发酵工程原理与技术应用

合集下载

高中生物第1章发酵工程第1节传统发酵技术的应用课件新人教版选择性必修3

高中生物第1章发酵工程第1节传统发酵技术的应用课件新人教版选择性必修3

知识点二 制作泡菜
1.与泡菜制作相关的菌类——乳酸菌
生物类型 常见分类
___原__核_____生物 乳酸链球菌、乳酸杆菌
分布 代谢类型 生产应用
广泛分布于空气、土壤、植物体表、人或动物的肠道内
异养___厌__氧_____型 乳制品的发酵、泡菜的腌制等
发酵原理
C6H12O6
2C3H6O3(乳酸)+能量 无氧条件下将葡萄糖分解成乳酸
解析 温度过高、食盐用量过低、腌制时间过短,容易造成细菌大量繁殖, 而腌制时间过长,由于发酵产物乳酸不断积累,pH降低,不利于细菌大量繁 殖,B项错误。
视角2 结合曲线分析泡菜制作中的菌种、亚硝酸盐及pH变化 3.泡菜是我国的传统食品之一,但制作过程中产生的亚硝酸盐对人体健康 有潜在危险。某兴趣小组进行了泡菜制作,并对发酵过程中乳酸菌数量、 泡菜中亚硝酸盐含量以及溶液pH等进行了测量记录,绘制出如下所示曲线 图。下列相关叙述错误的是( B )
第一章 第1节 传统发酵技术的应用

01 基础落实•必备知识全过关


02 重难探究•能力素养全提升

课程标准
1.简述传统发酵技术的特点,说出常见的传统发酵食品。 2.概述微生物发酵的原理。 3.尝试制作泡菜、果酒和果醋,说出传统发酵技术应用的优点 与不足。
基础落实•必备知识全过关
知识点一 发酵与传统发酵技术
下降至相对稳定
变化曲线
【视角应用】
视角1 泡菜制作中的过程与条件控制 1.(2021湖南三校高二联考)某节目在讲述四川泡菜时曾强调“腌泡菜也有 大讲究”。下列有关泡菜制作的叙述,正确的是( C ) A.泡菜制作过程中食盐用量越低越有利于乳酸菌的生长 B.制作泡菜时泡菜坛要密封,主要目的是避免外界杂菌的污染 C.蔬菜应新鲜,若放置时间过长,蔬菜中的亚硝酸盐含量会升高 D.将配制好的盐水煮沸后冷却待用,冷却的目的是降低水中氧气的含量

固态发酵工程技术的研究应用分析

固态发酵工程技术的研究应用分析

固态发酵工程技术的研究应用分析固态发酵工程技术是一种利用微生物在固态培养基上进行发酵的技术,近年来得到了广泛的关注和应用。

固态发酵技术具有许多优点,比如生产周期短、设备投资少、能耗低、产品质量好等,因此在食品加工、生物制药、环境保护等领域都得到了广泛的应用。

本文将从固态发酵工程技术的原理、应用领域和发展前景等方面进行分析和探讨。

固态发酵工程技术的原理是指将微生物所需的培养基和营养成分与生物制品混合,使其成为一种半固态或粘稠的状态,然后通过控制温度、湿度和通气等条件,利用微生物代谢产生的酶或代谢产物来进行发酵。

