交通信号控制理论基础
区域交通信号控制系统课件

车流运行过程中的车队离散特性:
F a 1 bt
t 0.8T
式中:F 离散平滑系数
T 车队在连线上行驶时的平均行程时间(s)
a,b 曲线拟合参数
主要由仿真模型及优化两局部组成。
网络几何尺寸及网络交通流信息
新的信号配时
优化数据
初始信号配时
仿真模型
优化过程 最佳信号配时
网络内的延误及停车次数
性能指标PI 周期流量图
TRANSYT 基本原理图
TRANSYT仿真模型的几个主要环节
1〕交通网络构造图式:节点和连线来抽象网络 2〕周期流量变化图式 3〕车流在连线上运行状况的模拟 为描述车流在一条连线上运行的全过程,
SCATS在实行对假设干子系统的整体协 调控制的同时,也允许每个穿插口“各自 为政〞地实行车辆感应控制,前者称为 “战略控制〞,后者称为“战术控制〞。 这样可提高控制效率。
SCATS实际上是一种用感应控制对配时 方案可作局部调整的方案选择系统。
SCATS优选配时方案的各主要环 节
1.子系统的划分与合并 〔1〕子系统的划分由交通工程师根据交通流量
2. SCATS 参数优选算法简介:
SCATS把信号周期、绿信比及绿时差作为 各自独立的参数分别进展优化。优化过程中 使用的算法以所谓“综合流量〞及“饱和度〞 为主要依据。
〔1〕饱和度:SCATS所使用的饱和度指被 车流有效利用的绿灯时间与绿灯显示时间之 比。
〔2〕综合流量:为防止采用与车辆种类〔车身 长度〕直接相关的参量来表示车流流量, SCATS引入了一个虚拟的参量“综合流量来反 映通过停车线的混合车流的数量〞。
交通信号控制理论基础

第六章交通信号控制理论基础经过调查统计发现,将城市道路相互连接起来构成道路交通网的城市道路平面交叉口,是造成车流中断、事故增多、延误严重的问题所在,是城市交通运输的瓶颈。
一般而言,交叉口的通行能力要低于路段的通行能力,因此如何利用交通信号控制保障交叉口的交通安全和充分发挥交叉口的通行效率引起了人们的高度关注。
交通信号控制是指利用交通信号灯,对道路上运行的车辆和行人进行指挥。
交通信号控制也可以描述为:以交通信号控制模型为基础,通过合理控制路口信号灯的灯色变化,以达到减少交通拥挤与堵塞、保证城市道路通畅和避免发生交通事故等目的。
其中,交通信号控制模型是描述交通性能指标(延误时间、停车次数等)随交通信号控制参数(信号周期、绿信比和信号相位差),交通环境(车道饱和流量等),交通流状况(交通流量、车队离散性等)等因素变化的数学关系式,它是交通信号控制理论的研究对象,也是交通工程学科赖以生存和发展的基础。
本章主要针对建立交通信号控制模型所涉及到的基本概念、基本理论与基本方法,对交通信号控制的理论基础进行较为全面深入的阐述。
6.1交通信号控制的基本概念城市道路平面交叉口是道路的集结点、交通流的疏散点,是实施交通信号控制的主要场所。
根据交叉口的分岔数平面交叉口可以分为三岔交叉口、四岔交叉口与多岔交叉口;根据交叉口的形状平面交叉口可以分为T型交叉口、Y型交叉口、十字型交叉口、X型交叉口、错位交叉口、以及环形交叉口等。
6.1.1交通信号与交通信号灯交通信号是指在道路上向车辆和行人发出通行或停止的具有法律效力的灯色信息,主要分为指挥灯信号、车道灯信号和人行横道灯信号。
交通信号灯则是指由红色、黄色、绿色的灯色按顺序排列组合而成的显示交通信号的装置。
世界各国对交通信号灯各种灯色的含义都有明确规定,其规定基本相同。
我国对交通信号灯的具体规定简述如下:对于指挥灯信号:1、绿灯亮时,准许车辆、行人通行,但转弯的车辆不准妨碍直行的车辆和被放行的行人通行;2、黄灯亮时,不准车辆、行人通行,但已越过停止线的车辆和已进入人行横道的行人,可以继续通行;3、红灯亮时,不准车辆、行人通行;4、绿色箭头灯亮时,准许车辆按箭头所示方向通行;5、黄灯闪烁时,车辆、行人须在确保安全的原则下通行。
轨道交通信号与控制专业认识

轨道交通信号与控制专业认识一、专业简介轨道交通信号与控制是以信号与控制理论为基础,应用于轨道交通系统中的专业领域。
