继电保护

合集下载

继电保护ppt课件

继电保护ppt课件
继电保护能够优化电力系统的运行方式,降低线 损和能源消耗,提高电力系统的经济性。
继电保护技术的发展历程
传统继电保护阶段
传统的继电保护采用电磁感应原理,如电流保护和电压保 护等。这种保护方式简单可靠,但动作速度慢,灵敏度低 。
集成电路继电保护阶段
集成电路继电保护是将多个晶体管的功能集成在一个芯片 上,具有高集成度和高可靠性。但集成电路继电保护的通 用性较差。
物联网技术还可以实现继电保护装置的协同工作,通过信 息共享和实时通信,提高继电保护系统的整体性能和可靠 性,降低设备故障对电力系统的影响。
大数据技术在继电保护中的应用
大数据技术可以对海量的电力系统运行数据进行实时采集、存储和分析,为继电 保护提供更加全面和准确的数据支持。
大数据技术还可以应用于继电保护装置的优化设计和故障预测,通过对历史数据 的挖掘和分析,预测设备可能出现的故障和异常情况,提前进行预警和处理,提 高电力系统的稳定性和可靠性。
人工智能技术还可以应用于继电保护装置的优化配置和故障 诊断,通过智能算法对设备运行状态进行实时监测和评估, 及时发现潜在故障并进行预警和处理。
物联网技术在继电保护中的应用
物联网技术可以实现电力设备的远程监控和智能管理,通 过传感器、RFID等技术,实时采集设备运行数据并上传至 云平台进行存储和分析。
要点一
总结范措施
分析高压电动机的继电保护误动原因,如电流互感器饱和 、保护装置软件故障等,并提出相应的防范措施。
感谢观看
THANKS
继电保护ppt课件
• 继电保护概述 • 继电保护的基本原理 • 常用继电保护装置 • 继电保护配置与方案 • 继电保护的未来发展 • 案例分析
目录
01
继电保护概述

继电保护

继电保护

第八章 继电保护
四、电流保护装置的接线方式 电流保护的接线方式是指: 电流继电器与电流互感器的连接方式。 常用接线方式有三种:如图8-10所示。
第八章 继电保护 1 .完全星型接线 (三相三继电器接法) 1)接法:图8-10a 1 2)接线系数:
I 3)特点:正确反映各类短路故障如相间短路、单相接地短路。 Kw K I2 4)应用:中性点直接接地系统且KW=1。 2 . 不完全星形接线。(两相继电器接法) 1)接法:图8-10b 2)接线参数: KW=1。 3)特点:相间短路保护。V相单相接地故障时,继电器不会动作。 4)应用:中性点不直接接地系统。
第八章 继电保护
继电保护是指能反映电力系统中电气设备或线路发生故障或不正常运行状态,
并能作用于断路器跳闸和发出信号的一种自动装置。 继电保护装置的作用是:当被保护线路或设备发生故障时,继电保护装置能
借助断路器,自动地、迅速地、有选择地将故障部分断开,保证非故障部
分继续运行;当保护设备或线路出现不正常运行状态时,继电保护装置能 够发出信号,提醒工作人员及时采取措施。 2、对继电保护装置的要求。 1)选择性:切除故障部分,防 止越级跳闸。 如图8-1所示,段S点短路是, 短路电流经断路器1QF、3QF、 5QF,按选则性要求,保护装 置5应 图8-1 继电保护动作选择示意图 动作,是断路器5QF断开,如果保护装置3或1动作则扩大停电范围。
图8-15 保护区的划分
第八章 继电保护
(2)返回电流Ire应大于最大工作电流:
2)灵敏度校验 (1)最小的短路电流大于动作电流 (2)计算公式:8-13。
Kr
Kr
( I s2) min I op
( I s 2 ) n mi K i I op k

