(优选)工程力学静力学与材料力学弯曲刚度

合集下载

弯曲刚度 (3)

弯曲刚度 (3)

弯曲刚度弯曲现象及其原理在力学中,弯曲是一种物体受到外力作用而发生形变的现象。

当一个物体受到外力作用时,会发生内力和应变分布的变化,产生弯矩。

物体的弯曲刚度是描述物体抵抗弯曲变形的能力。

弯曲现象和弯曲刚度的原理可以通过弯曲梁的例子来解释。

弯曲梁是一种常见的结构,例如桥梁、楼梯等。

当外力作用在梁上时,梁会发生变形,顶部受到压缩力,底部受到拉力。

这个过程会产生一个名为弯矩的力矩。

弯曲梁的弯矩可以通过以下公式计算:M = E * I * κ / y其中,M是弯矩,E是弹性模量,I是截面惯性矩,κ是曲率,y是曲线上的点到中性轴的距离。

根据上述公式可以看出,弯曲刚度和弹性模量、截面惯性矩以及曲率有关。

影响弯曲刚度的因素1. 材料弹性模量材料的弹性模量是描述材料抵抗形变的能力,是衡量材料刚度的重要参数。

弹性模量越大,材料的刚度越高,抵抗弯曲变形的能力越强。

不同材料具有不同的弹性模量,例如钢材的弹性模量通常高于混凝土。

因此,在设计弯曲梁时,需要根据材料的弹性模量选择合适的材料,以满足所需的弯曲刚度。

2. 截面形状和大小弯曲梁的截面形状和大小对弯曲刚度有很大影响。

通常情况下,截面惯性矩越大,弯曲刚度越高。

因此,在设计弯曲梁时,需要选择合适的截面形状和尺寸,以提高弯曲刚度。

3. 曲率曲率是衡量曲线曲率程度的参数,也对弯曲刚度产生影响。

曲率越小,弯曲刚度越高。

在设计弯曲梁时,通常会尽量控制梁的曲率,以提高弯曲刚度。

弯曲刚度的应用弯曲刚度在工程中具有重要的应用价值。

以下是几个典型的应用示例:1. 结构设计在建筑和桥梁等大型工程的结构设计中,弯曲刚度是一个重要的考虑因素。

设计者需要根据工程的要求和使用条件,选择合适的材料和截面形状,以满足结构的强度和刚度要求。

2. 机械设计在机械设计中,弯曲刚度是一个关键的性能指标。

例如,在设计机械零件或装配体时,需要考虑其在受力情况下的弯曲变形情况,以确保零件或装配体的刚度满足设计要求。

《工程力学(工程静力学与材料力学)(第3版)》考试试卷(附答案)(10)

《工程力学(工程静力学与材料力学)(第3版)》考试试卷(附答案)(10)

工程力学考试答卷(10)1.(5分)结构对称的梁在反对称载荷作用下:弯矩图对称,剪力图反对称;弯矩图反对称,剪力图对称;弯矩图和剪力图都对称;弯矩图和剪力图都反对称。

正确答案是B。

2.(5分)关于材料的力学一般性能,有如下结论,请判断哪一个是正确的:脆性材料的抗拉能力低于其抗压能力;(B)脆性材料的抗拉能力高于其抗压能力;(C)韧性材料的抗拉能力高于其抗压能力;正确答案是A。

(D)脆性材料的抗拉能力等于其抗压能力。

3.(5分)关于斜弯曲的主要特征有以下四种答案,请判断哪一种是正确的。

(A) My≠0,Mz≠0,FNx≠0;,中性轴与截面形心主轴不一致,且不通过截面形心;(B) My≠0,Mz≠0,FNx=0,中性轴与截面形心主轴不一致,但通过截面形心;(C) My≠0,Mz≠0,FNx=0,中性轴与截面形心主轴平行,但不通过截面形心;(D) My≠0,Mz≠0,FNx≠0,中性轴与截面形心主轴平行,但不通过截面形心。