它涵盖了信号灯、道岔、制动系统、列车控制及通信系统等内容。
轨道交通信号与控制专业是围绕着保证轨道交通系统安全、高效运行的核心目标展开的。
二、专业学科1. 信号与控制原理信号与控制原理是轨道交通信号与控制专业的基础学科。
它主要讲述了信号与控制的基本概念、基本原理以及相关数学模型和算法等内容。
学习这门学科可以培养学生的逻辑思维和问题解决能力。
2. 轨道交通信号技术轨道交通信号技术是轨道交通信号与控制专业的核心学科。
它包括了信号灯、道岔、列车控制系统等内容。
学生需要掌握信号灯的工作原理、道岔的控制方式以及列车控制系统的设计与调试等技能。
3. 通信与信息处理技术通信与信息处理技术是轨道交通信号与控制专业中的重要学科。
它主要涵盖了通信原理、网络技术、信息处理等内容。
学生需要学习通信原理,了解通信网络的组成和运行原理,并且能够进行信息处理和数据分析。
4. 电力系统与电气设备电力系统与电气设备是轨道交通信号与控制专业中的关键学科。
它包括了电力供应系统、 traction power system等内容。
学生需要学习电气设备的原理、电力系统的设计与维护,并且具备处理与电力相关问题的能力。
三、就业方向1. 城市轨道交通公司轨道交通公司是毋庸置疑的首选就业方向,毕业生可以从事信号与控制系统的设计、调试和运维等工作。
在城市轨道交通公司中,毕业生可以发挥自己的专业技能,为城市交通运行贡献力量。
2. 设计与研究院所毕业生可以选择进入设计与研究院所从事轨道交通信号与控制系统的设计和研究工作。
在这里,毕业生可以深入研究轨道交通系统的性能优化、智能化控制等领域,推动轨道交通技术的发展。
3. 政府交通管理部门政府交通管理部门也是一个就业方向。
毕业生可以从事交通规划与管理工作,参与城市轨道交通规划、交通安全监测和数据分析等工作。
交通信号综合实践课教学设计

交通信号综合实践课教学设计一、课程背景和目标本课程是交通工程专业的一门核心实践课程,旨在培养学生对交通信号控制及应用的理解和操作能力。
通过实践活动,学生将研究交通信号控制的原理、方法和技术,并能运用这些知识解决实际问题。
二、教学内容本课程的教学内容主要涵盖以下几个方面:1. 交通信号控制理论基础:信号灯原理、信号控制算法等。
2. 交通信号设备实际操作:信号机的设置和调试、信号灯的安装和维护等。
3. 交通信号控制系统的设计和优化:路口信号控制参数的调整、信号配时方案的制定等。
4. 交通信号的实际应用:信号优化方案的评估、城市交通信号网络的设计等。
三、教学方法与手段为了达到培养学生实际操作技能和综合应用能力的目标,本课程将采用以下教学方法与手段:1. 理论讲授:通过课堂授课,向学生传授基本的交通信号控制理论知识,让学生掌握相关概念和原理。
2. 实验实践:组织学生参与实验操作,让他们亲自调试和设置交通信号设备,并通过实验数据分析和处理,提高实际应用能力。
3. 个案研究:引导学生选择一个实际案例,进行信号控制系统的设计和优化,培养学生的问题分析和解决能力。
4. 小组讨论:组织学生进行小组讨论,让他们分享实践经验和解决方案,提高团队合作能力和交流能力。
四、教学评估与考核为了评估学生的研究情况和综合应用能力,本课程将采用以下教学评估与考核方法:1. 课堂表现:通过学生的课堂参与度、真实性等来评估学生对理论知识的掌握程度。
2. 实验报告:要求学生按照实验操作结果撰写实验报告,对数据进行分析和总结,以检验实际应用能力。
3. 个案研究报告:要求学生在指定的实际案例中进行信号控制系统设计和优化,并撰写研究报告,评估学生的问题解决能力。
4. 期末考试:通过考核学生对交通信号控制的理论知识和应用能力的综合掌握情况。
五、教学资源与保障为了保障教学效果和研究质量,本课程将提供以下教学资源和保障:1. 实验设备和场地:为学生提供实验所需的交通信号设备和实验室场地,确保实践操作的顺利进行。
第二章交通信号控制的基本理论