继电保护的概念

继电保护的概念

继电保护的概念
继电保护是电力系统中一种保护装置,用于检测电力系统中的故障和异常情况,并通过电子继电器等设备发出信号,对故障电路进行断电或切除操作,以保护电力系统的安全稳定运行。

继电保护的主要功能包括以下几个方面:
1. 检测故障:继电保护能够检测电力系统中的各种故障,包括短路、过载、接地故障等,通过监测电流、电压、频率等参数,判断是否存在故障情况。

2. 定位故障:一旦检测到故障,继电保护能够迅速定位故障发生的地点,通过对电路的分区和测量数据进行比较分析,确定故障的位置。

3. 切除故障电路:继电保护在检测到故障后,会发出信号切除故障电路,以避免继续传导故障电流和进一步损害电力系统设备。

切除故障电路的方式可以是通过断路器切除电流,或者通过隔离开关切除电路。

4. 警报和报警:当发生故障或异常情况时,继电保护还可以发出警报和报警信号,通知运维人员及时采取措施,以保护电力系统的安全。

继电保护通过监测、判断和控制等手段,可以提高电力系统的可靠性、安全性和稳定性,有效保护电力设备和人员的安全,同时减少电力系统的故障和停电次数,
提高供电质量和供电可靠性。

继电保护基础知识

继电保护基础知识

电力系统继电保护一词泛指继电保护技术和由各种继电 保护装置组成的继电保护系统,包括继电保护的原理设 计、配置、整定、调试等技术,也包括由获取电量信息 的电压、电流互感器二次回路,经过继电保护装置到断 路器跳闸线圈的一整套具体设备,如果利用通讯手段传 送信息,还包括通讯设备。
2).继电保护的基本作用
继电保护装置构成示意图
1.2.2 继电保护装置的构成
以过电流保护装置为例,来说明继电保护的组成和 基本工作原理.
动作过程:电流继电器动作时其触点闭合, 中间继电器得电,由中间继电器KM触点通 线路断路器跳闸回路,同时信号继电器KS 发出保护跳闸信号。
§1.3 对继电保护的基本要求
对于继电保护,在技术上一般应满足四个基本要 求:选择性、速动性、灵敏性、可靠性。即保护 的四性。 1.3.1 选择性 ( Selectivity ) 选择性是指保护装置动作时,仅将故障元件或线 路从电力系统中切除,使停电范围尽量缩小,以 保证系统中的无故障部分仍能继续安全运行。 选择性就是故障点在区内就动作,在区外不动作。 术语:主保护 远后备保护 近后备保护
4)继电保护的主要特点
微机保护充分利用了计算机技术上的两个显著优势:高速的运算能力和完 备的存贮记忆能力,以及采用大规模集成电路和成熟的数据采集,A/D模数 变换、数字滤波和抗干扰措施等技术,使其在速动性、可靠性方面均优于以 往传统的常规保护,而显示了强大生命力,与传统的继电保护相比,微机保 护有许多优点,其主要特点如下: 1)改善和提高继电保护的动作特征和性能,正确动作率高。主要表现在 能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保 护;可引进自动控制、新的数学理论和技术,如自适应、状态预测、模糊控 制及人工神经网络等,其运行正确率很高,已在运行实践中得到证明。 2)可以方便地扩充其他辅助功能。如故障录波、波形分析等,可以方便 地附加低频减载、自动重合闸、故障录波、故障测距等功能。 3)工艺结构条件优越。体现在硬件比较通用,制造容易统一标准;装置 体积小,减少了盘位数量;功耗低。 4)可靠性容易提高。体现在数字元件的特性不易受温度变化、电源波动、 使用年限的影响,不易受元件更换的影响;且自检和巡检能力强,可用软件 方法检测主要元件、部件的工况以及功能软件本身。 5)使用灵活方便,人机界面越来越友好。其维护调试也更方便,从而缩 短维修时间;同时依据运行经验,在现场可通过软件方法改变特性、结构。 6)可以进行远方监控。微机保护装置具有串行通信功能,与变电所微机 监控系统的通信联络使微机保护具有远方监控特性。

