分享微机继电保护装置基础知识

合集下载

电力系统继电保护微机保护基础

电力系统继电保护微机保护基础

装置外部引入的触点应经光电隔离
第二节 微机继电保护的基本算法 与数字滤波
一、 微机继电保护的基本算法 算法是微机继电保护的数学模型,
是微机继电保护工作原理的数学表达式,是 编制微机继电保护计算程序的依据。
1.采样及微分法 设电压和电流分别为 :
u Umsint (1) i Imsin(t ) (2)
Um
u2
u2
2
(4)
式中 u —任一时刻电压的采样值; uˊ—采样值u的微分。
如图所示,uk为当前采样值。
图中:uk-1为tk-1时刻的采样值;uk+1为tk+1时刻的采样值,则
Um u2k(uk21 T uk1)2/2 (5)
2.半周积分算法
S 0 T /2U m sitn d U t m co t0 T /2 s 2 U m T U m
N/2
S uk
k1
12N()Um
式中 S——半周内N/2个采样值的总和; uk——第k个采样值; N——工频周采样次数; α——第一个采样值的初相角。
3.傅氏算法
u(t) U 0 (U nc R o n ts U nsj in nt) n 1
U nR
2 N
N
u(k) cosk
k 0
2
N
Unj
输入模拟信号的电平变换主要由各种电压、 电流变换器来实现。
二、采样、采样定理及采样保持器 采样 — 周期性的抽取或测量连续信号。 采样定理 —为了能根据采样信号完全重现 原来的信号。采样频率fs必须大于输入连续信 号最高频率的2倍。 即:
fs 2fmax
采样周期: T=1/ fs
采样频率fs在240Hz到2000Hz之间。

微机继电保护 第一章

微机继电保护 第一章

三、开关量输出 (DO)回路 实际的微机保护 装置输出跳闸回路中, 需要对跳闸出口继电 器的电源回路采取控 制措施, 同时对光电 隔离回路采用异或逻 辑控制。
图1-23 具有电源控制的跳闸出口继电器输出回路
第一章 微机继电保护装置硬件原理
第五节 微机继电保护的发展趋势 一、微机保护装置的发展 计算机化, 网络化, 保护、控制、测量、数据 通信一体化和人工智能化。 二、微机保护算法和原理的发展 基于故障分量原理的保护(暂态故障分量保护 和工频故障分量保护) 算法 , 小波分析在保护中 的应用, 利用通信技术构成的“广域保护”, 以及模 糊理论、人工神经网络、自适应理论、专家系统 等智能技术在继电保护装置的应用等。
第一章 微机继电保护装置硬件原理
第六节 微机继电保护装置的功能编号 将继电保护装置通过对功能进行详细描述、 定义 。采用ANSI/IEEE Standard C37.2 标准的继 电保护功能编号见表1-1。 表中给出了标准的功能号 , 广泛应用于工程图 例、流程图、操作过程及其他应用书籍中。采用 标准功能编号 , 每个继电器或继电保护装置可细 分为一系列功能 , 方便设计、制造、运行维护等 各个环节 , 简洁易懂。
第一章 微机继电保护装置硬件原理
第四节 开关量输入及输出回路 一、光电隔离 实现两侧电路之间的电气隔离,解决不同逻 辑电平之间的信号传递和控制。 二、开关量输入(DI)回路 用于识别运行方式、运行条件等。开关量状态正 好对应二进制数字的“1” 或 “0”, 开关量可作为数 字量读入。DI接口作用是为开关量提供输入通道, 并在数字保护装置内外部之间实现电气隔离, 一类是装在保护装置面板上的接点,另一类 是从装置外部经过端子排引入装置的接点。
第一章 微机继电保护装置硬件原理

