故障点的过渡电阻对阻抗继电器的影响及其消除方法
过渡电阻对不同特性阻抗继电器的影响分析

福州大学2013届毕业设计论文过渡电阻对不同特性阻抗继电器的影响分析指导教师:姓名:学院:班级:时间:联系方式:摘要距离保护用电压与电流的比值(即阻抗)反映保护安装处到短路点距离的远近构成的继电保护,又称阻抗保护。
与电流保护和电压保护相比,距离保护的性能受系统运行方式的影响较小。
但故障输电线路中存在较大的过渡电阻时,很容易引起距离保护拒动或误动。
本文介绍了距离保护的基本知识,分析了过渡电阻分别针对单电源、双电源线路距离保护中采用的不同阻抗继电器特性,并用MATLAB对电力系统运行及故障进行仿真分析,得出过渡电阻对保护的影响及消除其影响的有效措施。
关键词:距离保护MATLAB仿真阻抗继电器过渡电阻AbstractDistance protection with the ratio of voltage and current (i.e., impedance) reflect the protection installed place to short-circuit point of distance relay protection, also known as the impedance protection. Compared with the current protection and voltage protection, distance protection performance influenced by system operation mode is smaller. But when there is a larger transition resistance fault in transmission line, it is easy to cause distance protection. Refusing action and error actionThis paper introduces the basic knowledge of the distance protection, transition resistance were analyzed respectively for single power supply, power supply circuit adopts different impedance relay in distance protection features, and use MATLAB simulation analysis of power system operation and fault, the effect of transition resistance for the protection and the effective measures to eliminate its effects.Key words: Distance protection MATLAB simulation Impedance relayTransition resistance目录摘要 (2)Abstract (3)前言 (5)第一章电网的距离保护 (7)1.1 距离保护的基本概念 (7)1.2 距离保护的时限特性 (7)1.3 距离保护的组成 (8)1.3.1起动元件 (8)1.3.2方向元件 (8)1.3.3距离元件 (9)1.3.4时间元件 (9)1.4阻抗继电器 (9)第二章仿真软件 (15)2.1 Matlab 的简介 (15)2.2 Simulink的简介 (17)第三章过渡电阻对距离保护影响及解决措施 (18)3.1 距离保护 (18)3.2 过渡电阻 (19)3.3 过渡电阻对距离保护的影响及解决措施 (19)3.3.1 