。求C截面的挠度yC和转角C
材料力学
材料力学
用叠加法求弯曲变形
设梁上有n 个载荷同时作用,任意截面上的弯矩 为M(x),转角为 ,挠度为y,则有:
EI
d2y dx2
EIy''
M(x)
若梁上只有第i个载荷单独作用,截面上弯矩
为 M i ( x) ,转角为 i ,挠度为 yi ,则有:
EIy''i Mi ( x)
材料力学
7-4
解 1)首先,将梁上的载荷变成有表可查 的情形
为了利用梁全长承受均布载荷 的已知结果,先将均布载荷延长至梁 的全长,为了不改变原来载荷作用的 效果,在AB 段还需再加上集度相同、 方向相反的均布载荷。
目录
材料力学 材料力学
用叠加法求弯曲变形
2)再将处理后的梁分解为简单载荷作用
yC
的情形,计算各自C截面的挠度和转角。
等于在各个载荷单独作用时的挠度或转角的代数 和。这就是计算弯曲变形的叠加原理。
材料力学
目录
材料力学 材料力学
用叠加法求弯曲变形
例3 已知简支梁受力如图示,q、l、EI 均为已知。求C 截面的挠度yC ;B截面的 转角B
材料力学课件:梁弯曲变形的叠加法

qA
q L3 24 E I
qa 3 3 EI
5 q4 E I
A
FA
qA
a2
12 EI
(3 F
4 qa )
5 qa 4 F a 3 yC y FA yqA 24 E I 6 E I
§ 5 . 4 用叠加法计算梁的弯曲变形
例题2:求图示梁C截面的挠度
§ 3 . 8 梁的强度计算
2)计算支座反力,做内力图
q=10 kN/m
FRB=30kN,FRD=10kNy
A
B
200
30
2m
200
yc
z
F=20 kN
D C
3m
1m
My
max
30
max
Iz
10103 158103 6010108
26.3MPa
max
t
40MPa
前情回顾:弯曲变形的度量 积分法
§ 5 . 4 用叠加法计算梁的弯曲变形
F q 例题1:叠加法求A截面的转角和C截面的挠度. 解:a)载荷分解如图 b)由梁的简单载
A
C
a
a
F
a
a
q
a
a
+
=
荷变形表(教材P112页)
查简单载荷引起的变形
FA
F L2 16 EI
Fa2
4 E I F L3
Fa3
y FC 4 8 E I 6 E I
§ 3 . 8 梁的强度计算
习题:铸铁梁的载荷及横截面尺寸如图所示。许用拉应力 [σt]= 40 MPa,许用压应力 [σc]=160 MPa。试按正应力强度条件校核
梁的强度。若载荷不变,但将T形横截面倒置,
材料力学- 8组合变形

l/2 l/2
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
第八章叠加法求变形(3,4,5)

§8-3
用叠加法计算梁的变形及 梁的刚度计算
一、用叠加法计算梁的变形——简捷方法 叠加法应用的条件 在材料服从胡克定律、且变形很小的前 提下,载荷与它所引起的变形成线性关系。 即挠度、转角与载荷(如P、q、M)均为一次线性关系 计算梁变形时须记住梁在简单荷载作用下 的变形——转角、挠度计算公式(见附录Ⅳ)。
3 3
pl 7 pl 3 pl wc wc1 wc 2 24 EI 48EI 16 EI
B
c
c
p
这种分析方法叫做梁的逐段刚化法。
例题2 用叠加法求AB梁上E处的挠度 E
p
p
p
wE 2
wE 1
B
wE = wE 1+ wE 2 = wE 1+ wB/ 2
wB=?
P
机械:1/5000~1/10000,
土木:1/250~1/1000 机械:0.005~0.001rad
[w]、[θ]是构件的许可挠度和转角,它们决定于构 件正常工作时的要求。 [例8-8]图示工字钢梁,l =8m,Iz=2370cm4,Wz=237cm3 ,[ w/l ]= 1/500,E=200GPa,[σ]=100MPa。试根据梁 的刚度条件,确定梁的许可载荷 [P],并校核强度。
例题 2
按叠加原理得
wC wC 1 wC 2
5ql 4 5ql 4 0 768EI 768EI
ql 3 ql 3 3ql 3 A A1 A2 48EI 384EI 128EI ql 3 ql 3 7ql 3 B B1 B 2 48EI 384EI 384EI
c
c
A
P M =Pl/2 B C B
用叠加法计算梁的变形及 梁的刚度计算
一、用叠加法计算梁的变形——简捷方法 叠加法应用的条件 在材料服从胡克定律、且变形很小的前 提下,载荷与它所引起的变形成线性关系。 即挠度、转角与载荷(如P、q、M)均为一次线性关系 计算梁变形时须记住梁在简单荷载作用下 的变形——转角、挠度计算公式(见附录Ⅳ)。
3 3
pl 7 pl 3 pl wc wc1 wc 2 24 EI 48EI 16 EI
B
c
c
p
这种分析方法叫做梁的逐段刚化法。
例题2 用叠加法求AB梁上E处的挠度 E
p
p
p
wE 2
wE 1
B
wE = wE 1+ wE 2 = wE 1+ wB/ 2
wB=?