微机继电保护装置的硬件原理 共122页

微机继电保护装置的硬件原理 共122页

第一章 1-1 概述
微型机保护的硬件原理
第一章 1-1 概述
微型机保护的硬件原理
发展:许多单一芯片将微处理器(MPU)、只读存储 器(EPROM)、随机存储器(RAM)、定时器、模数 转换器(A/D)、并行接口适配器(PIO)、闪存单元 (FLASH)、数字信号处理单元(DSP,Digital Signal Processor)、通讯接口等多种功能集成于一个芯片内。
功能齐全的单片微型机系统,为微机保护的硬件设计 提供了更多的选择。
芯片对外连线没有数据、地址和控制总线的微型机, 即“总线不出芯片” ,提高微机保护设备的可靠性和 抗干扰性能。
第一章 微型机保护的硬件原理
1-2 模拟量输入系统(数据采集系统)
一、电压形成回路
模拟量的设置基本准则:满足保护功能,输入的模拟 量能够反应被保护对象的所有故障特征。
第一章 微型机保护的硬件原理
1-1 概述
微型机执行编制好的程序,对由数据采集系统输入至 RAM 区的原始数据进行分析、处理。 完成各种继电保护的测量、逻辑和控制功能。 (3)开关量(或数字量)输入/输出系统 由微型机的并行接口(PIA 或PIO)、光电隔离器件及 有触点的中间继电器等组成。 完成各种保护的出口跳闸、信号警报、外部触点输入、 人机对话及通讯等功能。
图 l—6(b)中的端子2 用于调零。实际上,零漂一般 很小,在要求不是特别高的情况下,可将端子2 开路。
AS 为场效应晶体管模拟开关,由运算放大器A3驱动。 A3的逻辑输入端S / H 由外部电路(通常可由定时器) 按一定时序控制,进而控制着Ch处于采样或保持状态。 符号S / H 表示该端子有双重功能,即S / H =“1”电平 为采样(Sample)功能,S / H =“0”电平为保持 (Hold)功能。某个符号上面带一横,表示该功能为 低电平有效,这是数字电路的习惯表示法。

继电保护基础知识和微机保护原理

继电保护基础知识和微机保护原理

继电保护基础知识和微机保护原理继电保护是电力系统中重要的安全措施之一,它的作用是在电力系统发生故障时,迅速切除或隔离故障点,保护电力设备和人身安全。

而微机保护利用先进的微机技术,结合各种传感器和控制装置,实现电力系统的准确、灵敏和可靠的保护,提高系统的稳定性和可靠性。

本文将介绍继电保护基础知识和微机保护原理。

一、继电保护基础知识1.继电保护原理继电保护根据电力系统的运行状态和故障特征,通过各种传感器和设备,对电力系统的电压、电流、功率等进行监测和测量,从而判断系统是否发生故障以及故障的位置和类型。

根据保护原理的不同,可以将继电保护分为差动保护、过流保护、间隙保护、距离保护等。

2.继电保护的类型继电保护按照保护范围的不同,可以分为发电机保护、变压器保护、线路保护、母线保护、馈线保护等。

不同的保护对象有着不同的保护特点和保护要求。

3.继电保护的组成继电保护由监测传感器、比较装置、判据装置和动作执行装置等组成。

监测传感器负责将电能转化为可测量的电信号,如电压互感器、电流互感器等;比较装置根据测量信号和设定值进行比较,判断系统的状态;判据装置根据比较装置的输出结果,生成动作指令,控制动作执行装置对保护范围内的设备进行保护动作。

1.微机保护系统结构微机保护系统由数据采集模块、微机主控装置、数据处理模块、监测和操作界面等组成。

数据采集模块负责采集保护对象的电压、电流等信号,并将其转化为数字信号;微机主控装置进行数据的处理和分析,并根据设定条件生成保护动作指令;数据处理模块进行数据的存储和管理,提供故障记录和统计报表等。