继电保护

继电保护

第一章1、电力系统短路可能产生什么样后果?答:可能产生的后果是:(1)故障点的电弧使故障设备损坏;(2)比正常工作电流大得多的短路电流产生热效应和电动力效应,使故障回路中的设备遭到伤害;(3)部分电力系统的电压大幅度下降,使用户正常工作遭到破坏,影响产品质量;(4)破坏电力系统运行的稳定性,引起振荡,甚至使电力系统瓦解,造成大面积停电的恶性事故。

2、继电保护的基本任务是什么?答:(1)当电力系统出现故障时,继电保护装置应快速、有选择地将故障元件从系统中切除,使故障元件免受损坏,保证系统其他部分继续运行;(2)当系统出现不正常工作状态时,继电保护应及时反应,一般发出信号,通知值班人员处理。

在无值班人员情况下,保护装置可作用于减负荷或跳闸。

3、后备保护的作用是什么?何谓近后备保护和远后备保护?答:后备保护的作用是电力系统发生故障时,当主保护或断路器拒动,由后备保护以较长的时间切除故障,从而保证非故障部分继续运行。

近后备保护是在保护范围内故障主保护拒动时,首先动作的后备保护。

远后备保护是保护或断路器拒动时,靠近电源侧的相邻线路保护实现后备作用的保护。

4、利用电力系统正常运行和故障时参数的差别,可以构成哪些不同原理的继电保..护?答:可以构成的继电保护有:(1)反应电流增大而动作的过电流保护;(2)反应电压降低而动作的低电压保护;(3)反应故障点到保护安装处距离的距离保护;(4)线路内部故障时,线路两端电流相位发生变化的差动保护。

5、继电保护装置用互感器的二次侧为什么要可靠接地?答:互感器的二次侧都应有可靠的保安接地,以防互感器的一、二次绕组间绝缘损坏时,高电压从一次绕组窜入二次绕组对二次设备及人身造成危害。

第二章11、简述瞬时电流速断保护的优缺点。

答:优点:简单可靠、动作迅速。

缺点:不能保护本线路全长,故不能单独使用,另外,保护范围随运行方式和故障类型而变化。

2、何谓系统的最大、最小运行方式?答:在继电保护的整定计箅中,一般都要考虑电力系统的最大与最小运行方式。

继电保护培训资料

继电保护培训资料

方向保护技术
功率方向继电器
根据功率方向判断故障方向并切除故障。
阻抗方向继电器
结合阻抗元件和方向元件,检测故障方向并切除故障。
相角差方向继电器
通过比较线路两侧的相角差来确定故障方向并切除故障。
04 继电保护系统运行与维护
系统运行管理
制定运行管理制度
01
建立完善的继电保护系统运行管理制度,明确各级人员的职责
网络化发展
基于物联网技术的保护系统
利用物联网技术实现设备间的信息交互和远程监控,提高继电保 护的可靠性和灵活性。
广域保护
借助高速通信网络,实现广域范围内的信息共享和协同保护,提高 电网的稳定性和可靠性。
网络化控制
通过网络实现对继电保护装置的控制和调节,提高保护系统的自动 化和智能化水平。
集成化发展
维修记录与反馈
对维修过程进行记录,及时反馈维修结果,为设备管理提供依据。
系统故障处理
故障诊断与定位
通过系统监测和数据分析,快速诊断和定位故障点。
紧急处理措施
在故障发生时,采取紧急处理措施,如切除故障设备、启动备用设 备等,以保障系统安全稳定运行。
故障修复与预防
对故障设备进行修复或更换,同时分析故障原因,采取预防措施,防 止类似故障再次发生。
距离继电器
根据故障点到保护装置的距离,确定动作时间并 切除故障。
3
方向距离继电器
结合方向元件,确定故障方向并切除故障。
差动保护技术
纵联差动保护
通过比较线路两侧电流的大小和相位来检测故障。
横联差动保护
通过比较同一母线或不同母线上的电流大小和相 位来检测故障。
变压器差动保护
通过比较变压器两侧电流的大小和相位来检测故 障。