P
机械:1/5000~1/10000,
土木:1/250~1/1000 机械:0.005~0.001rad
[w]、[θ]是构件的许可挠度和转角,它们决定于构 件正常工作时的要求。 [例8-8]图示工字钢梁,l =8m,Iz=2370cm4,Wz=237cm3 ,[ w/l ]= 1/500,E=200GPa,[σ]=100MPa。试根据梁 的刚度条件,确定梁的许可载荷 [P],并校核强度。
例题 2
按叠加原理得
wC wC 1 wC 2
5ql 4 5ql 4 0 768EI 768EI
ql 3 ql 3 3ql 3 A A1 A2 48EI 384EI 128EI ql 3 ql 3 7ql 3 B B1 B 2 48EI 384EI 384EI
c
c
A
P M =Pl/2 B C B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
刚化
P
EI=
C
θc1
fc1
pa3 3EI
fc1
c1
pa2 2EI
2)AB部分引起的位移fc2、 θc2
P
A
θ B B2
C
fc2 刚化
EI=
B2
PaL 3EI
fc2 B2 a
PaL a 3EI
c c1 B2
θB2
P Pa
c
Pቤተ መጻሕፍቲ ባይዱ 2 2EI
PaL 3EI
fc fc1 fc2
fc
pa3 3EI
MPa,[]=100
MPa,E=210
GPa,
w l
1 400
。
例题 5-7
解:一般情况下,梁的强度由正应力控制,选择梁横 截面的尺寸时,先按正应力强度条件选择截面尺寸, 再按切应力强度条件进行校核,最后再按刚度条件 进行校核。如果切应力强度条件不满足,或刚度条 件不满足,应适当增加横截面尺寸。
[例8-3]如图用叠加法求 wC、A、B
解:1.求各载荷产生的位移 2.将同点的位移叠加
=
wC
5qL4 384EI
A
qL3 24EI
B
qL3 24EI
+
PL3 48EI
PL2
16EI PL2
16EI
+
ML2 16EI
ML 3EI
ML 6EI
例题 5-4
试按叠加原理求图a所示简支梁的跨中截面的
16EI
1 qa4 24 EI
()
例题 5-5
图b所示悬臂梁AB的受力情况与原外伸梁AB
段相同,但要注意原外伸梁的B截面是可以转动的,
其转角就是上面求得的B,由此引起的A端挠度 w1=|B|·a,应叠加到图b所示悬臂梁的A端挠度w2
上去,才是原外伸梁的A端挠度wA wA w1 w2
1 3
qa3 EI
S* z ,max
73
mm 100
mm
50
mm
100
11
mm
73 7 mm 100 11 mm
2
104 000 mm3
例题 5-7
当然, Sz*,m的ax 值也可按下式得出:
S* z ,max
73
mm 11 mm 100
11 2
mm
100 11 mm
7mm 100 11mm
挠度 wC 和两端截面的转角A 及 B。已知EI为
常量。
例题 5-4
解: 为了能利用简单荷载作用 下梁的挠度和转角公式, 将图a所示荷载视为与跨 中截面C正对称和反对称 荷载的叠加(图b)。
例题 5-4
C
A1 wC
在集度为q/2的正对称均 布荷载作用下,查有关梁的 B1 挠度和转角的公式,得
wC1
P
解:由刚度条件
wmax
Pl 3 48 EI
[w]
l 500
得
P
48EI 500l 2
7.11 kN
所以 [ P] 7.11 kN
max
M max Wz
Pl 4Wz
60MPa [ ]
所以满足强度条件。
例题 5-7
图a所示简支梁由两根槽钢组成(图b),试按强
度条件和刚度条件选择槽钢型号。已知[]=170
(30 103 N)(0.8m) (3 2.4m2 4 0.82m2 )
(40 103 N)(0.9m) (3 2.4m2 4 0.92m2 )
(12 103 N)(0.6m) (3 2.4m2 4 0.62m2 )]
48(210
1671103 N m 109 Pa)(2 1780
努力学习,报效祖国!