过渡电阻对单侧电源线路的影响 (19)3.3.2 过渡电阻对双侧电源线路的影响 (20)3.3.4减小过渡电阻对距离保护影响的措施 (21)第四章模型建立与仿真 (24)4.1模型建立 (24)4.2不同场合过渡电阻的影响 (26)4.2.1 单侧电源线路上过渡电阻的影响 (27)4.2.2 双侧电源线路上过渡电阻的影响 (27)第五章消除过渡阻抗算法及仿真结果 (28)5.1消除过渡阻抗算法 (28)5.2仿真结果 (30)参考文献 (33)前言随着电网规模越来越庞大,电压等级越来越高,如何有效、安全、可靠地提高输送能力,是我国电网面临的迫切需要解决的问题。
继电保护问答题

自动迅速有选择性的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证故障部分迅速恢复正常运行。
反应电器元件不正常运行状态,并根据运行维护条件而动作于发出信号或跳闸。
2、电力系统对继电保护的四个基本要求是什么分别对这四个基本要求进行解释正确理解”四性”的统一性和矛盾性.选择性:电力系统发生故障时,保护装饰仅将故障元件切除,而使非故障元件仍能正常运行,以尽量缩小停电范围。
速动性:尽可能快地切除故障灵敏性:在规定的保护范围内,对故障情况的反应能力。
满足灵敏性要求的保护装置应在区内故障时,不论短路点的位置与短路的类型如何,都能灵敏的正确的反映出来。
可靠性:保护装置规定的保护范围内发生了应该动作的故障时,应可靠动作,即不发生拒动;而在其他不改动作的情况下,应可靠不动作,即不发生误动作。
继电保护的科学研究设计制造和运行的绝大部分工作是围绕着如何处理好这四个基本要求之间的辩证统一关系而进行的。
3、继电保护装置的组成包括那几个部分各部分的功能是什么测量部分:测量从被保护对象输入的有关电气量进行计算,并与已给定的整定值进行比较,根据比较的结果,给出“是”“非”“大于”“不大于”等于“0”或“1”性质的一组逻辑符号,从而判断保护是否该启动。
逻辑部分:根据测量部分各输出量大小,性质,输出的状态,出现的顺序或其组合,使保护装置按一定的逻辑关系工作,最后确定时候应该使断路器跳闸货发出信号,并将有关命令传给执行部分。
执行部分:根据逻辑部分输出的信号,完成保护装置所担负的任务,如被保护对象故障时,动作与跳闸,不正常运行时,发出信号,正常运行时,不动作等。
4、何谓主保护、后备保护和辅助保护远后备和近后备保护有何区别各有何优、缺点主保护:反映被保护元件本身的故障,并以尽可能短的时限切除故障的保护。
后备保护:主保护或断路器拒动时用来切除故障的保护,又分为近后备保护和远后备保护。
辅助保护:为补充主保护和后备保护的性能或当主保护和后备保护退出运行时而增设的简单保护。
继保简答、名词总结版

其启动电流按照躲开最大负荷电流来整定,故无关 2. 电流保护的接线方式有哪些?各自适用在哪些场合?P28—P29 答:接线方式有三相星形接线,两相星形接线。三相星形接线广泛应用于发电机,变压器等 大型贵重电气设备的保护中, 两相星形接线在中性点直接接地电网和非直接接地电网中广泛 作为相间短路的保护。 3. 何谓 90°接线方式?采用 90°接线的功率方向继电器构成方向性保护时为什么有死区? 零序功率方向元件也有类似的死区吗?图 P43 答:90°接线方式是指在三相对称情况下,当 cosφ=1 时继电器的电流和电压相位差 90°。
' U 'ห้องสมุดไป่ตู้、 ' 相位的原理构成。 相电压补偿式方向元件: 利用两两比较补偿后的相电压 U A UB 、 C