固态发酵相对于液态发酵来说,具有特殊的优点。

固态发酵可以减少液态废水的处理成本,降低了环境污染的风险。

由于固态发酵过程不需要大量的水,因此可以节约大量的能源和水资源。

由于固态发酵过程可以在相对干燥的条件下进行,因此不容易造成微生物的污染和生长不稳定。

由于这些优点,固态发酵工程技术在食品加工、生物制药、环境保护等领域得到了广泛的应用。

在食品加工领域,固态发酵工程技术主要应用于传统食品的生产。

酱油、豆豉、豆腐、米酒等传统食品都是通过固态发酵来制作的。

固态发酵工程技术可以改善食品的口感和口味,增加食品的营养价值,同时也可以延长食品的保存期限。

在生物制药领域,固态发酵工程技术主要应用于微生物发酵生产抗生素、酶、氨基酸、酒精等产品。

固态发酵技术在这些产品的生产中具有高效、节能、环保等特点,因此得到了越来越广泛的应用。

在环境保护领域,固态发酵工程技术也得到了广泛的应用。

通过固态发酵工程技术可以将农业废弃物、工业固体废弃物等转化为有机肥料或生物燃料,从而减少了固体废弃物的处理压力,减少了环境污染的风险。

固态发酵工程技术在未来的应用前景非常广阔。

随着人们对食品营养和安全的关注不断增加,传统食品的固态发酵工程技术将会得到更广泛的应用。

生物制药领域对高效、节能、环保的生产技术的需求也在不断增加,固态发酵工程技术将会成为生物制药领域的研究热点。

发酵工程原理与技术题库河北

发酵工程原理与技术题库河北

发酵工程原理与技术题库河北
摘要:
一、发酵工程概述
二、发酵工程的原理
三、发酵工程的技术应用
四、发酵工程在河北的发展
正文:
一、发酵工程概述
发酵工程是一门以微生物为基本单元,研究发酵过程的科学和工程技术。

发酵工程主要包括微生物的筛选、培养、调控和发酵过程的设计、控制和优化等。

在我国,发酵工程已经成为生物技术、食品工业、医药产业和环保领域等不可或缺的重要技术。

二、发酵工程的原理
发酵工程的原理主要基于微生物的代谢和生长规律。

微生物在特定的培养条件下,通过代谢将营养物质转化为有用的产品,并释放能量。

发酵过程中,需要对微生物的生长、代谢和产物生成进行严格的控制和调节,以保证发酵效率和产品质量。

三、发酵工程的技术应用
发酵工程在多个领域都有广泛的应用,主要包括:
1.生物制药:通过发酵工程生产抗生素、维生素、激素等药物,以及用于生物制药的酶制剂和中间体等。

2.食品工业:发酵工程在食品工业中的应用包括酿造、酸奶、酱油、醋等传统发酵食品的生产,以及利用发酵工程生产新型生物食品和食品添加剂等。

3.环保领域:发酵工程可用于废水处理、废气净化和生物质资源利用等环保领域。

4.生物能源:发酵工程可用于生产生物柴油、生物乙醇等生物能源。

四、发酵工程在河北的发展
河北省是我国发酵工程的重要发展地区之一,具有较好的产业基础和优势。

在生物制药、食品工业、环保领域和生物能源等方面,河北的发酵工程产业都取得了长足的发展。

1.3发酵工程及其应用 (教学课件)-高二生物人教版选择性必修三

1.3发酵工程及其应用 (教学课件)-高二生物人教版选择性必修三
2.怎样对发酵条件进行调控以满足微生物的生长需要?
要对温度、pH、溶解氧等发酵条件进行严格控制,使其最适合微生物的 生长繁殖,同时及时添加必要的营养组分。
思考•讨论 发酵工程基本环节分析 3任.在务产二物分离和提纯方面,发酵工程与传统发酵技术相比有哪些改进之处?
传统发酵技术:产物一般是复杂的混合物,一般不会再对产物进行分离 和提纯处理,或者仅采用简单的沉淀、过滤等方法来分离和提纯产物。
应该辩证地看待这一产品。 一方面:这类产品具有多样化的特点,能够满足一些人对独特口感的需求,或者满 足一些人的时尚追求。
另一方面:这类产品是手工作坊式生产的,存在啤酒品质不稳定,价格昂贵的问题。
1.在食品工业上的应用 (2)生产食品添加剂
添加了柠檬酸的饮料
添加剂类型
举例
酸度调节剂 L-苹果酸、柠檬酸、乳酸
菌种的选育、对原材料的处理、发酵过程的控制、产品的消毒等,都有 助于提高啤酒的产量和品质。
思考•讨论 啤酒的工业化生产流程
讨论:
➢ 现在市面上流行一种“精酿”啤酒,它的制作工艺与普通啤酒有所不同,如一般 不添加食品添加剂、不进行过滤和消毒处理等。 有人认为饮用“精酿”啤酒比饮用“工业”啤酒更健康,你怎么看待这个问题? “精酿”啤酒是小规模酿造产品,发酵时间长、产量低和价格高,却依然有着市场 需求,我们如何辩证地看待大规模生产与小规模制作?
(1)生产微生物肥料 (2)生产微生物农药 (3)生产微生物饲料
3.在农牧业上的应用
(1)生产微生物肥料 ①微生物肥料:
利用微生物在代谢过程中产生的有机酸、生物活性物 质等来增进土壤肥力、改良土壤结构、促进植株生长、 增强植物抗病性和抗逆性。
②常见微生物肥料: 根瘤菌肥、固氮菌肥