继电保护课件ppt

继电保护课件ppt
继电保护课件
• 继电保护概述 • 继电保护装置 • 继电保护的配置与整定 • 继电保护技术的发展趋势 • 继电保护的故障处理与维护
01
继电保护概述
定义与作用
定义
继电保护是电力系统中的一种重 要保护装置,用于检测和切除电 力系统中的故障,保障电力系统 的安全稳定运行。
作用
继电保护能够快速、准确地检测 和切除故障,防止事故扩大,减 小停电范围,提高电力系统的稳 定性和可靠性。
决策支持
基于大数据技术的决策支持系统可以为电网的运行和管理 提供科学、准确的决策依据,提高电网的管理水平和运营 效率。
05
继电保护的故障处理与维护
继电保护故障的分类与处理方法
故障分类
根据故障的性质和发生部位,继电保 护故障可分为电源故障、线路故障和 元件故障等。
处理方法
针对不同类型的故障,应采取相应的 处理方法,如更换故障元件、修复损 坏线路或调整电源等。
执行元件
根据逻辑元件的指令,执 行相应的动作,如跳闸或 重合闸。
继电保护装置的原理
电流保护
基于电流的变化,当电流 超过设定值时,继电保护 装置动作,切除故障。
电压保护
基于电压的变化,当电压 低于或高于设定值时,继 电保护装置动作,切除故 障。
距离保护
基于阻抗的变化,当阻抗 超过设定值时,继电保护 装置动作,切除故障。
继电保护的原理
基于电流、电压、阻抗等电气量的变化,通过比较、逻辑运算等手段判断是否发生 故障。
利用故障时电气量的特征,如电流增大、电压降低等,通过比较和判别来检测故障 。
通过设置不同的保护区域和保护类型,实现选择性、速动性、灵敏性和可靠性等要 求。
继电保护的分类

继电保护基础知识

继电保护基础知识

五、对继电保护装置的要求: 为完成继电保护的基本任务,动作于断路器跳闸的继电保护 装置必须满足选择性、速动性、灵敏性和可靠性4项基本要求。 1、选择性:指电力系统发生故障时,继电保护仅将故障部分 切除,保障其他无故障部分继续运行,以尽量减小停电范围。
图中线路WL4上K1点短路时,应跳开断路器QF4,而其 他非故障线路仍继续运行。仅将故障线路WL4切除,不能 因为变压器T也有短路电流通过而将断路器QF2跳开。此时, 如果QF2跳闸,称为“误动作”,将造成母线W3失电压, 扩大停电范围。但是,由于某种原因导致QF4拒动时,再 跳开断路器QF2切除故障是正确的,仍属于有选择性。继 电保护的这种功能称为后备保护,即变压器T的保护装置 起到对相邻元件(WL3、WL4、WL5线路)后备保护的作 用。当后备保护动作时,停电范围虽有所扩大,但仍是必 要的,否则当保护装置或断路器拒动时,故障无法切除, 后果极其严重。如果在K2点发生短路,应当只跳开断路器 QF2,切出故障。让线路WL1及母线W2继续运行。 继电保护装置的选择性,是恢复采用适当类型的继电 保护装置和正确选择其整定值,使各级保护配合而实现的。
4、继电保护或自动装置在运行中的注意事项 (1)严禁无工作票在运行的保护或装置上以及仪用PT、CT二次回路上 进行维修工作,运行值班人员发现此种现象,应立即制止。 (2)运行中的电流回路上进行测量、试验、方式切换等操作时,应在 试验端子上进行,并做好防止CT二次回路开路的措施。 (3)为防止运行设备的保护误动作,不允许在运行的继电保护盘上或 附近进行振动较大的工作,必要时采取措施或停用部分保护。 (4)查找运行中保护装置的直流电源接地时,必须采取可靠措施防止 误动,直流系统大负荷投运造成直流系统电压不稳要注意保护装置 不误动。 5、继电保护及自动装置进行检查内容 (1)保护、压板按要求投停正确,保护屏交直流空开位置正确。 (2)保护装置运行正常,各指示灯、操作性信号指示正常,各开入量 与实际运行状况一致,各模拟量数值与实际运行参数一致。 (3)各插件无过热、变色、异味和冒烟。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