2.微机保护的特点微机保护具有以下特点:(1)准确性高:微机保护采用先进的数字信号处理技术,可以实时监测和测量电力系统的各种参数,提高保护的准确性和可靠性。

(2)速度快:微机保护系统的处理速度很快,可以在几十毫秒内完成对电力系统的故障判断和动作指令的生成。

(3)功能强大:微机保护具有丰富的功能,可以实现过流保护、差动保护、距离保护、频率保护等多种保护方式。

微机继电保护装置

微机继电保护装置

微机继电保护装置一、引言微机继电保护装置是一种新型的电力保护装置,它采用了微机技术和现代电力保护原理相结合的方式,使得电力系统的保护更加灵活、可靠和高效。

二、发展历程随着电力系统的发展和电力负荷的增加,传统的继电保护装置已经难以满足对电力保护的需求。

因此,微机继电保护装置应运而生。

从上世纪80年代开始,微机技术逐渐应用于电力保护领域,取得了显著的成果。

经过多年的发展和改进,微机继电保护装置已经成为电力系统安全稳定运行的重要组成部分。

三、工作原理微机继电保护装置采用了微机技术和数字信号处理技术,能够对电力系统中的各种异常情况进行精确的检测和判断,并在出现故障时快速做出保护动作。

其工作原理主要包括以下几个方面:1. 信号采集和处理:微机继电保护装置通过传感器采集电力系统中的各种信号,包括电压、电流、功率等参数,并将其转化为数字信号进行处理。

2. 信号分析和判断:微机继电保护装置通过对采集到的信号进行分析和判断,可以准确地判断出电力系统中是否存在故障或异常情况。

3. 保护动作控制:微机继电保护装置在判断出故障或异常情况后,会对电力系统进行保护动作控制,如切断故障回路、断开电源等,以保证电力系统的安全运行。

四、特点和优势微机继电保护装置相较于传统的继电保护装置具有如下特点和优势:1. 灵活性:微机继电保护装置可以根据电力系统的实际需求进行配置和调整,以适应不同的保护要求。

2. 可靠性:微机继电保护装置采用了先进的数字信号处理技术,提高了保护的精度和可靠性,并能够自动监测和诊断故障。

3. 高效性:微机继电保护装置具有快速的保护动作速度和精确的保护动作,可以在最短的时间内切断故障回路,避免电力系统的损坏。

4. 易维护性:微机继电保护装置采用了模块化设计,易于维护和故障排除。

五、应用领域微机继电保护装置广泛应用于各种规模的电力系统,包括电力变电站、电力配电系统、工矿企业的电力系统等。

它可以对电力系统中的各种异常情况进行保护,并确保电力系统的安全运行。

分享微机继电保护装置基础知识

分享微机继电保护装置基础知识

分享微机继电保护装置基础知识分享微机继电保护装置基础知识微机继电保护装置是由高集成度、总线不出芯片单片机、高精度电流电压互感器、高绝缘强度出口中间继电器、高可靠开关电源模块等部件组成。