正确答案是B。

4.(5分)两根长度相等、直径不等的圆轴受扭后,轴表面上母线转过相同的角度。

设直径大的轴和直径小的轴的横截面上的最大剪应力分别为τ1max和τ2max,材料的切变模量分别为G1和G2。

关于τ1max和τ2max的大小,有下列四种结论,请判断哪一种是正确的。

(A)τ1max>τ2max;(B)τ1max<τ2max;(C)若G1>G2,则有τ1max>τ2max;正确答案是C。

(D)若G1>G2,则有τ1max<τ2max。

5.(10分)截面为工字形的立柱受力如图所示。

试求此力向截面形心C平移的结果。

解:r =(-50, 125, 0)mm F =(0, 0, -100)kN F 向C 平移,得 FR =(0, 0, -100)kN1000000.1250.05-)(-=⨯==kj i F r F M M C C=(-12.5, -5, 0)kN ·m6.(10分)图示芯轴AB 与轴套CD 的轴线重合,二者在B 、C 处连成一体;在D 处无接触。

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N ==1(,)arccos 2944RY R R F F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑ 13sin 45sin 450RY F Y P P ==-=∑ 故:3R F KN == 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=0Y =∑ cos300AC F W -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑ sin 700AB F W -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑ sin 30sin 600AB AC F F W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=0Y =∑ cos30cos300AB AC F F W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=15.8RA F KN ∴=由0Y =∑sin 450RA RB F F P +-=7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CB RA F F '-= 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度


后 答


解:由挠度表查得:
FP al 180° × 3 EI π Wal 180° = ⋅ 3 EI π 20000 × 1 × 2 × 64 180° = ⋅ 3 × 200 × 109 × π d 4 π ≤ 0 .5 ° d ≥ 0.1117 m,取 d = 112mm。
θB =
ww w
6 ( 246 + 48) ×10 × 200 ×10 × π × 32 × 10−12
2
co
m
8—3 具有中间铰的梁受力如图所示。试画出挠度曲线的大致形状,并说明需要分几段 建立微分方程,积分常数有几个,确定积分常数的条件是什么?(不要求详细解答)
习题 8-3 图
后 答


习题 8-4 图

习题 8-4a 解图
解: (a)题 1.
wA = wA1 + wA 2
wA1 =
⎛l⎞ q⎜ ⎟ ⎝2⎠
87图示承受集中力的细长简支梁在弯矩最大截面上沿加载方向开一小孔若不考虑应力集中影响时关于小孔对梁强度和刚度的影响有如下论述试判断哪一种是正确的
eBook
工程力学
(静力学与材料力学)
习题详细解答
(第 8 章) 范钦珊 唐静静

后 答


2006-12-18
ww w
1
.k hd
aw .
co
m
(教师用书)
−3 9 4
(
.k hd
解:由挠度表查得 F ba 2 wC = P l − a 2 − b2 6lEI
(
)
习题 8-9 图
8
aw .
)

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 .

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 .

eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第7章)范钦珊唐静静2006-12-18第7章弯曲强度7-1 直径为d的圆截面梁,两端在对称面内承受力偶矩为M的力偶作用,如图所示。

若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E。

根据d、ρ、E可以求得梁所承受的力偶矩M。

现在有4种答案,请判断哪一种是正确的。

习题7-1图(A) M=Eπd 64ρ64ρ (B) M=Eπd4Eπd3(C) M=32ρ32ρ (D) M=Eπd34 正确答案是。

7-2 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。

(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。

正确答案是 C _。

7-3 长度相同、承受同样的均布载荷q作用的梁,有图中所示的4种支承方式,如果从梁的强度考虑,请判断哪一种支承方式最合理。

l 5习题7-3图正确答案是7-4 悬臂梁受力及截面尺寸如图所示。

图中的尺寸单位为mm。

求:梁的1-1截面上A、 2B两点的正应力。

习题7-4图解:1. 计算梁的1-1截面上的弯矩:M=−⎜1×10N×1m+600N/m×1m×2. 确定梁的1-1截面上A、B两点的正应力:A点:⎛⎝31m⎞=−1300N⋅m 2⎟⎠⎛150×10−3m⎞−20×10−3m⎟1300N⋅m×⎜2My⎝⎠×106Pa=2.54MPa(拉应力)σA=z=3Iz100×10-3m×150×10-3m()12B点:⎛0.150m⎞1300N⋅m×⎜−0.04m⎟My⎝2⎠=1.62×106Pa=1.62MPa(压应力)σB=z=3Iz0.1m×0.15m127-5 简支梁如图所示。