工频变化量方向元件: 利用故障时电流电压中故障分量中的工频正序和负序分量来判别 故障方向。 行波方向元件:比较波电流 ∆i 和电压 ∆u 采样值的极性。 正序故障分量方向元件: 假设电力系统中的正序阻抗等于负序阻抗, 判别正序故障分量 的方向。 暂态能量方向元件:反应暂态能量。 6. 方向高频保护为什么要采用两个灵敏度不同的起动元件?P226 在外部故障时保护可靠不动作的必要条件是靠近故障点一端的高频发信机必须启动, 而如果 两端启动元件的灵敏度不相配合时,就可能发生误动作。 什么叫自动重合闸? 试述重合闸的装设范围和起动原则; 自动重合闸装置:当断路器跳闸之后,能够自动地将断路器重新合闸的装置。 (P258) 重合闸的装设范围: (P259) (1)3kV 及以上的架空线路和电缆与架空混合线路,在具有断路器的条件下,如用电设备 允许且无备用电源自动投入,应装设自动重合闸装置。 (2)旁路断路器和兼作旁路的母线联络断路器或分段断路器,应装设自动重合闸装置。 (3)低压侧不带电源的降压变压器,可装设自动重合闸装置。 (4)必要时,母线故障可采用母线自动重合闸装置。 重合闸不应动作的情况: (1) 由值班人员手动操作或通过遥控装置将断路器断开时。 (2) 手动投入断路器,由于线路有故障,而随即被继电保护将其断开时。
电力系统继电保护——3.6-3.7电网的距离保护-影响阻抗继电器正确动作的因素

t
'' '
360
*T
通过延时可以躲开振荡 对距离保护的影响
2.6 避免系统振荡距离保护误动作的措施 采用在OO’方向上面积小的阻抗继电器 保护安装处远离振荡中心
适当延长保护的动作时间,躲开震荡的影响,缺 点会影响保护的动作速度。
2.7 振荡闭锁回路--振荡和短路的主要区别 振荡时,电流和各点电压的幅值周期性变化;而 短路后,在不计衰减时是不变的 振荡时电流和各点电压幅值的变化速度较慢;而 短路时幅值是突然改变的,变化速度很快 振荡时,各点电流和电压之间的相位关系随振荡 角的变化而改变;而短路时是不变的
护不应该动作;
正常运行时,系统两侧的功角一般小于70度。
2.2 系统振荡研究的假设条件
EM
X M , RM
M N
I
EN
X N , RN
X L , RL
研究电力系统振荡,要做如下的假设:
将所研究的系统,按其电气连接的特点,简化为一个具 有双侧电源的开式网络; 系统振荡时,三相处于对称状态,可只取一相来研究; 振荡时,两侧系统的电势 EM 和EN 幅值相等,相角差用 来表示, 在0~360度之间变化; 系统中各元件的阻抗角相等,用Z k 来表示; Z Z M Z L Z N Zk 震荡过程中,不考虑负荷电流的影响。
故障判断元件和整组复归元件在系统正常运行或 振荡时都不会动作(无负序分量),保护装置的I 段和II段被闭锁,无论阻抗继电器本身是否动作 ,保护都不可能动作跳闸,即不会发生误动。
电力系统发生故障时,故障判断元件立即动作, 动作信号经双稳态触发器SW记忆下来,直至整 组复归。SW输出的信号,又经单稳态触发器DW ,固定输出时间宽度为 的短脉冲,在 时间内若 阻抗判别元件的I段或II段动作,则允许保护无延 时或有延时动作(距离保护III段被自保持)。
影响距离保护正确动作因素

Z0 Z1 3Z1
]Z1Lk
I&k(1A) RF (I&A 3K&I&0 )Z1Lk
保护安装处测量阻抗为
Z mA
Z1Lk
IABiblioteka Ik(1A) 3KI0RF
Z mA
Z1Lk
IA
Ik(1A) 3KI0
RF
由上式可见,只有当过渡电阻等于 零时,故障相阻抗继电器才能正确测量 短路点到保护安装处阻抗。
因 I&k(1A) 3I&k(1A)0
则
由于
Z A
3I&k(1A)0 I&A 3K&I&0
RF
I&A I&L.A C1I&k(1A)1 C 2 I&k(A2)2 C0 I&k(1A)0
计及
I&k(1A)1 I&k(A2)2 I&k(1A)0
Z A
3I&k(1A)0 I&A 3K&I&0
(3)电源分支、汲出同时存在
在相邻线路K点发生短路故障时。M侧母线 电压为
UM IMN Z MN Ik1Z1Lk
测量阻抗为
Zm