下面为大家带来了分享微机继电保护装置基础知识,欢迎大家参考。

组成微机继电保护的硬件是一台计算机,由硬件、软件组成,各种复杂的功能是由相应的程序来实现。

用简单的操作就可以检验微机的硬件是否完好。

同时,微机继电保护装置具有自诊断功能,对硬件各部分和存放在EPROM中的程序不断进行自动检测,一旦发现异常就会报警。

通常只要接通电源后没有报警,就可确认装置是完好的,从而大大减轻运行维护的工作量。

计算机在程序指挥下,有综合分析和判断能力,而微机继电保护装置可以实现常规保护很难办到的自动纠错,自动识别和排除干扰,防止由于干扰而造成误动作。

另外,微机继电保护装置有自诊断能力,能够自动检测出计算机本身硬件的异常部分,配合多重化可以有效地防止拒动,因此可靠性很高。

使用微型计算机可以在系统发生故障后提供多种信息。

如保护各个部分的动作顺序和动作记录,故障类型和相别及故障前后电压和电流的波形记录等,还可以提供故障点到保护安装处的距离。

这样有助于运行部门对事故的分析处理。

由于微机继电保护的特性主要由程序决定,所以不同原理的保护可以采用通用的硬件,只要改变程序就可以改变保护的特性和功能,因此可灵活地适应于电力系统运行方式的`变化。

微机继电保护装置的特点1、用于可根椐实际运行的需要配制相应保护,真正实现用户“量身定制”。

2、各种保护功能相对独立,保护定值、实现、闭锁条件和保护投退可独立整定和配制。

3、可以满足库存配制有二十几种保护,满足用户对不同电气设备或线路保护要求。

4、自定义保护功能,可实现标准保护库中未提供的特殊保护,最大限度满足用户要求。

5、保护功能实现不依赖于通讯网络,满足电力系统保护的可靠性。

微机继电保护装置的优点1、集保护、测量、监视、控制、人机接口、通信等多种功能于一体;代替了各种常规继电器和测量仪表,节省了大量的安装空间和控制电缆。

分享微机继电保护装置基础知识PPT

分享微机继电保护装置基础知识PPT

某智能建筑
03
采用微机继电保护装置实现对楼宇自动化系统的保护和控制,
提高了建筑的能源利用效率和安全性故障与处理方法
常见故障类型
采样故障
模拟量输入回路故 障,导致采样数据 异常。
软件故障
程序运行错误或死 机。
电源故障
电源模块故障,导 致装置无法正常工 作。
算法处理
微处理器根据预设的保护算法对采集 到的数据进行处理,判断是否发生故 障或异常。
输出执行
根据算法处理结果,通过输出接口发 出跳闸或合闸等控制信号,实现对一 次设备的保护。
人机交互
通过人机界面显示装置的运行状态和 故障信息,方便用户进行监控和维护 。
PART 03
微机继电保护装置的应用 场景与优势
通信故障
与外部设备或控制 系统的通信中断。
硬件故障
装置内部硬件损坏 。
故障处理方法
采样故障处理
检查模拟量输入回路,确保采 样数据准确。
软件故障处理
重启装置或重新下载程序。
电源故障处理
检查电源模块,确保正常供电 。
通信故障处理
检查通信接口和线路,确保通 信正常。
硬件故障处理
更换损坏的硬件模块。
故障预防措施
WENKU DESIGN
WENKU DESIGN
WENKU
KEEP VIEW
分享微机继电保护装 置基础知识
REPORTING
ONE
2023-2026
WENKU DESIGN
WENKU DESIGN
CATALOGUE
目 录
• 微机继电保护装置概述 • 微机继电保护装置的组成与原理 • 微机继电保护装置的应用场景与优势 • 微机继电保护装置的常见故障与处理方法 • 微机继电保护装置的未来发展趋势与挑战

微机线路继电保护装置功能介绍及作用

微机线路继电保护装置功能介绍及作用

微机线路继电保护装置功能介绍及作用微机线路继电保护装置功能介绍及作用线路保护装置主要功能有:uuuuuuuuu uuuuu 三段式过流保护(方向闭锁、低电压闭锁)过负荷保护反时限过流保护(3种标准特性方程)三段式零序方向过流保护低电压保护零序过压保护非电量保护小电流接地低压解载保护断线报警三相二次重合闸(检无压、同期、不检);独立整定的合闸加速保护(前/后加速);独立的操作回路及故障录波。

测控功能有:uuuu 16路遥信开入采集正常断路器遥控分合闸;模拟量的遥测;开关事故分合次数统计保护信息功能有:uuuu 保护定值远方/就地查看、修改;保护功能远方/就地查看、修改;装置状态的远方/就地查看;装置保护动作信号的远方/就地复归。

以上各种保护均有软件开关,可分别投入和退出。

录波功能:装置具有故障录波功能,记忆最新8套故障波形,记录故障前3个周波,故障后5个周波,进行故障分析,上传当地监控或调度。

微机线路保护装置解决策略我国微机保护装置经过近二十年的发展、更新、升级,其理论、原理、性能、功能、硬件已经相当完善,能够最大程度适应电力系统运行需要,过多对微机保护装置的干预,对电网的安全运行反而是不利的。

