梁的弯曲变形与刚度计算

合集下载

材料力学(赵振伟)梁的弯曲变形2

材料力学(赵振伟)梁的弯曲变形2

3. 应用叠加原理的若干情况 1 ) 荷载的分解或重组
q m
q
L/2 L/2
L
F
q
q
m L/2 L/2
F

q0
EI
A 求图示自由端的挠度。
L2
L2
q0
L
w1
q0
w3
B
w2
L2
L2
w1
q0 L4 8EI
w2
q0 L 24
8EI
q0 L4 128EI
w3
B
L 2
q0 L 23
6EI
L 2
q0 L4 96EI
wA
w1
w2
w3
41q0 L4 384EI
2) 逐段刚化法
依据: 若结构可分为若干部分,且各部分在荷载作用下的 变形不是相互独立的,那么,结构中 A 点的位移是各个部 分在这一荷载作用下的变形在 A 点所引起的位移的叠加。
A EI a
变形刚体
F
F
Fa 2
B
C
a/2
wwww1122
B (F1, F2,, Fn ) B1(F1) B2 (F2 ) Bn(Fn )
yB (F1, F2,, Fn ) yB1(F1) yB2 (F2 ) yBn(Fn )
叠加法的特征: 1、梁在简单载荷作用下挠度、转角应为已知或有变形表可查; 2、叠加法适用于求梁个别截面的挠度或转角值。
分析和讨论
q
在下列不同的支承方 式中,哪一种刚度最高?
q
q
分析和讨论
q
梁由混凝土材料制成,如果横截面从左图改为右图,能 够改善强度吗?能够改善刚度吗?
梁的材料由普通钢改为优质钢,能够改善强度吗? 梁的材料由普通钢改为优质钢,能够改善刚度吗?

工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI

梁的变形及刚度条件

梁的变形及刚度条件

f
三、梁的刚度条件
• 1、最大挠度:在建筑工程中,通常只校核 梁的挠度,不校核梁的转角,一般用f表示 梁的最大挠度。 • 2、许用挠度:用[f ]梁的允许挠度,通常用 允许挠度和跨长的比值 作为校核标准, • 3、刚度条件:梁在荷载作用下产生的最大 挠度与跨长的比值不能超过许用的单位长 度的挠度来表示刚度条件:
• 梁的变形与跨长l的三次或四次冪成正比,设法减小梁的跨度,将 会有效地减小梁的变形 • 1、将简支梁的支座向中间适当移动, • 2、在梁的中间增加支座。
(三)改善荷载的分布情况
• 1、将集中力分散作用 • 2、改为分布荷载
第七节梁的变形
• 一、挠度与转角
• 1、挠曲线:梁在荷载作用下产生弯曲变形后, 其轴线为一条光滑的平面曲线; • 2、挠度:梁任一横截面形心在垂直于杆轴方向 竖向位移CC'; • 3、转角:梁内任一横截面在梁变形后,绕中性 轴转过的角度,称为该截面的转角, • 4、挠度与转角的关系:
二、用叠加法求梁的变形
• 一般钢筋混凝土梁的
• 钢筋混凝土吊车梁的
例题9-25
• 一简支梁由№28b工字钢制成,跨中承受一集中 荷载,已知F=20kN,l=9m,E=210Gpa,[] =170MPa, 。试校核梁正应力强度和 刚度。
•最大弯矩
•查表№28b工字钢 •强弯曲刚度EI • 1、由于同类材料的E值相差不多; • 2、增大惯性矩 I • 使材料尽量分布在远离中性轴的地方 • 通常采用工字形、箱形、圆环形截面 (二)减小梁的跨度
• 1、根据:由于梁的变形与荷载成线性关系。 所以,可以用叠加法计算梁的变形。 • 2、方法:即先分别计算每一种荷载单独作 用时所引起梁的挠度和转角,然后再将它 们代数相加,就得到梁在几种荷载共同作 用下的挠度或转角。

工程力学第9章 梁弯曲时的刚度计算

工程力学第9章 梁弯曲时的刚度计算
挠曲线

w

x
qx
F
x
9.1 挠曲线近似微分方程
9.1.2 挠度和转角的关系
◆挠曲线方程 : w f x
w
挠曲线

w

x
qx
F
x
tan dw
dx
dw
dx
9.1.3 挠曲线近似微分方程
一、挠曲线的曲率公式
1M EI

1
x

M x
EI
d2w

1
x


6EI 2l
l 2
2l 2


l 2
2



11Fl3 96EI
未知约束力单独作用引起的B处挠度
wB FB

FB 2l 3
48EI

FBl 3 6EI
将上述结果代入式(b),得到补充方程
11Fl3 FBl3 0 96EI 6EI
w Mex x2 l2 6EIl
(c)
Me 3x2 l2 6EIl
(d)
(4)计算最大挠度与截面的转角
作出梁的弯矩图如下图所示,全梁弯矩为正。其最大 挠度处的转角为零。故由式(c)有
dw Me 3x2 l2 0 dx 6EIl
从而得最大挠度所在截面的坐标为
2
在集中力 F 单独作用下,大梁跨度中点C的挠度由教材表
7–1第5栏中查出为
wC
F