1.3 发酵工程及其应用 课件-2021-2022学年人教版(2019)高中生物选择性必修3

1.3 发酵工程及其应用 课件-2021-2022学年人教版(2019)高中生物选择性必修3
①柠檬酸可以通过黑曲霉的发酵制得。
②由谷氨酸棒状杆菌发酵可以得到谷氨酸,谷氨 酸经过一系列处理就能制成味精。
(3)生产酶制剂
常用酶制剂有α-Байду номын сангаас粉酶、β-淀粉酶、果胶酶、 氨基肽酶和脂肪酶等。目前,已有50多种酶 制剂成功用于食品的直接生产、改进生产工 艺、简化生产过程、改善产品的品质和口味、 延长食品储存期和提高产品产量等方面。
获得产品
1.监测和控制温度、pH和溶解氧、罐 压、通气量、搅拌、泡沫和营养等。反 馈控制,使发酵全过程处于最佳状态。 2.随时检测培养液中的微生物数量、产 物浓度等,及时添加必需的营养组分。
1.如果发酵产品是微生物细胞本身, 可在发酵结束之后,采用过滤、沉淀 等方法将菌体分离和干燥得到产品。 2.如果产品是代谢物,可根据产物的 性质采取适当的提取、分离和纯化措 施来获得产品。
2.怎样对发酵条件进行调控以满足微生物的生长需要?
要对温度、pH、溶解氧等发酵条件进行严格控制, 使其最适合微生物的生长繁殖,同时及时添加必要 的营养组分。
3. 在产物分离和提纯方面,发酵工程与传统发酵技 术相比有哪些改进之处?
传统发酵技术获得的产物一般不是单一的组分, 而是成分复杂的混合物,很多时候不会再对产物 进行分离和提纯处理,或者仅采用简单的沉淀、 过滤等方法来分离和提纯产物。在发酵工程中使 用的分离和提纯产物的方法较多。在产物的初分 离阶段,常采用沉淀、萃取、膜分离、吸附和离 子交换等方法;在进一步纯化阶段,会采用液相层 析法、结晶法等方法。发酵工程产物无论是代谢 物还是菌体本身,都需要进行质量检查,合格后 才能成为正式产品。
灭菌 发酵工程中所用的菌种大多是单一菌种。一旦有杂菌污染,可能导
致产量大大下降。因此,培养基和发酵设备都必须经过严格的灭菌。