继电保护知识一、基本概念:1,继电保护:泛指继电保护技术或由各种继电保护装置组成的继电保护系统。

2,继电保护装置:指能反应电力系统中电气元件发生故障或不正常运行状态,并于断路器跳闸或发出信号的一种自动装置。

3,事故:指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人生伤亡和电气设备的损坏。

4,近后备保护5,远后备保护6,一次和二次系统:一次系统:发电厂和变电所的电器主接线,是由高压电器设备通过连接线组成的系统称为一次系统。

一次设备对于运行可靠及检修方便要求甚高。

主要包括生产和转换电能的设备,接通或断开电路的设备,限制故障电流和防御过电压的电器,接地装置和载流导体5部分。

二次系统:二次系统是由二次设备组成的系统。

凡监视,控制,测量,以及起保护作用的设备,如测量表计,继电保护,控制和信号装置等,皆属于二次设备。

二、继电保护基本原理:1,单侧电源网络接线:——在电力系统正常运行时,每条线路上都流过由它宫殿的的负荷电流I f ,越靠近电源端的线路上负荷电流越大。

线路始端电压与电流之间的相位角决定于由它供电的负荷的功率因数和线路参数。

——在电力系统故障时,其状况图如上图(b)所示。

假定在线路B-C上发生了三相短路,则短路点的电压U d降低到零,从电源到短路点之间均将流过很大的短路电流I ,各变电所电压也将在不同程度上有很大降低,距短路点越近,电压降低越多。

2,双侧电源网络接线:——就电力系统中的任意元件来说,如上图所示,在正常运行时,在某一瞬间,负荷电流总是从一侧流入而从另一侧流出,如图(a)所示。

如果我们统一规定电流的正方向都是从母线流向线路,那么,A-B两侧电流大小相等,而相位相差180º。

当在线路A-B的范围以外(d1)短路时,如图(b)所示,由电源I所共给的短路电流I´d1流过线路A-B,此时A-B两侧的电流仍然是大小相等相位相反,其特征与正常情况相同。

如果短路点在线路A-B范围以内(d2),如图(C)所示,此时两个电流大小不相等,在理想情况下(两侧电势通相位且全系统的阻抗角相等),两电流同相位。

三、继电保护装置的基本组成:1,测量部分:2,逻辑部分:3, 执行部分:四、对电力系统继电保护的基本要求:1,选择性:指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

2,速动性:指快速地切除故障以提高电力系统并列运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。

3,灵敏性:指对于其保护范围内发生故障及不正常运行状态的反应能力。

通常用灵敏系数来衡量,它主要决定于被保护元件和电力系统的参数和运行方式。

4,可靠性:指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不应该动作的情况下,则不应该误动作。

可靠性主要指保护装置本身的质量和运行维护水平而言。

五.继电保护发展史五、继电保护的发展简史:继保技术是随着电力系统的发展而发展起来的。

上世纪90年代出现了装于断路器上并直接作用于断路器的一次式的电磁型过电流继电器,本世纪初,随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。