2交通信号控制的基本理论本章首先给出了交通信号控制的基本概念,包括:信号相位,周期时长,绿信比,相位差,绿灯间隔时间,有效绿灯时间等,然后介绍了常用的交叉口性能指标以及计算方法,最后给出了常用交叉口的信号配时方法。
这些研究为后面的信号配时模型及优化方法的研究奠定了理论基础。
2.1交通控制的基本概念交叉路口信号配时参数优化,首先必须准确把握和理解交通控制中的一些基本概念。
下面对信号配时设计中部分参数作一介绍。
(l)信号相位:在一个信号周期内,具有相同的信号灯色显示的一股或几股交通流的信号状态序列称作一个信号相位。
信号相位是按车流获得信号显示的时序来划分的,有多少种不同的时序排列,就有多少个信号相位。
每一个控制状态,对应显示一组不同的灯色组合,称为一个相位。
简而言之,一个相位也被称作一个控制状态。
以四相位为例如图所示:相位1 相位2 相位3 相位4图1 四相位信号相序控制示意图(2)周期时长:信号灯发生变化,信号运行一个循环所需的时间,等于绿、黄、红灯时间之和;也等于全部相位所需的绿灯时间和黄灯时间(一般是固定的)的总和。
周期过长时,等待的人容易产生急躁情绪,因此通常以180秒为最高界限。
图1 第一、三配时表(3)绿信比:是指在一个周期内(对一指定相位),有效绿灯时间与信号周期长度之比。
(4)相位差(又叫绿时差或绿灯起步时距):相位差是针对两个信号交叉口而言,是指两个相邻交叉口它们同一相位绿灯(或红灯)开始时间之差。
它分为绝对相位差和相对相位差。
相对相位差是指在各路口的周期时间均相同的联动信号系统中,相邻两个交叉路口协调相位的绿灯起始时间之差。
绝对相位差是指在联动信号系统中选定一标准路口,规定该路口的相位差为零,其他路口相对于标准路口的相位差叫绝对相位差。
(5)绿灯间隔时间:是指从失去通行权的相位的绿灯结束,到下一个得到通行权的相位绿灯开始所用的时间。
绿灯间隔时间的长短主要取决于交叉口的几何尺寸,因此,要确定该时间的长度就必须首先考虑停止线和潜在冲突点之间的相关距离,以及车行驶这段距离所需的时间。
交通信号控制的基础理论知识

交通信号控制的基础理论知识第2章交通信号控制的基础理论知识2.1交通控制的分类城市交通控制有多种⽅式,其分类也有很多种。
从不同的⾓度看有不同的划分⽅式。
1、从控制策略的⾓度可分为三种类型(1)定时控制:交通信号按事先设定的配时⽅案运⾏,配时的依据是交通量的历史数据。
⼀天内只⽤⼀个配时⽅案的称为单时段定时控制,⼀天内不同时段选⽤不同配时⽅案的称为多时段定时控制。
根据历史交通数据确定其最优化配时的⽅法webster(1958),Bollis(1960),Miller(1963),Blunden(1964),Allsop(1971)等⼈的著作中已有详述。
我国杨佩昆等学者也有这⽅⾯的研究成果。
现在最常⽤的信号配时⽅法有:韦尔伯特法、临界车道法、停车线法、冲突点法。
定时控制⽅法是⽬前使⽤最⼴的⼀种交通控制⽅式,它⽐较适应于车流量规律变化、车流量较⼤(甚⾄接近于饱和状态)的路⼝。
但由于其配时⽅案根据交通调查的历史数据得到,⽽且⼀经确定就维持不变,直到下次重新调整。
很显然,这种⽅式不能适应交通流的随机变化,因⽽其控制效果较差。
(2)感应控制:感应信号控制没有固定的周期,他的⼯作原理为在感应信号控制的进⼝,均设有车辆检测器,当某⼀信号相位开始启亮绿灯,感应信号控制器内预先设置⼀个“初始绿灯时间”。
到初始绿灯时间结束时,增加⼀个预置的时间间隔,在此时间间隔内若没有后续车辆到达,则⽴即更换相位;若检测到有后续车辆到达,则每检测到⼀辆车,就从检测到车辆的时刻起,绿灯相位延长⼀个预置的“单位绿灯延长时间”。
绿灯⼀直可以延长到⼀个预置的“最⼤绿灯时间”。
当相位绿灯时间延长到最⼤值时,即使检测器仍然检测到有来车,也要中断此相位的通⾏权,转换信号相位。
感应式信号控制根据检测器设置的不同⼜可以分为半感应控制和全感应控制。
只在交叉⼝部分进道⼝上设置检测器的感应控制称为半感应控制,在交叉⼝全部进道⼝上都设置检测器的称为全感应控制。
交通行业智能交通信号控制方案

