材料力学 弯曲刚度

合集下载

材料力学第六章 弯曲变形

材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω

B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq


+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI

工程力学(材料力学)8 弯曲变形与静不定梁

工程力学(材料力学)8 弯曲变形与静不定梁

B
ql4 RBl3 0
8EI 3EI
q 约束反力为
B
RB
3 8
ql
RB
用变形比较法求解静不定梁的一般步骤:
(1)选择基本静定系,确定多余约束及反力。 (2)比较基本静定系与静不定梁在多余处的变形、确定 变形协调条件。 (3)计算各自的变形,利用叠加法列出补充方程。 (4)由平衡方程和补充方程求出多余反力,其后内力、 强度、刚度的计算与静定梁完全相同。
教学重点
• 梁弯曲变形的基本概念; • 挠曲线的近似微分方程; • 积分法和叠加法计算梁的变形; • 梁的刚度条件。
教学难点
• 挠曲线近似微分方程的推导过程; • 积分法和叠加法计算梁的变形; • 变形比较法求解静不定梁。
第一节 弯曲变形的基本概念
齿轮传动轴的弯曲变形
轧钢机(或压延机)的弯曲变形
例13-4 用叠加法求图示梁的 yC、A、B ,EI=常量。
M
P
解 运用叠加法
A
C
l/2
l/2
A
=
q
5ql4 Pl3 ml2
B
yC
384EI
48EI
16EI
A
ql3 24EI
Pl 2
16EI
ml 3EI
B
B
ql3 24EI
Pl2 16EI
ml 3EI
M
+
q
A
+
BA
B
二、梁的刚度条件
y max y,
A
max
A ql3
B
24EI
RA
q
A
θB
l
B θB RB
在梁跨中点 l /2 处有 最大挠度值

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度


后 答


解:由挠度表查得:
FP al 180° × 3 EI π Wal 180° = ⋅ 3 EI π 20000 × 1 × 2 × 64 180° = ⋅ 3 × 200 × 109 × π d 4 π ≤ 0 .5 ° d ≥ 0.1117 m,取 d = 112mm。
θB =
ww w
6 ( 246 + 48) ×10 × 200 ×10 × π × 32 × 10−12
2
co
m
8—3 具有中间铰的梁受力如图所示。试画出挠度曲线的大致形状,并说明需要分几段 建立微分方程,积分常数有几个,确定积分常数的条件是什么?(不要求详细解答)
习题 8-3 图
后 答


习题 8-4 图

习题 8-4a 解图
解: (a)题 1.
wA = wA1 + wA 2
wA1 =
⎛l⎞ q⎜ ⎟ ⎝2⎠
87图示承受集中力的细长简支梁在弯矩最大截面上沿加载方向开一小孔若不考虑应力集中影响时关于小孔对梁强度和刚度的影响有如下论述试判断哪一种是正确的
eBook
工程力学
(静力学与材料力学)
习题详细解答
(第 8 章) 范钦珊 唐静静

后 答


2006-12-18
ww w
1
.k hd
aw .
co
m
(教师用书)
−3 9 4
(
.k hd
解:由挠度表查得 F ba 2 wC = P l − a 2 − b2 6lEI
(
)
习题 8-9 图
8
aw .
)

工程力学c材料力学部分第六章 弯曲变形

工程力学c材料力学部分第六章 弯曲变形
q
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2

材料力学-梁的弯曲刚度

材料力学-梁的弯曲刚度
机械传动机构中的齿轮轴,当变形过大时 (图中虚线所示),两齿轮的啮合处将产生较大的 挠度和转角,这就会影响两个齿轮之间的啮合, 以致不能正常工作。
同时,还会加大齿轮磨损,同时将在转动的过程中产生很大的 噪声。
此外,当轴的变形很大时,轴在支承处也将产生较大的转角, 从而使轴和轴承的磨损大大增加,降低轴和轴承的使用寿命。
解:1. 确定梁约束力 首先,应用静力学方法求得梁 在支承A、C二处的约束力分别如图 中所示。
2. 分段建立梁的弯矩方程
因为B处作用有集中力FP,所以需要分为AB和BC两段建立 弯矩方程。
在图示坐标系中,为确定梁在0~l/4范围内各截面上的弯矩, 只需要考虑左端A处的约束力3FP/4;而确定梁在l/4~l范围内各 截面上的弯矩,则需要考虑左端A处的约束力3FP/4和荷载FP。
材料力学
第6章 梁的弯曲刚度
小挠度微分方程
对于小挠度问题
d2 X ( dx2
)2
d2Y ( dx2
)2
d2Y dx2
1M EI
d2Y dx2
d2w dx2
M EI
对于弹性曲线的小挠度微分方程,式中的正负号与w坐标的取 向有关。
何斌
Page 17
材料力学
第6章 梁的弯曲刚度
小挠度微分方程
d2w 0,M 0
在平面弯曲的情形下,梁上的任意微段的两横截面绕 中性轴相互转过一角度,从而使梁的轴线弯曲成平面曲线, 这一曲线称为梁的挠度曲线(deflection curve)。
何斌
Page 6
材料力学 何斌
第6章 梁的弯曲刚度
梁的挠度与曲率
根据上一章所得 到的结果,弹性范围 内的挠度曲线在一点 的曲率与这一点处横 截面上的弯矩、弯曲 刚度之间存在下列关 系:

材料力学知识点

材料力学知识点

第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。

平面弯曲时,挠曲线为外力作用平面内的平面曲线。

2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。

1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度2》转角挠度和转角的正负号由所选坐标系的正方向来确定。

沿y轴正方向的挠度为正。

转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。

4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。

对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。

因此除了用边界条件外,还要用连续性条件确定所有的积分常数。

边界条件:支座对梁的位移(挠度和转角)的约束条件。

连续条件:挠曲线的光滑连续条件。

悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。

2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M2》4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。

圆管的弯曲刚度和强度分析

圆管的弯曲刚度和强度分析

ag2 2
+
bg2 2
+ 3agbg
⎤ ⎥ ⎥
和椭圆面积
A
=
πag
⋅ bg

的公式, 并依据圆和椭圆方程, 在扁化过程周长 l0 = l 不变的前提下, 计算求得扁
化率 ζa
= ag rga
和ζb
= bg rga
的关系如图
7(a)所示,
面积缩小率 A A0
与扁化率 ζ a 的关

σ = My .
(20)
I
以纯弯为例, 弯曲过程中应力仅为截面上的单向正应力 σ . 由图 4 可知, 当
ymax
= rgb 时,
横截面的最大正应力为 σ max .
由(20)式可知 σ max
=M I rgb
,
可见圆
管的 I rgb 越大, 圆管承受弯矩能力越大.
图 4 圆形管的正应力分布
2.2 圆管弯曲的截面扁化 图 5 为圆管承受弯矩 M 时的受力状况, 在横截面上沿管壁纵截面的切向上
穷大. 由于已设定了单位长度的圆棒和圆管的质量相同, 这就要以增大管径并减
小管壁厚为代价. 但是, 在工程中以显著不增加半径, 并能减小质量增大截面弯
曲刚度为宜.
由图 3 可见, 选定 n = 0.7 为佳, 并将其代入(19)式可得 k ≈ 3 , 即在质量相等
的条件下, 使截面刚度增大 3 倍.
ρ
A
ydA
=

E ρ
Sz
=
0,
Sz =
ydA 定义为横截面对 z 轴的
A
静矩, 由上可知 Sz = 0 , 所以中性轴 z 一定通过棒的中心. 由力矩平衡可知, 微内力 σ dA 对 y 轴的合力偶矩等于作用于横截面上弯矩

弯曲法测杨氏模量实验报告

弯曲法测杨氏模量实验报告

弯曲法测杨氏模量实验报告弯曲法测杨氏模量实验报告引言:弯曲法是一种常用的材料力学测试方法,可用于测定材料的弯曲刚度和杨氏模量。

本实验旨在通过弯曲法测定杨氏模量,并探讨其在材料力学中的应用。

实验目的:1. 了解弯曲法的基本原理和步骤;2. 掌握材料的弯曲刚度和杨氏模量的测定方法;3. 分析杨氏模量对材料性能的影响。

实验仪器和材料:1. 弯曲试验机;2. 弯曲试样;3. 游标卡尺;4. 夹具。

实验步骤:1. 准备工作:a. 将弯曲试样固定在弯曲试验机上,确保其平整且不受外力干扰;b. 调整弯曲试验机的参数,如加载速度和试验范围,以满足实验需求。

2. 弯曲试验:a. 在弯曲试验机上施加一个垂直于试样的力,使其发生弯曲变形;b. 同时记录试样在不同加载下的位移和载荷数据;c. 根据实验数据计算出试样的弯曲刚度和杨氏模量。