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第7章 弯曲强度

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第7章 弯曲强度

[ ]
[]
0.5 x 0.4125
M(kN.m)
7
习题 7-10 图
解:画弯矩图如图所示: 对于梁:
M max = 0.5q M 0.5q σ max = max ≤ [σ ] , ≤ [σ ] W W [σ ]W = 160 ×106 × 49 ×10−6 = 15.68 ×103 N/m=15.68kN/m q≤ 0.5 0.5
A
B
W
a + Δa
W + ΔW
B
A
a图
b图
整理后得
Δa =
ΔW (l − a ) (W + ΔW )
此即为相邻跳水者跳水时,可动点 B的调节距离 Δa 与他们体重间的关系。 7- 14 利用弯曲内力的知识,说明为何将标准双杠的尺寸设计成 a=l/4。
9
习题 7-14 图
解:双杠使用时,可视为外伸梁。 其使用时受力点应考虑两种引起最大弯矩的情况。如图a、b所示。
[ ]+
[σ ]- =120 MPa。试校核梁的强度是否安全。
6
30 x 10 M(kN.m) C 截面
+ = σ max - σ max
40
习题 7-9 图
30 ×103 N ⋅ m × 96.4 ×10−3 m = 28.35 × 106 Pa=28.35 MPa 1.02 ×108 ×10−12 m 4 30 ×103 N ⋅ m ×153.6 ×10−3 m = = 45.17 ×106 Pa=45.17 MPa 1.02 ×108 × 10−12 m 4 40 ×103 N ⋅ m ×153.6 ×10−3 m = 60.24 ×106 Pa=60.24 MPa> [σ ] 8 −12 4 1.02 ×10 × 10 m 40 ×103 N ⋅ m × 96.4 × 10−3 m = = 37.8 × 106 Pa=37.8 MPa 8 −12 4 1.02 × 10 × 10 m

材料力学 弯曲刚度

材料力学 弯曲刚度
角B。
6.3 叠加法确定梁的挠度与转角
例题3
解:1.将梁上的荷载变 为三种简单的情形。
w Cw C 1w C 2w C 3
BB1B2B3
6.3 叠加法确定梁的挠度与转角
例题3
2.由挠度表查得三种情形下C
截面的挠度和B 截面的转角。
5 ql 4
w C 1 384
, EI
1 ql 4 w C 2 48 EI ,
×
×

×
6.2 梁的小挠度微分方程及其积分
5、积分法求解小挠度微分方程举例
例题1
左端固定、右端自由的 悬臂梁承受均布荷载。均布 荷载集度为q ,梁的弯曲刚度
为EI 、长度为l。q、EI 、l 均
已知。
求:梁的挠度与转角方程, 以及最大挠度和最大转角。
6.2 梁的小挠度微分方程及其积分
例题1
O
x w
o
x
M
M
o
M
x d2w M
M
dx2 EI
w
M
0,
d2w dx2
0
w
M
0,
d2w dx2
0
因此, M 与 w的正负号正好相反,所以
d2w M(x) dx2 EI (小挠度微分方程)
近似原因:(1) 略去了剪力的影响;(2)小挠度略去了 w2 项。
6.2 梁的小挠度微分方程及其积分
2. 小挠度微分方程的积分
6
EIw1qlx4CxD
24
C
ql3 ,
6
D ql3 24
5. 确定挠度与转角方程
w24qEIlx44l3xl4
q
6EI
lx3l3
6. 确定最大挠度与最大转角