这个时期可认为是继电保护技术发展的开端。

1901年出现了感应型过电流继电器。

1908年提出了比较被保护元件两端的电流差动保护原理。

1910年方向性电流保护开始得到应用,在此时期也出现了将电流与电压比较的保护原理,并导致了本世纪29年代初距离保护的出现。

随着电力系统载波通讯的发展,在1927年前后,出现了利用高压输电线上高频载波电流传送和比较输电线两端功率或相位的高频保护装置。

在50年代,微波中继通讯开始应用与电力系统,从而出现了利用微波传送和比较输电线两端故障电气量的微波保护。

早在50年代就出现了利用故障点产生的行波实现快速继电保护的设想。

经过20余年的研究,终于诞生了行波保护装置。

显然,随着光纤通讯将在电力系统中的大量采用,利用光纤通道的继电保护必将得到广泛的应用。

以上是继电保护原理的发展过程。

与此同时,构成继电保护装置的元件、材料、保护装置的结构型式和制造工艺也发生了巨大的变革.50年代以前的继电保护装置都是由电磁型,感应型或电动型继电器组成的,这些继电器统称为机电式继电器.本世纪50年代初由于半导体晶体管的发展,开始出现了晶体管式继电保护装置,称之为电子式静态保护装置.70年代是晶体管继电保护装置在我国大量采用的时期,满足了当时电力系统向超高压,大容量方向发展的需要.80年代后期,标志着静态继电保护从第一代(晶体管式)向第二代(集成电路式)的过渡.目前,后者已成为静态继电保护装置的主要形式.在60年代末,有人提出用小型计算机实现继电保护的设想,由此开始了对继电保护计算机算法的大量研究,对后来微型计算机式继电保护(简称微机保护)的发展奠定了理论基础.70年代后半期,比较完善的微机保护样机开始投入到电力系统中试运行.80年代微机保护在硬件结构和软件技术方面已趋于成熟,并已在一些国家推广应用,这就是第三代的静态继电保护装置.微机保护装置具有巨大的优越性和潜力,因而受到运行人员的欢迎.进入90年代以来,它在我国得到了大量的应用,将成为继电保护装置的主要型式.可以说,微机保护代表着电力系统继电保护的未来,将成为未来电力系统保护,控制,运行调度及事故处理的统一计算机系统的组成部分.电流保护电流保护基本概念基本概念1,起动电流:对反应于电流升高而动作的电流速断保护而言,能使该保护装置起动的最小电流值称为保护装置的起动电流。

2,返回电流:继电器动作后能够返回的条件是:Mdc <Mth-Mm,对应于这一电磁转矩、能使继电器返回原位的最大电流值称为继电器的返回电流。

3,继电特性:无论起动和返回,继电器的动作都是明确干脆的,它不可能停留在某一个中间位置,这种特性我们称之为“继电特性”。

4,系统最大运行方式:对每一套保护装置来讲,通过该保护装置的短路电流为最大的方式,称之为系统最大运行方式。

5,系统最小运行方式:对每一套保护装置来讲,通过该保护装置的短路电流为最小的方式,称之为系统最小运行方式。

6,电压死区:功率方向继电器当其正方向出口附近发生三相短路、A-B或A-C两相接地短路,以及A相接地短路时,由于Ua约等于0或数值很小,使继电器不能动作,这称为继电器的“电压死区”。

电流保护基本原理二、基本原理:1,电流速断保护:仅反应于电流增大而瞬时动作a.动作特性:见图2-5b.整定原则:根据电力系统短路的分析,当电源电势一定时,短路电流的大小取决于短路点和电源之间的总阻抗Z,三相短路电流可表示为:Id =E/Z=E/Zs+Zd式中 E——系统等效电源的相电势Zd——短路点至保护安装处之间的阻抗Zs——保护安装处到系统等效电源之间的阻抗在一定的系统运行方式下,E和Zs等于常数,此时Id 将随Zd的增大而减小,如图2-5所示。