§8-3 用叠加法计算梁的变形及 梁的刚度计算
一、用叠加法计算梁的变形
在材料服从胡克定律、且变形很小的前 提下,载荷与它所引起的变形成线性关系。
当梁上同时作用几个载荷时,各个载荷所 引起的变形是各自独立的,互不影响。若计算 几个载荷共同作用下在某截面上引起的变形, 则可分别计算各个载荷单独作用下的变形,然 后叠加。
例题 5-7
1. 按正应力强度条件选择槽钢型号
梁的剪力图和弯矩 图分别如图c和图e所 示。最大弯矩为 Mmax=62.4 kN·m。梁 所需的弯曲截面系数 为
Wz
Mmax
62.4103 N m 170106 Pa
367 106
m3
例题 5-7
而每根槽钢所需的弯曲截面系数 Wz≥367×106 m3/2=183.5×10-6 m3=183.5 cm3。由型钢表查得 20a号槽钢其Wz=178 cm3,虽略小于所需的Wz= 183.5 cm3,但
一. 静不定梁的基本概念
梁的约束个数多于独立 静力平衡方程的个数。 二.变形比较法解静不定梁
用多余反力代替多余约 束,就得到一个形式上 的静定梁,该梁称为原 静不定梁的相当系统, 又称静定基。
解:将支座B看成多 余约束,变形协调条件为:
wB
0 ql 4
wBq 8EI
wBR
RBl 3 3EI
wB wBq wBR
条件求得为
FA
5 ql 8
故20a号槽钢满足切应力强度条件。
例题 5-7
3. 校核梁的刚度条件
如图a,跨中点C处的挠度为梁的最大挠度wmax。 由叠加原理可得
wmax
wC
4 i 1
Fi bi 48EI
(3l
2
4bi
2
)
1 [(120 103 N)(0.4m) (3 2.42m2 4 0.42m2 ) 48EI
qa 3 4 EI
顺时针
wC
B
a qa4 8EI
5qa4 24 EI
[例8-6]求图示梁B、D 两处的挠度 wB、 wD 。
解:
q(2a)4 qa(2a)3 14qa4
wB 8EI
3EI
3EI
wD
wB 2
2qa(2a)3 48EI
8qa 4 3EI
[例8-7]求图示梁C点的挠度 wC。
108 m4
)
4.66
103
m
例题 5-7
梁的许可挠度为
[w] [w] l 1 2.4m 6 103m 6mm
l
400
由于
wmax 4.66mm [w]
因此,所选用的槽钢满足刚度条件。
四. 提高弯曲刚度的措施
影响梁弯曲变形的因素不仅与梁的支承和载荷 情况有关,而且还与梁的材料、截面尺寸、形状和 梁的跨度有关。所以,要想提高弯曲刚度,就应从 上述各种因素入手。
5q / 2l4
384EI
5ql4 768EI
A1
q / 2l 3
24EI
ql 3 48EI
B1
q / 2l 3
24EI
ql 3 48EI
例题 5-4
在集度为q/2的反对称均布
B2 荷载作用下,由于挠曲线也是
C
A2
与跨中截面反对称的,故有
wC 2 0
注意到反对称荷载作用下跨中截面不仅挠度为零,
简支梁BC,由q产生的Bq 、wDq(图d),由MB产生的 BM 、wDM (图e)。可查有关式,将它们分别叠加后 可得 B、wD,它们也是外伸梁的 B和wD。
例题 5-5
B
Bq
BM
q2a 3
24EI
qa 2 2a
3EI
1 qa3 3 EI
wD
wDq
wDM
5 q2a4
384 EI
qa 2 2a 2
0 5ql4 768EI
A
A1
A2
ql 3 48EI
ql 3 384EI
3ql 3 128EI
B
B1
B2
ql 3 48EI
ql 3 384EI
7ql 3 384EI
例题 5-5
试按叠加原理求图a所示外伸梁的截面B的转角
B,以及A端和BC段中点D的挠度wA和wD。已知
EI为常量。
例题 5-5
PaL 3EI
a
[例8-4] 欲使AD梁C点挠度为零,求P与q的关系。
解:
wC
5q(2a)4
384 EI
Pa(2a)2 16 EI
0
P 5 qa 6
[例8-5] 用叠加法求图示梁C端的转角和挠度。
解: qa 2
B
2 2a qa (2a)2
3EI
16EI
qa3 顺时针
12 EI
C
B
qa 3 6EI
§6-4 简单超静定梁
Ⅰ.超静定梁的解法
解超静定梁的基本思 路与解拉压超静定问题 相同。求解图a所示一次 超静定梁时可以铰支座
B为“多余”约束,以 约束力FB为“多余”未 知力。解除“多余”约
基本静定系
束后的基本静定系为A 端固定的悬臂梁。
基本静定系在原有均布 荷载q和“多余”未知 力FB作用下(图b)当满 足位移相容条件(参见 图c、d)
w Ml
EI
一、增大梁的抗弯刚度EI;
二、减小跨度L或增加支承降低弯矩M; 三、改变加载方式和支承方式、位置等。
§8-5 梁的弯曲应变能
一.梁的弯曲应变能
1.纯弯曲:M (x) c
V W
W 1 M
2
V
1 2
M
Ml EI
M 2l 2EI
2.横力弯曲:M (x) c
W
dV
1 M (x)d
2
M 2 xdx
2
104000 mm3
每根20a号槽钢对中性轴的惯性矩由型钢表查得 为 Iz =1780.4 cm4 1780cm4