工程力学(静力学与材料力学)弯曲强度(剪力图与弯矩图)-PPT文档资料

工程力学(静力学与材料力学)弯曲强度(剪力图与弯矩图)-PPT文档资料

第7章A 弯曲强度(1)-剪力图与弯矩图
梁的内力及其与外力的相互关系
所谓剪力和弯矩变化规律是指表示剪力和弯矩变 化的函数或变化的图线。这表明,如果在两个外力 作用点之间的梁上没有其他外力作用,则这一段梁 所有横截面上的剪力和弯矩可以用同一个数学方程 或者同一图线描述。
第7章A 弯曲强度(1)-剪力图与弯矩图
范钦珊教育与教学工作室
工程力学(静力学与材料力学)
课堂教学软件
返回总目录
工程力学(静力学与材料力学)
材料力学
弯曲强度-剪力图与弯矩图
返回总目录
第7章A 弯曲强度-剪力图与弯矩图
杆件承受垂直于其轴线的外力或位于其轴线所在平面 内的力偶作用时,其轴线将弯曲成曲线,这种受力与变形 形式称为 弯曲 ( bending )。主要承受弯曲的杆件称为 梁 (beam)。 在外力作用下,梁的横截面上将产生剪力和弯矩两种 内力。
第7章A 弯曲强度(1)-剪力图与弯矩图
工程中的弯曲构件 梁的内力及其与外力的相互关系
剪力方程与弯矩方程
载荷集度、剪力、弯矩之间的微分关系 剪力图与弯矩图
结论与讨论
返回总目录
第7章A 弯曲强度(1)-剪力图与弯矩图
工程中的弯曲构件
返回
第7章A 弯曲强度(1)-剪力图与弯矩图
在很多情形下,剪力和弯矩沿梁长度方向的分布不是 均匀的。 对梁进行强度计算,需要知道哪些横截面可能最先发 生失效,这些横截面称为危险面。弯矩和剪力最大的横截 面就是首先需要考虑的危险面。研究梁的变形和刚度虽然 没有危险面的问题,但是也必须知道弯矩沿梁长度方向是 怎样变化的。
第7章A 弯曲强度(1)-剪力图与弯矩图
返回
第7章A 弯曲强度(1)-剪力图与弯矩图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小挠度微分方程
d2w 0,M 0
dx 2
d2w 0,M 0 dx 2
d2w M dx 2 EI
d2w M dx2 EI
第8章 弯曲刚度
梁的小挠度微分方程及其积分
小挠度微分方程
采用向下的w坐标系,有
d2w M dx2 EI
第8章 弯曲刚度
梁的小挠度微分方程及其积分
小挠度微分方程
1=M
EI
第8章 弯曲刚度
梁的变形与梁的位移
挠度与转角的相互关系
梁在弯曲变形后,横截面的位置将发生改变,这种位置的改 变称为位移(displacement)。梁的位移包括三部分:
横截面形心处的铅垂位移,称为挠度(deflection),用w 表示;
变形后的横截面相对于变形前位置绕中性轴转过的角度, 称为转角(slope),用表示;
位移分析中所涉及的梁的变形和位移,都是弹性 的。尽管变形和位移都是弹性的,但在工程设计中, 对于结构或构件的弹性位移都有一定的限制。弹性 位移过大,也会使结构或构件丧失正常功能,即发 生刚度失效。
第8章 弯曲刚度
梁的变形与梁的位移
机械传动机构中的齿轮轴,当变形过大时 (图中虚线所示),两齿轮的啮合处将产生较大的 挠度和转角,这就会影响两个齿轮之间的啮合, 以致不能正常工作。
第8章 弯曲刚度
梁的变形与梁的位移 梁的小挠度微分方程及其积分 叠加法确定梁的挠度与转角 弯曲刚度计算 简单的静不定梁 结论与讨论
返回总目录
第8章 弯曲刚度
梁的变形与梁的位移
返回
第8章 弯曲刚度
梁的变形与梁的位移
梁的曲率与位移 挠度与转角的相互关系 梁的位移分析的工程意义
第8章 弯曲刚度
d2w M
dx2 EI
对于等截面梁,应用确定弯矩方程的方法,写出弯矩方程
M(x),代入上式后,分别对x作不定积分,得到包含积分常数的挠
度方程与转角方程:
dw dx
l
M x
EI
dx
C
w
l
l
M x
EI
dx
dx
Cx
D
其中C、D为积分常数。
第8章 弯曲刚度
梁的小挠度微分方程及其积分
小挠度微分方程的积分与 积分常数的确定
第8章 弯曲刚度
梁的小挠度微分方程及其积分
返回
第8章 弯曲刚度
梁的小挠度微分方程及其积分
