基于单片机的温度检测
基于单片机的无线测温系统的设计

引言:无线测温系统是一种基于单片机技术的智能温度监测系统。
它通过无线传输技术,能够远程监测和采集温度数据,具有高精度、实时性和便捷性等优点。
本文将详细介绍基于单片机的无线测温系统的设计。
概述:无线测温系统是近年来发展迅速的一种温度监测技术,它可以广泛应用于各种需要进行温度监测的场合,如工业生产、农业种植、建筑监测等。
基于单片机的无线测温系统充分利用了单片机的高集成度、低功耗和强大的数据处理能力,能够实现对温度的高精度监测和数据传输。
本文将从硬件设计、软件设计、通信模块选择、温度传感器选择和功耗优化五个方面详细介绍基于单片机的无线测温系统的设计。
正文内容:1.硬件设计1.1单片机选择1.2电源设计1.3温度传感器接口设计1.4数据存储设计1.5外部设备接口设计2.软件设计2.1系统架构设计2.2温度数据采集算法设计2.3数据处理算法设计2.4数据传输协议设计2.5用户界面设计3.通信模块选择3.1无线通信技术概述3.2通信距离和速率需求分析3.3无线通信模块选择准则3.4常用无线通信模块介绍3.5通信模块选择与集成4.温度传感器选择4.1温度传感器分类4.2温度传感器选型准则4.3常用温度传感器介绍4.4温度传感器接口设计4.5温度传感器校准方法5.功耗优化5.1功耗分析与需求5.2系统功耗优化策略5.3硬件设计功耗优化5.4软件设计功耗优化5.5基于睡眠模式的功耗优化总结:基于单片机的无线测温系统的设计主要涉及硬件设计、软件设计、通信模块选择、温度传感器选择和功耗优化等方面。
通过合理的硬件设计和通信模块选择,能够实现高精度的温度监测和远程数据传输。
同时,通过优化软件设计和功耗管理,能够降低系统的功耗,延长系统的使用寿命。
基于单片机的无线测温系统的设计在智能化温度监测领域具有广阔的应用前景。
基于51单片机环境温度检测及显示

摘要本次的温度检测设计及显示以AT89C51单片机系统进行温度采集,AT89C51单片机系统进行控制,温度信号由温度传感器18b20采集,通过8255键盘控制输入89C51,温度数据传输采用12864液晶显示模块来实现。
本次设计实现了:⏹检测温度范围:0℃--100℃。
⏹检测器单元可显示检测的温度值。
⏹采用12864液晶显示模块显示。
⏹采用8255控制键盘。
本次的温度检测及显示设计主要研究了单片机与12864液晶显示模块、温度检测芯片18b20接口之间的作用,学会根据外围电路设计进行软件编程及系统调试,练习撰写实训总结报告,培养我们运用专业知识设计智能仪器的能力。
为以后的改进和发展奠定了很好的基础。
关键词:温度检测、AT89C51单片机系统、温度传感器18b20、8255键盘、12864液晶显示模块目录第一章绪论 (3)1.1 环境温度检测的概述 (3)1.2 环境温度检测的现状和发展前景 (3)1.2.1 环境温度检测的现状 (3)1.2.2 环境温度检测的发展前景 (3)1.3 环境温度检测研究的主要内容 (4)第二章环境温度检测及显示总体的设计方案 (5)2.1 环境温度检测及显示的各个部分的设计方案 (5)2.1.1 测量部分 (5)2.1.2 远程通信部分 (5)2.1.3 显示部分 (5)2.2 环境温度检测及显示的总体的设计结构 (6)第三章环境温度检测及显示主要模块的组成 (7)3.1 温度检测芯片DS18B20模块 (7)3.1.1 DS18B20的技术参数 (7)3.1.2 DS18B20数字温度计的封装与外形尺寸 (7)3.1.3 DS1820使用中注意事项 (7)3.2 12864液晶显示模块 (7)3.2.1 OCM4X8C汉字液晶屏引脚表 (8)3.2.2 OCM4X8C接口方式与时序 (8)3.3 8255按键模块 (9)3.3.1 引脚说明 (9)3.3.2 内部结构 (10)3.3.3 工作方式控制电路 (10)3.3.4 总线数据缓冲器 (11)3.3.5 8255三种基本工作方式 (11)3.3.6 读/写控制逻辑电路 (11)第四章系统的软件实现 (12)4.1 主程序的流程图 (12)4.2 按键的流程图 (12)4.3 时间功能的流程图 (13)第五章环境温度检测系统显示 (14)5.1 应用DXP2004绘制环境温度检测及显示原理图 (14)5.1.1 电路原理图的PCB显示 (14)5.2 环境温度显示 (15)5.2.1 环境温度显示使用和操作说明 (15)第六章心得体会 ........................................................................错误!未定义书签。
基于单片机的温度控制系统设计与应用