目前,我们运行管理的理念和观念却还处在一个趋向保守的状态,在微机保护装置运行、管理上存在不少的误区,已经严重影响到变电站自动化进程。

本文主要分析了微机线路保护装置重合闸的充电条件及发生“异常自动重合”的主要原因,并提出了相应的现场解决方案。

1. 故障事例电力系统的故障中,大多数是送电线路的故障(特别是架空线路),电力系统的运行经验表明架空线路的故障大都是瞬时的,因此,线路保护动作跳开开关后再进行一次合闸,就可提高供电的可靠性。

进入20世纪90年代后,微机保护装置开始推广应用,继电保护微机化率已达100%。

但多年的现场实际应用中,发现中低压线路微机保护(如:10KV 线路微机保护)的控制回路与重合闸回路之间的配合有问题,导致微机线路保护出现多次“异常自动重合”的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分享微机继电保护装置基础知识1. 继电保护基本概念1.1 继电保护在电力系统中的作用地理分散的发电厂通过输电线路、变压器和变电所等相互连接形成电力系统,它包括发电、输电、配电、用电等4个环节。

电力系统输配电网络分几个电压等级,在传输距离和传输容量一定的条件下,选用的电压等级越高,则线路电流越小,相应线路的功率损耗和电压损耗也越小,但相应的绝缘要求也越高,造价也越高。

一般来说,传输功率越大、传输距离越远,所选用的电压等级也越高。

现阶段我国电力系统主要电压等级有750KV、500KV、330KV、220KV、110KV、35KV等。

电力系统输电是三相制的,分别称为A相、B相和C相,相与相、相与地之间是绝缘的。

正常运行时电力系统A相、B相和C相的电流、电压是50HZ正序交流量,即三相幅值相等,相位是A相超前B相120度,B相超前C相120度,C相超前A相120度。

电力系统出现最多的故障形式就是短路,所谓短路就是一相或多相载流导体接地或相接触,是绝缘损坏造成的。

短路对电力系统的影响主要有以下几个方面:u 短路电流可能达到该回路额定电流的几倍到几十倍甚至上百倍。

当巨大的短路电流流经导体时,将使导体严重发热,造成导体溶化和绝缘损坏。

同时巨大短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。

u 短路时往往同时有电弧产生,高温电弧不仅可能烧毁故障元件本身,也可能烧毁周围设备。

u 短路造成网络电压降低,巨大的短路电流流经电力系统网络造成电压损失增大,越靠近短路点电压降低越多。

当供电地区电压降至额定电压的60%时,如不能快速切除故障就可能造成电压崩溃,引起大面积停电。

u 短路还可能会引起并列运行的发电机稳定性破坏,即使短路切除后,系统也可能振荡。

导致大量甩负荷。

u 不对称短路还将产生负序电流、电压,可能损伤发电机或电动机。

电力系统在运行中,可能发生各种类型的故障运行状态。

最常见同时也是最危险的故障是各种形式的短路,它严重危及设备安全和系统可靠运行。

此外,电力系统还会出现各种不正常运行状态,最常见的如过负荷。

电力系统一旦发生故障,如果能够做到迅速地、有选择性地切除故障设备,就可以防止事故扩大,迅速恢复非故障部分的正常运行。

继电保护装置就是为这一目的而设置的专门设备,它能实时地判断出电力系统中电气设备所发生的故障或不正常状态,并动作于跳闸或发出信号。

发电机、变压器、母线、输电线路都分别配有相应的继电保护装置,对发生在各自保护范围内的故障进行快速切除。

1.2 对电力系统继电保护的基本要求动作于跳闸的继电保护,在技术上一般应满足四个基本要求,即选择性、速动性、灵敏性和可靠性。

1)选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

2)速动性快速地切除故障可以提高电力系统并列运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。

因此,在发生故障时,应力求保护装置能迅速动作切除故障。

3)灵敏性继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力。

满足灵敏性要求的保护装置应该是在事先规定的保护范围内部故障时,不论短路点的位置、短路的类型如何,以及短路点是否有过渡电阻,都能敏锐感觉,正确反应。

4)可靠性保护装置的可靠性指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不应该动作的情况下,则不应该误动作。