UM IMN
Z MN
Ik1 IMN
Z1Lk
定义总分支系数为 Kb Ik1 / IMN
若用 I IMN IN 表示
Ik1
I
Z NP2 Z NP1 Z set Z NP1 Z NP2
IMN
I
Z sN
Z sN Z MN
Z sM
则测量阻抗为
Zm
ZMN
Z sN
ZMN Z sN
ZsM
距离保护实验

继电保护专题实验报告欧阳学文一、实验目的本实验以研究过渡电阻对距离保护的影响为目的,通过实验数据观察过渡电阻增加时保护的动作状况,最后得出过渡电阻对距离保护影响的结论。
二、实验内容实验分为单电源和双电源两部分,包含单侧电源三相短路、单侧电源单项接地短路,双电源空载线路上三相短路,保护安装在送电测的的线路上三相短路与保护安装在受电侧的线路上三相短路这五种故障形式,其中,对于接地故障设置过渡电阻从0.01欧姆~300欧姆变化,相间短路过渡电阻变化为0.01~16欧姆,并研究故障点位于保护范围的10%、50%、90%处时保护的动作情况。
三、实验理论分析(一)单端电源时过渡电阻对阻抗继电器的影响如图所示,若线路首端故障经电弧,则距离保护的测量阻抗分别为,。
本段线路出口发生经过渡电阻短路故障时,若过渡电阻较大,本段距离保护I可能拒动,前一级距离保护II段可能越级跳闸,使距离保护失去选择性。
保护装置距离短路点越近,受过渡电阻的影响越大;保护定值越小,则相对受电阻的影响越大。
单端电源经过渡电阻短路(二)双电源时过渡电阻对阻抗继电器的影响如图所示,在双电源系统线路上发生经过渡电阻短路时,由两侧电源系统提供短路电流,双电源时经过渡电阻短路安装在M侧的阻抗继电器测得的阻抗为,其中附加阻抗,为超前的相角,为超前的相角。
由于对侧电源的助增作用使得过渡电阻产生的影响要复杂的多:1)若超前于,则>0,附加阻抗呈容性;2)若滞后于,则<0,附加阻抗呈感性;若故障前M侧为送电测,N为受电侧,则超前于;故障发生初期两侧电源相位关系不变,则超前于,M侧的附加阻抗呈容性,将造成阻抗继电器保护范围的伸长,M侧距离保护可能超越。
若故障前M侧为受电测,N为送电侧,则滞后于;故障发生初期两侧电源相位关系不变,则滞后于,M侧的附加阻抗呈感性,将造成阻抗继电器保护范围的缩短,M侧距离保护可能拒动。
四、实验结果分析(一)单侧电源1、三相短路故障相测量阻抗的计算值为:,其中利用上式分别计算故障点位于保护范围的10%、50%、90%且过渡电阻依次为0.01Ω、0.5Ω、2Ω、4Ω、8Ω、16Ω时的测量阻抗理论值,并与实际测量值进行对比,其结果如表1所示。
影响阻抗继电器正确动作的因素

式中的 K b 亦称分支系数,其值小于1。 上式表明,由于汲出电流的存在,使变电所A 的距离Ⅱ段的测量阻抗减小,因而其保护 范围扩大,可能导致无选择动作。为此在 整定距离Ⅱ段时引入分支系数来解决这个 问题。同样分支系数应取各种运行方式下 的最小值。
图28 具有分支电流网络
(三)系统振荡的影响 电力系统正常运行时,系统各电源之间 同步运行,各电源电势之间的相角差为常 数。当系统因短路切除太慢或遭受较大冲 击时,并列运行的各电源之间失去同步, 系统发生振荡。系统振荡时,各电源电势 之间的相角差随时间而变化,系统中出现 幅值以一定周期变化的电流,该电流称为 振荡电流。与此同时,系统各点电压的幅 值也随时间变化。 如图29示出了双侧电源辐射形线路振荡 的等效电路及各电流、电压间的相量图。 取电源
E E 取振荡电流的正方向为从电源 流向电源 ,
j E E E ( 1 e ) IOS Z Z
Z Z Z L Z E 是 E 由于 I 产生的,所以它落后 E OS E 的角度即为系统阻抗角 d 。