3. 数据处理:a. 绘制载荷与位移的曲线图,分析试样的弯曲性能;b. 利用弯曲刚度和试样几何参数计算出杨氏模量。

实验结果与分析:通过实验测得的载荷与位移数据,我们可以绘制出一条弯曲曲线。

根据曲线的形状和斜率,可以判断材料的弯曲性能和刚度。

同时,根据实验数据计算出的杨氏模量可以反映材料的抗弯刚度和强度。

杨氏模量是材料力学中的重要参数,它描述了材料在受力时的变形性能。

较高的杨氏模量意味着材料具有较高的强度和刚度,适用于承受大量载荷的结构。

而较低的杨氏模量则表示材料较为柔软,适用于需要弯曲或变形的应用。

杨氏模量还可以用于材料的质量控制和品质评估。

通过测定不同材料的杨氏模量,可以比较它们的性能差异,并选择适合特定应用的材料。

此外,杨氏模量还可以用于预测材料在实际工程中的受力情况,从而优化结构设计和材料选择。

结论:本实验通过弯曲法测定了杨氏模量,并分析了其在材料力学中的应用。

实验结果表明,弯曲法是一种有效的测量杨氏模量的方法,可以为材料选择和结构设计提供重要参考。

杨氏模量的大小与材料的强度和刚度密切相关,对材料的性能和应用具有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是,AB和BC两段的弯矩方程分别为
AB段
M1x3 4FPx 0x4 l
BC段
M 2x3 4F Px - F P x - 4 l 4 lxl
6.2 梁的小挠度微分方程及其积分
例题2
M1x3 4FPx 0x4 l M 2x3 4F Px - F P x - 4 l 4 lxl
AB段 BC段
xE FP I83x21278l2
xE FP I8 3x21 2x4 l212 78l2
wxFP1x37l2x
EI 8 128
w xFP1x31xl37l2x
EI8 6 4 128
算得加力点B处的挠度和支承处A和C的转角分别为
wB
3 FPl3 256 EI
A
7 128
FPl 2 EI
B
6
EIw1qlx4CxD
24
6.2 梁的小挠度微分方程及其积分
例题1
O
x
w
EIw'EI1qlx3C
6
EIw1qlx4CxD
24
4. 利用约束条件确定积分常数
固定端处的约束条件为: x0, w0 x0,=dw0
dx
C
ql3 ,
6
D ql3 24
6.2 梁的小挠度微分方程及其积分
例题1
EIw'EI1qlx3C
的挠度和转角,得到常见静定梁在复杂荷载作用下 的挠度与转角。
6.3 叠加法确定梁的挠度与转角
6.3 叠加法确定梁的挠度与转角
6.3 叠加法确定梁的挠度与转角
6.3 叠加法确定梁的挠度与转角
2. 第一类叠加法
——应用于多个荷载作用的情形
例题3
简支梁受力如
图所示,q、l、EI
均为已知。
求:C截面的挠 度wC ;B截面的转
1. 小挠度微分方程
纯弯曲时曲率与弯矩的关系为 1 M EI
横力弯曲时, M 和 都是x的函数 。细长
梁可以略去剪力对梁的位移的影响, 则
力学中的曲率公式
1
x
Mx
EI
d2w
1
dx2
数学中的曲率公式
x
1
d w
3
2 2
d x
-y
中性层曲率中心
y d
A' A'
O'
y O'
z dx
x
max
B
ql3 6EI
6.2 梁的小挠度微分方程及其积分
例题2
简支梁受力如图所示。
FP、EI、l均为已知。
求:加力点B的挠度和
支承A、C处的转角。
6.2 梁的小挠度微分方程及其积分
例题2
解:1.确定梁约束力
首先,应用静力学方法求得 梁在支承A、C二处的约束力分别 如图中所示。
解: 2. 分段建立梁的弯矩方程
1. 基本概念
■ 取梁的左端点为坐标原点,梁变形前的轴线为 x 轴 (向右为正) ,横截面的铅垂对称轴为 w 轴(向下为 正) , x w 平面为纵向对称面。
■ 度量梁变形
后横截面位置改
A
变,即位移,有
三个基本量。
w
B x
B'
6.1 梁的变形与位移
挠度deflection( w):横截面形心 C (即轴线上的点)
wC和转角C。
6.3 叠加法确定梁的挠度与转角
×
×