可靠性主要指保护装置本身的质量和运行维护水平而言。

一般说来,保护装置的组成元件的质量越高、接线越简单、回路中继电器的触点越少,保护装置的工作就越可靠。

同时,精细的制造工艺、正确的调整试验、良好的运行维护以及丰富的运行经验,对于提高保护的可靠性也具有重要的作用。

1.3 输电线路继电保护图1-2所示是较典型的220KV输电线路,其中G1,G2是隔离开关,DL1、DL2、DL3和DL4是断路器,PT是电压互感器,CT是电流互感器。

断路器:断开或接通电路中的正常工作电流及故障电流。

它是电力系统最重要的操作控制电气设备,它具有完善的熄灭电弧装置。

隔离开关:接通与断开无电流或仅有很小电流的电路,在检修电气设备时用来隔离电源,形成可见间隙,以保证检修设备及工作人员的安全。

电压互感器:将很高的一次电压准确地变换至继电保护装置和二次仪表允许的电压,使继电保护装置和测量仪表能在低电压情况下工作,又能准确反应电力系统高压设备运行情况电流互感器:将高电压电路大电流变为低电压回路小电流供继电保护装置和二次仪表使用,使继电保护装置和测量仪表能在低电压情况下工作,又能准确反应电力系统高压设备运行情况。

对于安装在线路1上DL1处的线路保护装置,该装置接入来自PT 的电压和来自CT的电流。

如果F1点发生电气短路事故,DL1处线路保护装置根据接入的电流和电压的变化特征可以判断出故障点就在本线路内部(区内故障),于是向DL1发出跳闸命令将故障点切除。

如果F2点发生电气短路事故,该保护装置根据接入的电流和电压的变化特征可以判断出故障点不在在本线路内部(区外故障),它不会向DL1发跳闸命令。

保护装置用于判断故障的算法称作动作继电器或动作元件,输电线路保护所用到的动作继电器大致有:判断相间短路故障的过流继电器、判断接地短路故障的零序过流继电器以及距离继电器、方向继电器、差动继电器等等。

在输电线路的保护中,有根据线路单侧电气量变化所构成的单侧电气量保护,还有根据线路两侧电气量变化所构成的纵联保护。

单侧电气量保护主要有距离保护、工频变化量保护和零序过流保护等等,考虑到区外故障不能越级跳闸,单侧电气量的速动段保护不能保护线路全长,只能保护其中的一部分(一般是80%),单侧电气量的延时段保护一般当线路的后备保护使用,其中工频变化量保护只能当速动保护用。

纵联保护主要有纵联方向保护、纵联距离保护、纵联差动保护等等,它们能够保护线路的全长,一般当线路的主保护使用。

2.微机保护的硬件和软件系统2.1 微机保护的硬件系统一套微机保护由硬件系统和软件系统两大部分组成。

硬件系统是构成微机保护的基础,软件系统是微机保护的核心。

微机保护的硬件系统构成,它由下述几部分构成:⑴微机主系统:它是以中央处理器(CPU)为核心,专门设计的一套微型计算机,完成数字信号的处理工作。

⑵模拟量数据采集系统:对模拟量信号进行测量和数字量转换。

⑶开关量的输入输出系统:对输入开关量进行采样、通过驱动小型继电器输出跳闸命令和开出信号。

⑷外部通信接口:与外部设备通讯。

⑸人机对话接口:完成人机对话。

⑹电源:把变电站的直流电压转换成微机保护装置需要的稳定的直流电压。

2.2 微机保护的软件系统2.2.1 软件主程序结构主程序按固定的采样周期接受采样中断进入采样程序,在采样程序中进行模拟量采集与滤波、开关量的采集、装置硬件自检、交流电流断线和起动判据的计算,根据是否满足起动条件而决定进入正常运行程序或故障计算程序。