4、第1章 第3节 发酵工程及其应用 讲义

4、第1章 第3节 发酵工程及其应用 讲义

第3节发酵工程及其应用一、发酵工程的基本环节发酵工程一般包括菌种的选育,扩大培养,培养基的配制、灭菌,接种,发酵,产品分离、提纯等方面。

1.选育菌种:性状优良的菌种可以从自然界中筛选出来,也可以通过诱变育种或基因工程育种获得。

2.扩大培养:工业发酵罐的体积很大,接入的菌种总体积也较大,因此在发酵之前还需要对菌种进行扩大培养。

3.配制培养基:在菌种确定之后,要选择原料制备培养基。

培养基的配方要经过反复试验才能确定。

4.灭菌:发酵工程中所用的菌种大多是单一菌种。

一旦有杂菌污染,可能导致产量大大下降。

因此,培养基和发酵设备都必须经过严格的灭菌。

5.接种:扩大培养的菌种和灭菌后的培养基加入发酵罐中。

大型发酵罐有计算机控制系统,能对发酵过程中的温度、pH、溶解氧、罐压、通气量、搅拌、泡沫和营养等进行监测和控制。

6.发酵罐内发酵:在发酵过程中,要随时检测培养液中的微生物数量、产物浓度等,以了解发酵进程。

还要及时添加必需的营养组分,要严格控制温度、pH和溶解氧等发酵条件。

7.分离、提纯产物:如果发酵产品是微生物细胞本身,可在发酵结束之后,采用过滤、沉淀等方法将菌体分离和干燥得到产品。

如果产品是代谢物,可根据产物的性质采取适当的提取、分离和纯化措施来获得产品。

二、发酵工程的应用1.在食品工业上的应用(1)生产传统的发酵产品,如酱油、各种酒类。

(2)生产各种各样的食品添加剂,如通过黑曲霉发酵制得的柠檬酸,由谷氨酸棒状杆菌发酵生产味精。

(3)生产酶制剂,如α­淀粉酶、β­淀粉酶、脂肪酶等。

2.在医药工业上的应用基因工程、蛋白质工程等的广泛应用给发酵工程制药领域的发展注入了强劲动力。

3.在农牧业上的应用(1)生产微生物肥料。

微生物肥料利用了微生物在代谢过程中产生的有机酸、生物活性物质等来增进土壤肥力,改良土壤结构,促进植株生长,常见的有根瘤菌肥、固氮菌肥等。

(2)生产微生物农药。

微生物农药是利用微生物或其代谢物来防治病虫害的。

发酵工程原理与技术题库河北

发酵工程原理与技术题库河北

发酵工程原理与技术题库河北摘要:一、发酵工程概述二、发酵工程的原理与应用三、发酵工程技术的发展四、发酵工程在河北的应用与发展正文:发酵工程是一门利用微生物的代谢能力,通过控制发酵过程生产有价值的产品或实现特定目标的科学技术。

发酵工程在食品、饮料、医药、农业、环保等领域具有广泛的应用。

本文将简要介绍发酵工程的原理与应用,以及发酵工程技术在河北的发展状况。

一、发酵工程概述发酵工程是一门跨学科的综合性技术,涉及微生物学、生物化学、化学工程、控制工程等多个领域。

通过发酵技术,可以实现对微生物的生长、代谢和产物的调控,从而达到提高产量、优化品质、降低成本等目的。

二、发酵工程的原理与应用发酵工程的原理主要包括微生物生理学、代谢工程、生物反应器设计、发酵过程控制等。

发酵工程的应用领域十分广泛,包括食品发酵(如酿造、发酵食品等)、饮料发酵(如啤酒、葡萄酒等)、医药发酵(如抗生素、酶制剂等)、农业发酵(如生物农药、生物肥料等)以及环保发酵(如废水处理、废气净化等)。