交通行业智能交通信号控制方案第一章智能交通信号控制概述 (2)1.1 智能交通信号控制的意义 (2)1.2 智能交通信号控制系统的发展历程 (2)1.3 智能交通信号控制的关键技术 (3)第二章交通信号控制理论基础 (3)2.1 交通信号控制的基本原理 (3)2.2 交通流理论概述 (4)2.3 交通信号控制模型与算法 (4)第三章智能交通信号控制技术 (5)3.1 交通信号控制系统的硬件设备 (5)3.2 交通信号控制系统的软件平台 (5)3.3 交通信号控制系统的数据采集与处理 (6)第四章实时交通信息采集与处理 (6)4.1 交通信息采集技术 (6)4.2 交通信息处理与分析方法 (7)4.3 实时交通信息的应用 (7)第五章交通信号控制策略 (8)5.1 动态交通信号控制策略 (8)5.2 自适应交通信号控制策略 (8)5.3 多目标优化交通信号控制策略 (8)第六章智能交通信号控制系统设计 (9)6.1 系统架构设计 (9)6.1.1 系统总体架构 (9)6.1.2 系统模块划分 (9)6.2 系统功能模块设计 (9)6.2.1 数据采集模块 (9)6.2.2 数据处理模块 (10)6.2.3 控制策略模块 (10)6.2.4 控制执行模块 (10)6.3 系统功能优化 (10)6.3.1 数据采集与传输优化 (10)6.3.2 数据处理与挖掘优化 (10)6.3.3 控制策略与执行优化 (10)第七章智能交通信号控制系统的实施与评估 (11)7.1 实施步骤与方法 (11)7.2 系统评估指标体系 (12)7.3 系统效果评估方法 (12)第八章智能交通信号控制系统的管理与维护 (13)8.1 系统管理策略 (13)8.1.1 管理体系构建 (13)8.1.2 管理制度制定 (13)8.1.3 人员培训与考核 (13)8.2 系统维护与故障处理 (13)8.2.1 维护策略制定 (13)8.2.2 维护工作实施 (13)8.2.3 故障处理流程 (13)8.3 系统安全与隐私保护 (14)8.3.1 安全防护措施 (14)8.3.2 隐私保护策略 (14)8.3.3 安全与隐私保护培训 (14)第九章智能交通信号控制系统在典型场景的应用 (14)9.1 城市道路交通信号控制 (14)9.2 高速公路交通信号控制 (14)9.3 公共交通信号优先控制 (15)第十章智能交通信号控制系统的发展趋势与展望 (15)10.1 发展趋势分析 (15)10.2 面临的挑战与机遇 (16)10.3 未来发展展望 (16)第一章智能交通信号控制概述1.1 智能交通信号控制的意义智能交通信号控制作为现代交通管理的重要组成部分,对于提高城市交通运行效率、缓解交通拥堵、保障交通安全具有重要意义。
道路交通控制的基本理论和方法

▪ 显然
, 绿信比反应了该信号相位交通流在一个周期
中需要绿时的大小。
▪ 经过优化的绿信比能够恰当地把绿时分配给各相位的交通 流,从而使总延误或总停车次数等最小。
▪ 第i相的有效绿灯时间 计算如下:
▪
分别为第i相的绿灯时间、黄灯时间和损失时间。
▪ 损失时间:1)绿灯开启,车辆需启动和加速;
▪
2)黄灯期间,车流量由大变小所造成的时
一、基本概念
▪ 各种平面交叉路口
一、基本概念
▪ 平面交叉口交通组织方式 ▪ 1)环形交通。交叉口中央设交通岛 ▪ 2)无信号控制 ▪ 3)信号控制。采用信号机控制或人工指挥
一、基本概念
▪ 交通灯信号 ▪ 交通灯给出的信号为红、黄、绿3色。在多相位信号控制中
灯光信号还包含左转、直行及右转的绿色和红色箭头灯。 ▪ 《中华人民共和国道路交通管理条例》规定 ▪ 1)绿灯亮时,准许车辆、行人通行,但转弯的车辆不准妨
2、周期
▪ 一个循环内各步的步长之和称为信号周期,简称周
期,用C表示。
若一个循环内有n步,各步步长分别为 t1, t2 , , tn , 则 C t1 t2 tn
▪ 例如,在上图中,若一个循环由4步组成:第1步,
方向1和方向3 பைடு நூலகம்灯亮,方向2和方向4 红灯亮,步