Fl 3 48EI
将以上结果叠加,即得在均布载荷 和q 集中力 的F 共同作用
下,大梁跨度中点C的挠度

梁的弯曲刚度计算

梁的弯曲刚度计算
的许用挠跨比 [ w] 1 ,试对梁进行刚度校核。 l 200
目录
弯曲变形\梁的弯曲刚度计算
【解】 1) 求梁的最大挠度。查表6.1知,该梁最大挠度发生在 自由端B截面处,其值为
wmax
ql4 8EI
(↓)
2) 刚度校核。梁的最大挠跨比为
wmax l
ql3 8EI
80kN/m 23m3 8 2.2 104 kN m2
力学
弯曲变形\梁的弯曲刚度计算
梁的弯曲刚度计算
在工程中,根据强度条件对梁进行设计后,往往还要对梁进行
刚度计算。梁的刚度条件为
wmax
max
w
式中:wmax、max——梁的最大挠度和最大转角;
[w]、——许用挠度和许用转角。根据梁的用途,其值可在
有关设计规范中查得。
在建筑工程中,通常采用最大挠度wmax与跨度l之比,即最大挠 跨比限制在许用的挠跨比范围内,即
3.64103
w l
1 200
该梁满足刚度条件。
目录
弯曲变形\梁的弯曲刚度计算
【例6.7】 图示悬臂工字钢梁,长度l=3.5m,荷载F=12kN,已知
材料的许用应力=170MPa,弹性模量E=210 MPa,梁的许用挠跨

w l
=
1 。试按强度条件和刚度条件选择工字钢型号。
400
目录
弯曲变形\梁的弯曲刚度计算
目录
力学
wmax l
w l
目录
弯曲变形\梁的弯曲刚度计算
梁的许用挠跨比
w l
可从设计规范中查得,一般在
1 200
~1
1000
之间。并且,如果梁的强度条件满足,一般刚度条件也能满足。但

刚度计算公式

刚度计算公式

刚度(Stiffness)是描述材料或结构在受到外力作用时抵抗变形的能力。

对于线性弹性材料,刚度可以通过应力(Stress)与应变(Strain)之间的比例关系来计算,这个比例常数被称为弹性模量(Elastic Modulus)。

对于一维情况(例如拉伸或压缩),刚度计算公式为:
[ K = \frac{\sigma}{\epsilon} ]
其中:
( K ) 是刚度(N/m 或Pa)
( \sigma ) 是应力(N/m²或Pa)
( \epsilon ) 是应变(无量纲)
对于二维情况(例如梁的弯曲),刚度计算公式可能会涉及到弯矩(M)和曲率(κ):
[ EI = \frac{M}{\kappa} ]
其中:
( EI ) 是梁的弯曲刚度(N·m²)
( M ) 是弯矩(N·m)
( \kappa ) 是曲率(1/m)
对于三维情况(例如杆的扭转),刚度计算公式为:
[ GJ = \frac{T}{\phi} ]
其中:
( GJ ) 是杆的扭转刚度(N·m²)
( T ) 是扭矩(N·m)
( \phi ) 是扭转角(rad)
请注意,以上公式仅适用于线性弹性材料,并且在弹性范围内有效。