三、发酵工程技术的发展随着科学技术的进步,发酵工程技术也在不断发展和创新。

现代发酵工程涉及基因工程、细胞工程、生物信息学等多个领域,通过基因重组、代谢工程等手段,可以实现对微生物的高效利用和优化发酵过程。

此外,发酵过程的自动化控制和优化也是发酵工程技术发展的重要方向。

四、发酵工程在河北的应用与发展河北省作为我国重要的农业大省,发酵工程在食品、医药、农业等领域具有广泛的应用。

近年来,河北省加大了对发酵工程的投入和支持,推动了一批具有核心竞争力的企业发展。

同时,河北省还充分发挥高校和科研院所的优势,积极开展产学研合作,促进了发酵工程技术的创新与转化。

总之,发酵工程是一门具有广泛应用和巨大发展潜力的技术。

生物发酵工程技术在产业和生活中的应用研究

生物发酵工程技术在产业和生活中的应用研究

生物发酵工程技术在产业和生活中的应用研究随着人们对生活质量的要求越来越高,生物制品的需求量也越来越大。

生物发酵工程技术是一种利用微生物进行大规模生产的技术,在医药、食品、能源等众多领域与生活息息相关。

本文将从生物发酵工程技术的基础原理、应用研究以及未来发展方向三个方面探讨其在产业和生活中的应用。

一、生物发酵工程技术的基础原理生物发酵工程技术是通过选择并利用微生物、发酵工艺和设备等手段,使原料在微生物的作用下转化为所需的产品。

微生物是生物发酵的关键,微生物在发酵过程中通过代谢作用将原料转化为目标产物,同时释放相应的能量。

发酵的基础原理主要是利用微生物在生长和繁殖中产生的代谢产物,生成所需的目标产物。

其中微生物的产生和培养、培养基的选择和设计、代谢产物的识别和分离纯化等技术都是发酵工艺中关键的环节。

二、生物发酵工程技术的应用研究1.医药制造医药制造是生物发酵工程技术较为重要的应用领域之一。

在医药制造中,生物发酵工程技术主要用于制备抗生素、激素、酶及多肽类等重要药物。

通过选择适宜的微生物及培养条件,生产出高质量的药品,满足人们对药品的需求。

2.食品加工食品加工业中有很多产品都需要生物发酵技术来生产,如酸奶、酱油、味精、酒类等。

生物发酵技术能够发挥微生物转化和代谢特性,使这些食品呈现出特有的香味和口感。

3.能源生产生物发酵工程技术在能源领域有广泛的应用,如生物燃料、发酵氢气等。

微生物可以将生物质转化为燃料,生产出高质量的生物燃料,提供清洁且可再生的能源。

三、生物发酵工程技术的未来发展方向未来,生物发酵工程技术的发展方向主要是技术先进化,产品多样化和工业化生产。

一方面,随着技术的不断提高,会有更多更好的微生物被开发,为工艺提供更多的选择;另一方面,也要将已有的生物发酵产品从实验室转移到实际工业化生产中。

总之,生物发酵工程技术已经成为了生产生物产品中的一个重要工具。

在未来,生物发酵技术将持续发展,围绕着工业化高效生产、能源领域开发新型生物燃料等方向不断探索,使人们的生活更加美好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发酵工程原理与技术应用
1、发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程。

2、发酵工程:利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系,它是生物工程和生物技术学科的重要组成部分,又叫微生物工程
3、发酵工程技术的发展史:
①1900年以前——自然发酵阶段
②1900—1940——纯培养技术的建立(第一个转折点)
③1940—1950——通气搅拌纯培养发酵技术的建立(第二个转折点)
④1950—1960——代谢控制发酵技术的建立(第三个转折点)
⑤1960—1970——开发发酵原料时期(石油发酵时期)
⑥1970年以后——进入基因工程菌发酵时期以及细胞大规模培养技术的全面发展
4、工业发酵的类型:
①按微生物对氧的不同需求:厌氧发酵、需氧发酵、兼性厌氧发酵
②按培养基的物理性状:固体发酵、液体发酵
③按发酵工艺流程:分批发酵、补料发酵、连续发酵
5、发酵生产的流程:(重要)
①用作种子扩大培养及发酵生产的各种培养基的制备
②培养基、发酵罐及其附属设备的灭菌
③扩大培养有活性的适量纯种,以一定比例将菌种接入发酵罐中
④控制最适的发酵条件使微生物生长并形成大料的代谢产物
⑤将产物提取并精制,以得到合格的产品
⑥回收或处理发酵过程中所产生的三废物质
6、常用的工业微生物:
①细菌:枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等
②放线菌:链霉菌属、小单胞菌属和诺卡均属
③酵母菌:啤酒酵母、假丝酵母、类酵母
7、未培养微生物:指迄今所采用的微生物纯培养分离及培养方法还未获得纯培养的
微生物
8、rRNA序列分析:通过比较各类原核生物的16S和真核生物的18S的基因序列,从序列差异计算它们之间的进化距离,从而绘制进化树。

选用16S和18S的原因是:它们为原核和真核所特有,其功能同源且较为古老,既含有保守序列又含有可变序列,分子大小适合操作,它的序列变化与进化距离相适应。

9、菌种选育改良的具体目标:
①提高目标产物的产量
②提高目标产物的纯度
③改良菌种性状,改善发酵过程
④改变生物合成途径,以获得高产的新产品
10、发酵工业菌种改良方法:
①常规育种:诱变和筛选,最常用。

关键是用物理、化学或生物的方法修改目的微生物的基因组,产生突变。

②细胞工程育种:杂交育种和原生质体融合育种
③代谢工程育种:组成型突变株的选育、抗分解调节突变株的选育、营养缺陷型在代谢调节育种中的应用、抗反馈调节突变株的选育、细胞膜透性突变株的选育
④基因工程育种:原核表达系统、真核表达系统
⑤蛋白质工程育种:定点突变技术、定向进化技术
⑥代谢工程育种:改变代谢途径、扩展代谢途径
⑦组成生物合成育种:通过合成化合物库进行高效率的筛选
⑧反向生物工程育种:希望表型的确定——确定表型的决定基因——重组DNA技术将该基因在特定生物中表达。

11、发酵工业菌种保藏的必要性和技术:
必要性:菌种退化:主要指生产菌种或选育过程中筛选出来的较优良菌株,由于进行接种传代或保藏之后,群体中某些生理特征和形态特征逐渐减退或丧失的现象。

技术:斜面低温保藏法、砂土管保藏法、冷冻真空干燥法、液氮超低温保藏法
12、适宜于大规模工业微生物发酵的培养基的共性:
(1)单位培养基能够生产最大量的目的产物
(2)能够使目的产物的合成速率最大
(3)能够使副产物合成的量最少
(4)所采用的培养基应该质量稳定、价格低廉、易于长期获得
(5)所采用的培养基尽量不影响工业好气发酵中的通气搅拌性能及发酵产物的后处理13、培养基中的碳源:
作用:·提供微生物菌体生长繁殖所需要的能源以及合成菌体所需的碳骨架
·提供菌体合成目的产物的原料。