基于单片机的温度控制系统设计与应用温度控制系统是一种常见的自动控制系统,用于维持设定温度范围内的温度稳定。
本文将介绍基于单片机的温度控制系统的设计与应用。
一、系统设计1.功能需求:(1)温度检测:获取环境温度数据。
(2)温度显示:将检测到的温度数据以数字方式显示。
(3)温度控制:通过控制输出信号,自动调节温度以维持设定温度范围内的稳定温度。
2.硬件设计:(1)单片机:选择适合的单片机,如51系列、AVR系列等,具有较强的计算和控制能力。
(2)温度传感器:选择适当的温度传感器,如DS18B20、LM35等,能够准确检测环境温度。
(3)显示屏:选择适当的数字显示屏,如LCD显示屏、数码管等,用于显示温度数据。
(4)执行机构:根据具体需求选择合适的执行机构,如继电器、风扇等,用于控制温度。
3.软件设计:(1)温度检测:通过单片机采集温度传感器的模拟信号,并通过数字转换获得温度数据。
(2)温度显示:将获取到的温度数据进行处理,通过数字显示屏显示。
(3)温度控制:通过控制执行机构,如继电器等,根据温度数据的变化进行调节,将温度维持在设定范围内。
二、系统应用1.家居温控系统:家庭中的空调、暖气等设备可以通过单片机温度控制系统实现智能控制。
通过温度传感器检测室内温度,并将温度数据显示在数字显示屏上。
通过设定温度阈值,当室内温度超出设定范围时,系统控制空调或暖气进行启停,从而实现室内温度的调节和稳定。
这不仅提高了居住舒适度,还能节约能源。
2.工业过程控制:在工业生产过程中,一些特定的应用需要严格控制温度,以确保产品质量或生产过程的稳定。
通过单片机温度控制系统,可以实时检测并控制生产环境的温度。
当温度超过或低于设定的阈值时,系统可以自动调整控制设备,如加热器、冷却器等,以实现温度的控制和稳定。
3.温室农业:温室农业需要确定性的环境温度来保证作物的生长。
通过单片机温度控制系统,可以监测温室内的温度,并根据预设的温度范围,自动启停加热或降温设备,以维持温室内的稳定温度。
基于单片机的室内温湿度检测系统的设计

基于单片机的室内温湿度检测系统的设计
一、系统简介
本系统基于单片机,能够实时检测室内的温度和湿度,显示在
液晶屏幕上,并可通过串口输出到PC端进行进一步数据处理和存储。
该系统适用于家庭、办公室和实验室等场所的温湿度检测。
二、硬件设计
系统采用了DHT11数字温湿度传感器来实时检测室内温度和湿度,采用STC89C52单片机作为控制器,通过LCD1602液晶屏幕显示
温湿度信息,并通过串口与PC进行数据通信。
三、软件设计
1、采集数据
系统通过DHT11数字温湿度传感器采集室内的温度和湿度数据,通过单片机IO口与DHT11传感器进行通信。
采集到的数据通过计算
得到实际温湿度值,并通过串口发送给PC端进行进一步处理。
2、显示数据
系统将采集到的室内温湿度数据通过LCD1602液晶屏幕进行显示,可以实时观察室内温湿度值。
3、通信数据
系统可以通过串口与PC进行数据通信,将数据发送到PC端进
行存储和进一步数据处理。
四、系统优化
为了提高系统的稳定性和精度,需要进行优化,包括以下几点:
1、添加温湿度校准功能,校准传感器的测量误差。
2、添加系统自检功能,确保系统正常工作。
3、系统可以添加温湿度报警功能,当温湿度超过设定阈值时,系统会自动发送报警信息给PC端。
以上是基于单片机的室内温湿度检测系统的设计。
基于51单片机的温度检测系统_单片机C语言课题设计报告