长为30s;第2步,方向1和方向3 黄灯亮,方向2和
通行权:即该方向上的信号灯为绿色或绿箭头
一个周期内有几个信号相位,则称该信号系统为几相位系统。
由于第2相和第4相的左 转交通流分别为第1相 和第3相的延续,因而 其步长可以短一些,如 几秒钟。因此可称为 “半相位”
4、绿信比
▪ 在一个信号周期中,各相位的有效绿灯时间与周期长度的 比称为绿信比。若设 为第i相信号的有效绿灯时间,C为 周期长度,则该相信号的绿信比 为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交通信号控制理论基础
交通信号控制是现代城市管理的重要组成部分,它能够对路口、路段甚至整个城市的交通流量进行调控和优化,从而提高道路使用效率,减少拥堵、事故和污染等问题。
交通信号控制技术的应用需要一定的理论基础,本文将介绍交通信号控制的理论基础。
一、交通流量理论
交通流量理论是交通信号控制的理论基础之一。
它研究交通流量的组成、变化规律和影响因素等,为交通信号控制提供了科学的数据支撑。
交通流量主要包括三个部分:流量、速度和密度。
其中,流量指单位时间内通过某一点的车辆数量;速度指单位时间内车辆通过某一点的平均速度;密度指某一区段内车辆的数量。
三者之间存在着紧密的关系,可以通过定义交通流量图表来描述。
交通流量的变化规律与交通状况和交通工具密切相关。
因此,在交通流量理论中,还研究了交通工具的类型、长度、速度、驾驶员心理与行为等因素对交通流量的影响。
这些研究成果为交通信号控制的实际应用提供了必要的参考依据。
二、交通信号控制方案
交通信号控制方案是交通信号控制的核心内容。
它指的是具体的交通信号控制方案设计和实施方案,是通过对交通流量、交通信号控制技术和交通管理的研究和分析,为解决路口、路段及城市交通拥堵和安全问题提供的有效手段。
交通信号控制方案通常包括以下内容:
1.信号控制区划。
确定信号控制的路段、路口及关键节
点。
2.信号定时方案。
设计信号控制的定时方案,确定各个方
向和行人通行时间。
3.信号控制方式。
确定信号控制的方式,如手动、自适应、计算机控制等。
4.信号控制系统。
设计和安装信号控制系统,包括硬件和
软件部分。
交通信号控制方案需要依据交通流量、环境条件、社会经济需求等方面进行科学设计。
在方案的设计过程中,还需要考虑交通工具、路网通行能力、交通运输体系、城市规划等因素。
三、交通信号控制技术
交通信号控制技术是交通信号控制的基础技术,负责实现交通信号控制方案中的定时方案和信号控制方式等。
交通信号控制技术主要包括以下内容:
1.信号灯规划。
确定各个方向和行人通行时间、信号灯布
局等。
2.信号机设计。
设计交通信号机,包括红绿灯、黄灯、左
转灯、人行通行信号等。
3.信号控制系统的硬件和软件实现。
设计和安装信号控制
系统,包括交通控制计算机、传感器、指示器等硬件部分,以及控制算法、通信、控制参数优化等软件部分。
在交通信号控制技术的应用中,还需要考虑周边环境、人类因素、社会需求等因素,保证信号控制技术的稳定性、可靠性和有效性。
四、交通信号控制的最优化理论
交通信号控制最优化理论研究交通信号控制方案的最优化选择和优化控制参数的设定。
在信号控制系统的实际应用中,会遇到多种情况,需要根据交通流量、路况变化、社会需求等因素动态调整信号控制参数,以达到最优的交通流量控制效果。
交通信号控制最优化理论需要研究信号控制参数与交通流量之间的关系,并对理论模型进行优化。
在实际应用中,可以利用数学模型、仿真模拟等方法进行优化设计和验证。
通过这些研究和分析,可以得出最佳的交通信号控制方案和控制参数,并提高交通信号控制的效率、减少能源消耗和环境污染。
总的来说,交通信号控制理论基础是交通信号控制的重要支撑。
在交通信号控制的实际应用中,需要综合考虑交通流量、技术条件、环境因素、人类因素和社会需求等因素。
通过对理
论基础的深入研究和分析,可以提高交通信号控制方案的科学性和有效性,为城市交通的持续发展提供领导。