常用的碳源有糖类、油脂、有机酸和低碳醇等
14、培养基中的氮源:
作用:主要用于构成菌体细胞物质(氨基酸、蛋白质、核酸等)和含氮代谢物
常用的氮源:a 无机氮源(速效氮源):铵盐、硝酸盐和氨水
b 有机氮源:如花生饼粉、黄豆饼粉、玉米浆、蛋白胨、酵母粉、酒糟
15、生理酸性物质:经微生物代谢后能形成酸性物质的无机氮源(硫酸铵)
生理碱性物质:菌体代谢后能产生碱性物质的无机氮源(硝酸钠)
16、前体:指加入到发酵培养基中,能直接被微生物在生物合成过程中结合到产物分子中去,其自身的结构并没有多大变化,但是产物的产量却因其加入二有较大提高的一类化合物
17、产物合成促进剂:指那些细胞生长非必需的,但加入后能显著提高发酵产量的一些物质
18、发酵培养基的设计原理:
①首先确定培养基的组成成分,然后再决定各组分之间的最佳配比。

②培养基的组分配比、缓冲能力、黏度、灭菌是否彻底、灭菌后营养破坏的程度以及原料中杂质的含量等因素对菌体生长和产物合成有影响。

③从微生物生长、产物合成的角度需考虑:菌体的同化能力、培养基对菌体代谢的阻遏与诱导的影响、碳氮比对菌体代谢调节的重要性、pH对不同菌体代谢的影响
19、发酵培养基的优化方法:
①根据前人的经验和培养基成分确定时一些必须考虑的问题,初步确定可能的培养基成分
②通过单因子实验最终确定出最为适宜的培养基成分
③培养基成分确定后,剩下的问题就是各成分最适的浓度,由于培养基成分很多,为减少实验次数常采用一些合理的实验设计方法:正交实验、响应面法、
响应面法:利用合理的实验设计,建立多元二次方程模型来拟合因素和响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺,解决多变量问题的一种统计学方法,该法被广泛应用于农、生物、食品、化工等领域。

(了解)
20、灭菌:用化学或物理方法杀死物料或设备中所有有生命物质的过程
消毒:用物理或化学方法杀死空气、地表以及容器和器具表面的微生物
除菌:用过滤方法除去空气或液体中的微生物及其孢子
防腐:用物理或化学方法杀死或抑制微生物的生长和繁殖
21、发酵工业污染的危害:
①染菌对不同菌种发酵有不同的影响(消耗营养、合成新产物、改变pH、分解产物、噬菌体破坏极大
②不同发酵时期染菌对发酵有不同的影响(种子扩大时,发酵前期、中期、后期染菌)
④杂菌污染对发酵产物提取和产品质量有一定的影响
22、杂菌污染的防治:
⑴染菌的检查与类型的判断:显微镜检查法、平板划线培养检查法、肉汤培养检查法、发酵过程中的异常现象观察法
⑵污染的原因分析:从污染杂菌的种类、污染时间、染菌的程度进行分析
⑶杂菌污染的途径及其预防:
①种子带菌:培养基及器具灭菌要彻底、避免菌种在移接过程中受污染、避免菌种培
养过程或保藏过程中受污染
②过滤空气带菌:正确选择采气口、根据气候条件设计合理的空气处理流程、设计安
装合理的空气过滤器
③设备的渗漏或“死角”造成染菌:
a发酵罐的“死角”:加强清洗并定期铲除污垢、安装放汽边阀
b管道安装不当或配置不合理形成的“死角”:法兰的加工、焊接和安装要符合灭菌要求,使衔接处管道畅通、光滑、密封性好,尽可能减少连接法兰
④培养基灭菌不彻底造成的染菌:彻底灭菌
⑤操作不当造成染菌:操作要严格规范
⑥噬菌体染菌:以净化环境为中心的综合防治
23、设备的“死角”:由于操作、设备结构或人为因素造成的屏障等原因,使蒸汽不能到达预定的灭菌部位或该部位的冷空气不易在加热过程中排净,从而不能达到彻底灭菌要求的设备的渗漏:指发酵设备、管道、阀门等在长期使用过程中,由于化学腐蚀、电化学腐蚀、磨蚀、加工制作不良等原因形成微小漏孔后发生渗漏染菌。

相关文档
最新文档