对于非线性材料或超出弹性范围的情况,刚度可能会发生变化,并且需要使用更复杂的模型来描述材料的力学行为。

此外,对于复杂的结构或组件,刚度可能需要通过有限元分析(FEA)或其他数值方法来计算。

这些方法可以考虑材料的非线性、几何非线性以及多种加载条件。

梁的变形分析与刚度问题

梁的变形分析与刚度问题
在小变形情形下,上述位移中,水平位移u与挠度w 相比为高阶小量,故通常不予考虑。
在Oxw坐标系中,挠度与转角 存在下列关系:
dw tan
dx
在小变形条件下,挠曲线较为
平坦,即很小,因而上式中 tan。于是有
dw
dx
w= w(x),称为挠度方程(deflection equation)。
梁的变形分析与刚度问题
wD0,D0
wC wC
光滑条件: C C 或 写C左 成C右
梁的变形分析与刚度问题
小挠度微分方程的积分与积分常数的确定
适用于小变形情况下、线弹性材料、细长构件平面弯曲。 可应用于求解承受各种载荷的等截面或变截面梁的位移。
积分常数由挠曲线变形的几何相容条件(边界条件、连续 条件)确定。
优点:使用范围广,直接求出较精确; 缺点:计算较繁。
梁的变形分析与刚度问题
梁的曲率与位移
根据上一章所得到 的结果,弹性范围内的挠 度曲线在一点的曲率与这 一点处横截面上的弯矩、 弯曲刚度之间存在下列关 系:
1= M
EI
梁的变形分析与刚度问题
挠度与转角的相互关系
梁在弯曲变形后,横截面的 位置将发生改变,这种位置的 改 变 称 为 位 移 ( displacement)。 梁的位移包括三个部分:
另一方面,某些机械零件或部件,则要求有较大的 变形,以减少机械运转时所产生的振动。汽车中的钣簧 即为一例。这种情形下也需要研究变形。
此外,求解静不定梁,也必须考虑梁的变形以建立补 充方程。
梁的变形分析与刚度问题
梁的位移分析与刚度问题
本章将在上一章得到的曲率公式的基础上, 建立梁的挠度曲线微分方程;进而利用微分方 程的积分以及相应的边界条件确定挠度曲线方 程。在此基础上,介绍工程上常用的计算梁变 形的叠加法。此外,还将讨论简单的静不定梁 的求解问题。

第八章叠加法求变形(3,4,5)

第八章叠加法求变形(3,4,5)
§8-3
用叠加法计算梁的变形及 梁的刚度计算
一、用叠加法计算梁的变形——简捷方法 叠加法应用的条件 在材料服从胡克定律、且变形很小的前 提下,载荷与它所引起的变形成线性关系。 即挠度、转角与载荷(如P、q、M)均为一次线性关系 计算梁变形时须记住梁在简单荷载作用下 的变形——转角、挠度计算公式(见附录Ⅳ)。
3 3
pl 7 pl 3 pl wc wc1 wc 2 24 EI 48EI 16 EI