小挠度微分方程 小挠度微分方程的积分与积分常数的确定
第8章 弯曲刚度
梁的小挠度微分方程及其积分
小挠度微分方程
第8章 弯曲刚度
梁的小挠度微分方程及其积分
小挠度微分方程
力学中的曲率公式
1M
EI
数学中的曲率公式
第8章 弯曲刚度
梁的小挠度微分方程及其积分
小挠度微分方程的积分与 积分常数的确定
积分法中常数由梁的约束条件与连续条件确定。约束条件是 指约束对于挠度和转角的限制:
在固定铰支座和辊轴支座处,约束条件为挠度等于 零:w=0;
同时,还会加大齿轮磨损,同时将在转动 的过程中产生很大的噪声。
此外,当轴的变形很大时,轴在支承处也 将产生较大的转角,从而使轴和轴承的磨损大 大增加,降低轴和轴承的使用寿命。
第8章 弯曲刚度
梁的变形与梁的位移
在工程设计中还有另外一类问题,所考虑的不是 限制构件的弹性位移,而是希望在构件不发生强度 失效的前提下,尽量产生较大的弹性位移。例如, 各种车辆中用于减振的钣簧,都是采用厚度不大的 板条叠合而成,采用这种结构,钣簧既可以承受很 大的力而不发生破坏,同时又能承受较大的弹性变 形,吸收车辆受到振动和冲击时产生的动能,收到 抗振和抗冲击的效果。
梁的变形与梁的位移
梁的曲率与位移
在平面弯曲的情形下,梁上的任意微段的两横截面绕 中性轴相互转过一角度,从而使梁的轴线弯曲成平面曲线, 这一曲线称为梁的挠度曲线(deflection curve)。
第8章 弯曲刚度
梁的变形与梁的位移
梁的曲率与位移
根据上一章所得到的结果, 弹性范围内的挠度曲线在一点 的曲率与这一点处横截面上的 弯矩、弯曲刚度之间存在下列 关系:
另一方面,某些机械零件或部件,则要求有较大的变 形,以减少机械运转时所产生的振动。汽车中的钣簧即为 一例。这种情形下也需要研究变形。
此外,求解静不定梁,也必须考虑梁的变形以建立补充 方程。
第8章 弯曲刚度
本章将在上一章得到的曲率公式的基础上,建立梁的 挠度曲线微分方程;进而利用微分方程的积分以及相应的 边界条件确定挠度曲线方程。在此基础上,介绍工程上常 用的计算梁变形的叠加法。此外,还将讨论简单的静不定 梁的求解问题。
第8章 弯曲刚度
梁的变形与梁的位移
在Oxw坐标系中,挠度与转角存 在下列关系:
dw tan
dx
在小变形条件下,挠度曲线较为
平坦,即很小,因而上式中tan。
于是有
dw
dx w= w(x),称为挠度方程(deflection equation)。
第8章 弯曲刚度
梁的变形与梁的位移
梁的位移分析的工程意义
第8章 弯曲刚度
梁的变形与梁的位移
挠度与转角的相互关系
பைடு நூலகம்
梁在弯曲变形后,横截面的位置将发生改变,这种位置的改变 称为位移(displacement)。梁的位移包括三部分:
横截面形心沿水平方向的位移,称为轴向位移或水平位 移(horizontal displacement),用u表示。
在小变形情形下,上述位移中,水平位移u与挠度w相 比为高阶小量,故通常不予考虑。
(优选)工程力学静力学与材 料力学弯曲刚度
清华大学 范钦珊
范钦珊教育与教学工作室
工程力学(静力学与材料力学)
课堂教学软件(4)
2020年8月31日
返回总目录
工程力学(静力学与材料力学)
第二篇 材料力学
第8章 弯曲刚度
返回总目录
第8章 弯曲刚度
上一章的分析结果表明,在平面弯曲的情形下,梁的 轴线将弯曲成平面曲线。如果变形太大,也会影响构件正 常工作。因此,对机器中的零件或部件以及土木工程中的 结构构件进行设计时,除了满足强度要求外,还必须满足 一定的刚度要求,即将其变形限制在一定的范围内。为此, 必须分析和计算梁的变形。
d2w
1
dx 2
3
1
dw
2
2
dx
第8章 弯曲刚度
梁的小挠度微分方程及其积分
小挠度微分方程
小挠度情形下
dw
2
dx
1
d2w
1
dx2
3
1
dw dx
2
2
d2w M dx2 EI
对于弹性曲线的小挠度微分方程,式中的正负 号与w坐标的取向有关。
第8章 弯曲刚度
梁的小挠度微分方程及其积分
相关文档
最新文档