×
6.2 梁的小挠度微分方程及其积分
5、积分法求解小挠度微分方程举例
例题1
左端固定、右端自由的 悬臂梁承受均布荷载。均布 荷载集度为q ,梁的弯曲刚度
为EI 、长度为l。q、EI 、l 均
已知。
求:梁的挠度与转角方程, 以及最大挠度和最大转角。
6.2 梁的小挠度微分方程及其积分
例题1
O
x w
1 ql 4 w C 3 16 EI
B1
1 24
ql 3 , EI
B2
1 16
ql 3 ,
EI
B3
1 3
ql 3 EI
,
6.3 叠加法确定梁的挠度与转角
例题3
3. 应用叠加法,将简单荷载 作用时的结果分别叠加。
wC i31wCi3181q4E4lI,
B
3
Bi
i1
11ql3 48EI
处理具体问题时的注意点
于是有
转角
C
Bx
w 挠度
C'
B'
挠度与转角的相互关系
w dw
dx
6.1 梁的变形与位移
■ 挠度和转角符号的规定 挠度:向下为正,向上为负。 转角:顺时针转为正,逆时针转为负。
A 挠曲线
w
转角
C
B
x
C'
w 挠度
B'
第6章 弯曲刚度
6.2 梁的小挠度微分方程及其积分
6.2 梁的小挠度微分方程及其积分
1. 叠加法前提
★ 在小变形,服从胡克定律的前提下 挠度、转角与荷载均为一次线性关系
实用的工具:挠度表(P157) 为方便工程计算,已将各种支承条件下的静定
梁,在各种典型荷载作用下的挠度和转角表达式一 一列出,并形成手册。
重要的方法:叠加法(superposition method) 应用叠加原理及常见静定梁在简单荷载作用下
梁的边界条件
①在固定端处:
x 0 , A w A 0 , w 0
A
Bx
w
②在固定铰支座和滚动铰支座处:
A
w
l
x0, wA0;
B x
xl, wB0.
6.2 梁的小挠度微分方程及其积分
梁的连续性条件
①在集中力作用处:
P
A
C
B
wC wC
C
C
M
A C
②在中间铰处: B
a
l
wC wC
练习
写出下图的边界条件、连续性条件:
讨论:叠加法应用于多个荷载作用的情形的解题步骤 ● 将其分解为各种荷载单独作用的情形 ● 由挠度表分别查得各种情形下的挠度和转角 ● 将所得结果叠加
思考题4
二梁的受力(包括荷载与约束力)是否相同? 二梁的弯矩是否相同? 二梁的变形是否相同? 二梁的位移是否相同? 位移不仅与变形有关,而且与约束有关。
x
M(x)
FQ(x)
解:1.建立Oxw坐标系
2.建立梁的弯矩方程
M (x)1qlx2
2 3. 建立微分方程并积分
0xl
将上述弯矩方程代入小挠度微分方程,得
EIw"M1qlx2
2
d2w M(x) dx2 EI
6.2 梁的小挠度微分方程及其积分
例题1
O
x
积分后,得到
w
EIw"M1qlx2
2
EIw'EI1qlx3C
o
x
M
M
o
M
x d2w M
M
dx2 EI
w
M
0,
d2w dx2
0
w
M
0,
d2w dx2
0
因此, M 与 w的正负号正好相反,所以
d2w M(x) dx2 EI (小挠度微分方程)
近似原因:(1) 略去了剪力的影响;(2)小挠度略去了 w2 项。
6.2 梁的小挠度微分方程及其积分
2. 小挠度微分方程的积分
■ 挠曲线 :梁变形后的轴线。
挠度方程:ww(x) 转角方程: (x)
注意:当变形保持在弹性范围内,挠曲线为连续光滑曲线。
2. 挠度与转角的关系
tan w dw A
dx
w
挠曲线
转角
C
B
x
C'
挠度w
B'
A
挠曲线 w
6.1 梁的变形与位移
tan w dw
dx
在小变形条件下,挠度曲 线较为平坦。
即很小,因而上式中tan。
例题2
积分后,得
E Id d 2 x w 2 1 M 1x4 3F Px 0x4 l
E Id d 2 x w 2 2 = - M 2 x - 4 3 F P x + F P x - 4 l 4 l x l
EI183FPx2 C1
EI1w 8 1FPx3C1xD1
E E2 II2 w 8 1 8 3F F PP xx32 1 61 2F F PP xx 4 l4 l 3 2 C C 2x 2D 2
9 FL 512
求解静不定问题 建立补充方程 利用弯曲变形(求解静不定问题)
第6章 弯曲刚度
6.1 梁的变形与位移 6.2 梁的小挠度微分方程及其积分 6.3 叠加法确定梁的挠度与转角 6.4 梁的刚度问题 6.5 提高梁刚度的措施 6.6 简单的静不定梁
第6章 弯曲刚度
6.1 梁的变形与位移
6.1 梁的变形与位移
6
EIw1qlx4CxD
24
C
ql3 ,
6
D ql3 24
5. 确定挠度与转角方程
w24qEIlx44l3xl4
q
6EI
lx3l3
6. 确定最大挠度与最大转角
从挠度曲线可以看出,在悬臂梁自由端处,挠度和转角均为最
大值。 于是,将 x = l,分别代入挠度方程与转角方程,得到:
wmax
wB
ql4 8EI
形状及位置。
思考题1
弯矩?
约束?
连续光滑?
试根据连续光滑性质以及
约束条件,画出梁的挠度曲线 的大致形状。
×
×
×
相关文档
最新文档