B
c
c
p
这种分析方法叫做梁的逐段刚化法。
例题2 用叠加法求AB梁上E处的挠度 E
p
p
p
wE 2
wE 1
B
wE = wE 1+ wE 2 = wE 1+ wB/ 2
wB=?
P
机械:1/5000~1/10000,
土木:1/250~1/1000 机械:0.005~0.001rad
[w]、[θ]是构件的许可挠度和转角,它们决定于构 件正常工作时的要求。 [例8-8]图示工字钢梁,l =8m,Iz=2370cm4,Wz=237cm3 ,[ w/l ]= 1/500,E=200GPa,[σ]=100MPa。试根据梁 的刚度条件,确定梁的许可载荷 [P],并校核强度。
例题 2
按叠加原理得
wC wC 1 wC 2
5ql 4 5ql 4 0 768EI 768EI
ql 3 ql 3 3ql 3 A A1 A2 48EI 384EI 128EI ql 3 ql 3 7ql 3 B B1 B 2 48EI 384EI 384EI
c
c
A
P M =Pl/2 B C B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纯弯曲时曲率与弯矩的关系为 k 1 M
EI 横力弯曲时, M和都是x的函数。略去剪力对梁
的位移的影响, 则
k(x) 1 M (x)
(x) EI
由几何关系知, 平面曲线的曲率可写作
1
( x)
(1
w w2
3
)2
M (x) EI
(1
w w2
)
3 2
M (x) EI
曲线向上凸 时: w’’<0, M<0
解:以梁左端A为原点, y
取直角坐标系, 令x轴
F
向右, y轴向上为正。
A
B
x
(1) 列弯矩方程
x
l
M (x) F(l x) Fl Fx
(2) 列挠曲线近似微分方程并积分
EIw M (x) Fl Fx
EIw M (x) Fl Fx
EIw
Flx
Fx2 2
C1
(a)
Flx2 Fx3 EIw 2 6 C1x C2 (b)
此式称为 梁的挠曲线近似微分方程。
(Approximately differential equation of the deflection curve)
称为近似的原因: (1) 略去了剪力的影响; (2)略
去了w'2项。
9.3 积分法求弯曲变形
若为等截面直梁, 其抗弯刚度EI为一常量, 上式可改写成
y
M
M
M<0 w’’<0
O O
x
曲线向下凸 时: w’’>0, M>0
因此, M与w’’的正负号相同。 y
M
M
w
(1
w2
)
3 2
M (x) EI
M>0 w’’>0
x
w (1 w2 )32
M (x) EI
由于挠曲线是一条非常平坦的曲线, w'2远比1小, 可以略去不计, 于是上式可写成
w M (x) EI
程和转角方程, 并确定其最大挠度 wmax和最大转
角max 。
y
解: 由对称性可知, FA
q
FB
梁的两个支反力为
A
B x
ql FA FB 2
x l
梁的弯矩方程及挠曲线微分方程分别为
M (x) ql x 1 qx2 q (lx x2 ) (a)
22
2
EIw M (x) q (lx x2 )
EIw M (x)
上式积分一次得转角方程
EIw M (x)dx C1
再积分一次, 得挠度方程
EIw
M
(
x)dx
dx
C1x
C2
式中:积分常数C1、C2可通过梁挠曲线的边界 条件和变形的连续性条件来确定。
边界条件(boundary condition)
简支梁
A wA=0
悬臂梁
A
B
wB=0 B
积分常数
C1
ql 3 24
w
EIw
q 2
lx2 (
2
x3 3
)
C1
C2
q
0
(l 3
6lx2
EIw
4x3)
q 2
( lx3 6
x4 ) 12
C1x
C2
24EI
第9章 梁的弯曲变形与刚度计算 §9-1 工程中的弯曲变形问题 §9–2 梁的挠曲线近似微分方程 §9-3 积分法计算梁的变形 §9-4 叠加法计算梁的变形 §9-5 梁的刚度计算及提高梁刚度的措施 §9-6 简单超静定梁 §9-7 梁的弯曲应变能
9.1 工程中的弯曲变形问题
弯曲构件除了要满足强度条件外, 还需满足刚度条 件。如车床主轴的过大弯曲引起加工零件的误差。
9.1 工程实际中的弯曲变形问题
9.1 工程实际中的弯曲变形问题
7-1
9.1 工程实际中的弯曲变形问题
度量梁变形后横截面位移的两个基本量:挠度和转角
取梁的左端点为坐标原点, 梁变形前的轴线为x轴, 横截面的铅垂对称轴为y轴, xy平面为纵向对称平面。
挠度(w): 横截面形心(即轴线上的点)在垂直于x轴方 向的线位移, 称为该截面的挠度(Deflection) 。
y
F
A
C Bx
w(挠度)
C1
(转角)
9.1 工程实际中的弯曲变形问题 必须注意: 梁轴线弯曲成曲线后, 在x轴方向
也有线位移。
但在小变形情况下, 梁的挠度远小于跨长,
横截面形心沿x轴方向的线位移与挠度相比属于
高阶微量, 可略去不计。
y
F
A
CBx
w(挠度)
C1
(转角)
9.1 工程实际中的弯曲变形问题
连续性条件
wA=0 A=0
(Continuity condition)
A
c
B
在挠曲线的任一点上, 有 唯一的挠度和转角。如:
A
wC wC C C
不可能
B
不可能
例1:图示一抗弯刚度为EI的悬臂梁, 在自由端
受一集中力F作用。试求梁的挠曲线方程和转角
方程, 并确定其最大挠度wmax和最大转角max 。
转角(): 横截面 y
绕中性轴(即Z轴)转 A 过的角度(或角位 移), 称为该截面 的 转 角 (Slope rotation angle) 。
F CBx
w(挠度)
C1
(转角)
9.1 工程实际中的弯曲变形问题
挠度和转角符号的规定:
挠度:在图示坐标系中, 向上为正, 向下为负。
转角: 逆时针转向为正,顺时针转向为负。
(b)
2
y
FA
q
FB
A x
B x
l
EIw M (x) q (lx x2 )
(b)
2
积分两次
EIw
q 2
( lx 2 2
x3 3
)
C1
(c)
EIw
q 2
lx3 (
6
x4 )
12
C1x
C2
(d)
y
简支梁的边界条件是 FA
q
FB
在x=0处, w=0
A
B x
在x=l处, w=0
x
l
代入(c)、(d)式确定出
max
x
wma
x
x
l
(5) 求最大转角和最大挠度
自由端B处的转角和挠度绝对值最大。
max
xl
Fl 2 2EI
wmaxw xl来自Fl3 3EI所得的挠度为负值, 说明B点向下移动; 转角为
负值, 说明横截面B沿顺时针转向转动。
例2: 图示一抗弯刚度为EI的简支梁, 在全梁上受
集度为q的均布荷载作用。试求此梁的挠曲线方
挠曲线:梁变形后的轴线称为挠曲线。
挠曲线方程: w f (x)
式中, x为梁变形前轴线上任一点的横坐标, w为该
点的挠度。
y
F
A
挠曲线
CBx
w(挠度)
C1
(转角)
9.1 工程实际中的弯曲变形问题
y
F
A
C Bx
w(挠度) C1
挠度与转角的关系:
(转角)
tan w f (x)
9.2 挠曲线的近似微分方程
y
(3) 确定积分常数
A
在x=0处, w=0
x
在x=0处, =0
代入式(a)和(b), 得: C1=0,
F B
x
l
C2=0
(4) 建立转角方程和挠度方程
将求得的积分常数C1和C2代入式(a)和(b), 得梁
的转角方程和挠度方程分别y 为:
w Flx Fx2
EI 2EI
A
F B
w Flx2 Fx3 2EI 6EI
相关文档
最新文档