当系统运行方式及故障类型改变时,Id都将随之改变。

对不同安装地点的保护装置,应根据网络接线的实际情况选取其最大和最小运行方式。

在最大运行方式下三相短路时,通过保护装置的短路电流为最大,而在最小运行方式下两相短路时,则短路电流为最小。

这两种情况下短路电流的变化如图2-5中的曲线1和曲线2所示。

为了保证电流速断保护动作的选择性,对保护1来讲,其起动电流Idz.1必须整定得大于d4点短路时,可能出现的最大短路电流,即在最大运行方式下变电所C母线上三相短路时的电流Id.c.max,亦即Idz.1>Id.c.max引入可靠系数Kk=1.2-1.3,则上式即可写为Idz.1=Kk*Id.c.max(2-11)对保护2来讲,按照同样的原则,其起动电流应整定得大于d2点短路时的最大短路电流Id.b.max,即Idz.2=Kk*Id.b.max起动电流与Zd无关,所以在图2-5上是直线,它与曲线I和曲线II各有一个交点。

在交点以前短路时,由于短路电流大于起动电流,保护装置都能动作。

而在交点以后短路时,由于短路电流小于起动电流,保护将不能起动,由此可见,有选择性的电流速断保护不可能保护线路的全长。

因此,速断保护对被保护线路内部故障的反应能力(即灵敏性),只能用保护范围的大小来衡量,此保护范围通常用线路全长的百分数来表示。

由图2-5可见,当系统为最大运行方式时,电流速断的保护范围为最大,当出现其他运行方式或两相短路时,速断的保护范围都要减小,而当出现系统最小运行方式下的两相短路时,电流速断的保护范围为最小。

一般情况下,应按这种运行方式和故障类型来校验其保护范围。

c.优缺点:优点是简单可靠,动作迅速;缺点是不可能保护线路的全长,并且保护范围直接受系统运行方式变化的影响。

*应用中间继电器的原因:一是因为电流继电器的触点容量比较小,不能直接接通跳闸线圈,故先起动中间继电器,然后再由中间继电器的触点去跳闸;二是因为中间继电器可增大保护装置的固有动作时间,可防止线路上管型避雷器放电时引起速断保护误动作。

阶段性电流保护评价4,阶段性电流保护总体评价:电流速断、限时电流速断和过电流保护都是反应于电流升高而动作的保护装置。

它们之间的区别主要在于按照不同的原则来选择起动电流,即速断是按照躲开某一点的最大短路电流来整定,限时速断是按照躲开前方各相邻元件电流速断保护的动作电流而整定。

而过电流保护则是按照躲开最大负荷电流来整定。

由于电流速断不能保护线路全长,限时电流速断又不能作为相邻元件的后备保护,因此,为保证迅速而有选择性地切除故障,常常将电流速断、限时电流速断和过电流保护组合在一起,构成阶段式电流保护。

具体应用时,可以只采用速断加过电流保护,或限时速断加过电流保护,也可以三者同时采用。

使用I段、II段或III段组成的阶段式电流保护,其最主要的优点就是简单、可靠,并且在一般情况下也能够满足快速切除故障的要求。

见三段式电流保护动态演示。

因此在电网中特别是在35kv及以下的较低电压的网络中获得了广泛的应用。

保护的缺点是它直接受电网的接线以及电力系统运行方式变化的影响,例如整定值必须按系统最大运行方式来选择,而灵敏性则必须用系统最小运行方式来校验,这就使它往往不能满足灵敏系数或保护范围的要求。

基本接线方式四、基本接线方式:电流保护的接线方式,即指保护中电流继电器与电流互感器二次线圈之间的连接方式。

对相间短路的电流保护,目前广泛应用的是三相星形接线和两相星形接线。

(一)三相星形接线如图2-1所示,是将三个电流互感器与三个电流继电器分别按相连接在一起,互感器和继电器均接成星形,在中线上流回的电流为Ia+Ib+Ic,正常时此电流为零,在发生接地短路时则为三倍零序电流3I。

相关文档
最新文档