正常运行程序中进行采样值自动零漂调整及运行状态检查,运行状态检查内容包括:交流电压断线检查、开关位置状态检查、变化量制动电压形成、重合闸充电、准备手合判别等。

不正常时发告警信号,信号分两种:一种是运行异常告警,这时不闭锁装置仅提醒运行人员进行相应处理;另一种是闭锁告警信号,发告警的同时将装置闭锁,保护退出。

故障计算程序中进行各种保护的算法计算,跳闸逻辑判断以及事件报告、故障报告及波形的整理2.2.2 保护继电器算法在微机保护中各个继电器都是由其相应的算法实现的。

例如工频变化量(有时称做突变量)的电气量(电流、电压)的计算,基波或某次谐波分量电气量幅值的计算,相序分量电气量幅值的计算,两电气量相角差的计算,相位比较动作方程的算法等等。

工频变化量电气量的计算:目前主流的微机保护装置中用了很多工频变化量的继电器。

在实现这些继电器时先要计算出工频变化量的电流和电压值。

以电流值为例,计算方法为:上式中N为每工频周波采样的次数。

该式表示工频电流的变化量(瞬时值)是把当前时刻的电流瞬时值减去一周前的电流瞬时值而得到的。

如果输入的工频电流没有变化,则工频电流的变化量为零。

如果在n和n-N之间系统发生短路了。

由于短路后电流发生了变化,于是工频电流的变化量不再是零。

2.2.3 对称分量法简介对称分量法(method of symmetrical components)是分析对称系统不对称运行状态的一种基本方法,广泛应用于三相交流系统参数对称、运行工况不对称的电气量计算。

电力系统正常运行时可认为是对称的,即各元件三相阻抗相同,各自三相电压、电流大小相等,具有正常相序。

电力系统正常运行方式的破坏主要与不对称故障或者断路器的不对称操作有关。

电力系统不平衡情况下引用了对称分量法,即任何三相不平衡的电流、电压或阻抗都可以分解成为三个平衡的相量成分即正相序(FA1、FB1、FC1)、负相序(FA2、FB2、FC2)和零相序(FA0、FB0、FC0)。

正序分量:负序分量:零序分量:式中因子:各序分量的计算公式:3.线路保护装置继电器的工作原理3.1 动作继电器线路保护装置的动作继电器主要有:阻抗继电器、工频变化量距离继电器(ΔZ)、工频变化量方向继电器(ΔF+,ΔF-)、零序方向继电器、电流差动继电器等。

3.1.1 阻抗继电器距离保护和电流保护一样是反应输电线路一侧电气量变化的保护。

在图3-1所示的电网中,将输电线路一侧的电压、电流加到阻抗继电器中,阻抗继电器反应的是它们的比值,称之为阻抗继电器的测量阻抗。

反应输电线路一侧电气量变化的保护一定要满足两个条件。

首先,它必须能区分正常运行和短路故障;其次,它应该能反应短路点的远近。

正常运行时,加在阻抗继电器上的电压是额定电压,电流是负荷电流,阻抗继电器的测量阻抗是负荷阻抗。

短路时,加在阻抗继电器上的电压是母线处的残压,电流是短路电流,阻抗继电器的测量阻抗是短路阻抗,。

由于,因而。

所以,阻抗继电器的测量阻抗可以区分正常运行和短路故障。

如果在K点发生金属性短路,短路点到保护安装处的阻抗为,流过保护的电流为,则保护安装处的电压为。

阻抗继电器的测量阻抗是。

这说明阻抗继电器的测量阻抗反应了短路点到保护安装处的阻抗,也就是反应了短路点的远近。

所以可以用它来构成反应一侧电气量的保护。

由于阻抗继电器的测量阻抗反应了短路点的远近,也就是反应了短路点到保护安装处的距离,所以把以阻抗继电器为核心构成的反应输电线路一侧电气量变化的保护称做距离保护。

距离保护相对于电流保护来说,其突出的优点是受运行方式变化的影响小。

距离保护第Ⅰ段只保护本线路的一部份,在保护范围内发生金属性短路时,一般在短路点到保护安装处之间没有其它分支电流,所以它的测量阻抗完全不受运行方式变化的影响。

相关文档
最新文档