五、影响阻抗继电器正确动作的因素 如前所述,阻抗测量元件应能正确测量故障 点至保护安装处的阻抗。当故障发生在保 护范围内时,阻抗测量元件的测量阻抗小 于其动作阻抗,即 Z m Z PUj ,继电器动 作; 当故障发生在保护范围外时, Z m Z PUj , 继电器不动作,从而保证了其动作的选择性。 但实际上,有许多因素影响着阻抗测量元 件的测量阻抗 Z m ,使它增大或减小,从而 使其保护范围缩小或扩大,导致保护的灵 敏性降低甚至失去选择性。
的影响最严重。另外阻抗继电器的整定阻抗 Z S 越小,即保护范围越小,受系统振荡影响 的范围就越小。
过渡电阻对距离保护的影响及解决方法

性直线必须下倾防止这种超越。特性直线
界点,切换不同的动作方程以提高耐受过 渡电阻能力。该方法的缺点是在出口处经
的下倾降低了对区内故障时耐受过渡电阻 的能力[9~10]。对单相故障,X 元件采用零
过渡电阻接地短路时,保护将拒动。受电 端在过渡电阻超过出现同向问题的临界过 渡电阻时,会发生区外故障超范围动作而 区内故障时拒动的情况。零序电抗继电器 虽然在理论上具有很强的抗过渡电阻能力, 但还是受系统运行方式及过渡电阻大小的 影响,在实际使用过程中需灵活应用。
的耐受过渡电阻的能力。图 1-2 所示为四
边形特性距离继电器。它将距离继电器的
测量距离功能、方向判别功能和躲负荷功
能分别由 3 个独立元件完成。R 元件完成
躲负荷功能,其特性如 R 直线;X 元件完 成测距功能,其特性如 X 特性直线;D 元 件完成方向判别功能,其特性如 D 特性折
圆与四边形特性的复合:在相间短路 时,过渡电阻较小,应用圆特性;在接地
过渡电阻一般为纯电阻。接地故障的 过渡电阻包括电弧电阻和杆塔接地电阻, 对树枝放电时还包括树枝电阻。每个杆塔 的接地电阻,在土壤电阻率较低的地区一
般为 10 Ω ;在电阻率较高的地方,可达 30 Ω ,甚至更高一些。接地故障时最大的
过渡电阻发生在导线对树枝放电之时。在 实际电力系统中,过渡电阻受当时故障方 式、地质条件和天气情况等因素的影响, 可能达到比较大的数值,例如单相接地故
在高压和超高压输电线路的方向高频
保护中,应用相电压补偿式方向元件的方
障电流。只要 IF 和 I0 的相位相同,则特性
案,具有方向性强,在系统振荡过程中反 方向经任何过渡电阻短路时不误动、能自 然地适用于两相运行的线路,能切除单相 重合闸过程中的短路等优点,因而 1978 年以来就在我国 220kv、 330kv 和 500kv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故障点的过渡电阻对阻抗继电器的影响及
其消除方法
纯金属接地的几率很小,实际上短路点往往存在过渡电阻1R,它主要是短路点的电弧电阻,系纯电阻性质。
以方向阻抗继电器为例,设短路点到继电器的安装地点的阻抗为2Z,若2Z小于整定阻抗,阻抗继电器应该动作。
但是由于短路点1R的影响,使故障点的测量阻抗
Z=2Z+1R处于阻抗特性圆的外边,继电器不动作。
如下图所示。
另4
外阻抗继电器是低值动作,1R得存在使继电器的测量阻抗的幅度增大、阻抗角减小而偏离最大灵敏角,从而使阻抗继电器的灵敏度降低。
Array
以上只是针对单只阻抗继电器而言,如果在下图所示的距离保护中,当距离保护B Z第Ⅰ段保护范围内发生相间短路,由于1R的存在,使得B Z保护测量的范围延伸到第Ⅱ段,造成B Z、A Z距离保护的第Ⅱ段
同时动作,而使A Z保护动作失去选择性。
R与电弧长度和电流的大小有关,而电流的大小和电弧的长度又1
随时间变化。
在短路开始的瞬间,1R很小,对阻抗继电器的影响很小。
随着时间的增长,1R增大,约经过0.1-0.15s以后,1R急剧上升。
1R
的这一特性对阻抗继电器的影响较大。
为了消除这种影响,距离保护
第Ⅱ段通常采用“瞬时测定”装置,即通过启动元件的动作将测量元
件的初始动作状态固定下来,以后如因1R增大使测量元件返回时,保
护仍可以通过“瞬时测定”装置按照预先的时间动作,断开短路器。