单片机C语言课题设计报告设计题目:温度检测电气系2011级通信技术一班级通信技术一班通才达识,信手拈来通才达识,信手拈来1摘要本课题以51单片机为核心实现智能化温度测量。
利用18B20温度传感器获取温度信号,将需要测量的温度信号自动转化为数字信号,利用单总线和单片机交换数据,最终单片机将信号转换成LCD 可以识别的信息显示输出。
基于STC90C516RD+STC90C516RD+的单片机的智能温度检测系统,的单片机的智能温度检测系统,设计采用18B20温度传感器,其分辨率可编程设计。
本课题设计应用于温度变化缓慢的空间,综合考虑,以降低灵敏度来提高显示精度。
设计使用12位分辨率,因其最高4位代表温度极性,故实际使用为11位半,位半,而温度测量范围为而温度测量范围为而温度测量范围为-55-55-55℃~℃~℃~+125+125+125℃,℃,则其分辨力为0.06250.0625℃。
℃。
设计使用LCD1602显示器,可显示16*2个英文字符,显示器显示实时温度和过温警告信息,和过温警告信息,传感器异常信息设。
传感器异常信息设。
传感器异常信息设。
计使用蜂鸣器做警报发生器,计使用蜂鸣器做警报发生器,计使用蜂鸣器做警报发生器,当温度超过当温度超过设定值时播放《卡农》,当传感器异常时播放嘟嘟音。
单片机C 语言课题设计报告语言课题设计报告电动世界,气定乾坤2目录一、设计功能一、设计功能................................. ................................. 3 二、系统设计二、系统设计................................. .................................3 三、器件选择三、器件选择................................. .................................3 3.1温度信号采集模块 (3)3.1.1 DS18B20 3.1.1 DS18B20 数字式温度传感器数字式温度传感器..................... 4 3.1.2 DS18B20特性 .................................. 4 3.1.3 DS18B20结构 .................................. 5 3.1.4 DS18B20测温原理 .............................. 6 3.1.5 DS18B20的读写功能 ............................ 6 3.2 3.2 液晶显示器液晶显示器1602LCD................................. 9 3.2.1引脚功能说明 ................................. 10 3.2.2 1602LCD 的指令说明及时序 ..................... 10 3.2.3 1602LCD 的一般初始化过程 (10)四、软件设计四、软件设计................................ ................................11 4.1 1602LCD 程序设计流程图 ........................... 11 4.2 DS18B20程序设计流程图 ............................ 12 4.3 4.3 主程序设计流程图主程序设计流程图................................. 13 五、设计总结五、设计总结................................. ................................. 2 六、参考文献六、参考文献................................. ................................. 2 七、硬件原理图及仿真七、硬件原理图及仿真......................... .........................3 7.1系统硬件原理图 ..................................... 3 7.2开机滚动显示界面 ................................... 4 7.3临界温度设置界面 ................................... 4 7.4传感器异常警告界面 (4)电气系2011级通信技术一班级通信技术一班通才达识,信手拈来通才达识,信手拈来3温度温度DS18B20 LCD 显示显示过温函数功能模块能模块传感器异常函数功能模块数功能模块D0D1D2D3D4D5D6D7XT XTAL2AL218XT XTAL1AL119ALE 30EA31PSEN29RST 9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78P3.0/RXD 10P3.1/TXD11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR 16P3.5/T115U180C51X1CRYST CRYSTAL ALC122pFC222pFGNDR110kC31uFVCCGND234567891RP1RESPACK-8VCC0.0DQ 2VCC 3GND 1U2DS18B20R24.7K LCD1LM016LLS2SOUNDERMUC八、程序清单八、程序清单................................. .................................5 一、设计功能·由单片机、温度传感器以及液晶显示器等构成高精度温度监测系统。
基于单片机的温度测量

引言:温度是一个常见的物理量,对于许多领域的应用来说,准确地测量温度非常重要。
单片机作为一种常见的嵌入式系统,具有强大的数据处理和控制能力。
本文将介绍基于单片机的温度测量技术及其应用。
概述:温度测量是一项广泛应用于工业自动化、环境监测、医疗设备等领域的技术。
传统的温度测量方法主要基于热敏电阻、热电偶、红外线等。
而基于单片机的温度测量技术则结合了传感器、单片机和通信等技术,能够实时、精确地监测和控制温度。
正文:1. 传感器选择1.1 热敏电阻热敏电阻是一种根据温度变化导致电阻值变化的传感器。
它的特点是响应速度快、精度高,但对环境温度和供电电压的稳定性要求较高。
1.2 热电偶热电偶是一种使用两个不同金属的导线连接的传感器。
它的优点是测量范围广,适用于极高或极低温度的测量,但精度较低,受电磁干扰影响较大。
1.3 红外线传感器红外线传感器是一种测量物体表面温度的传感器。
它可以通过接收物体发出的红外辐射来测量温度,适用于无接触测量,但精度受物体表面性质影响较大。
2. 单片机选择2.1 嵌入式系统单片机作为一种常见的嵌入式系统,集成了处理器、存储器和外设接口。
它具有较强的计算和控制能力,适用于温度测量应用中的数据处理和控制任务。
2.2 选择合适的单片机型号选择合适的单片机型号是确保系统稳定运行的关键。
应根据温度测量的要求确定所需要的计算能力、引脚数量、通信接口等因素,选择合适的单片机型号。
3. 温度采集与处理3.1 模拟信号采集通过选定的传感器,将温度信号转换为模拟电压信号。
使用单片机的模拟输入接口,对模拟电压信号进行采集,获取温度数据。
3.2 数字信号处理单片机通过内置的模数转换器(ADC)将模拟信号转换为数字信号。
根据所选单片机型号的计算能力,可以进行进一步的数据处理和算法运算,包括滤波、校正等。
4. 数据存储与通信4.1 存储器选择根据温度测量系统的要求,可以选择合适的存储器类型,如闪存、EEPROM等。
基于51单片机的温度检测系统程序及仿真概要

基于51单片机的温度检测系统程序及仿真概要
1. 系统概述
本系统采用51单片机作为控制核心,通过外接温度传感器进行温度检测,并在数码管上显示当前温度值。
同时,当温度超过设定阈值时,通过蜂鸣器进行警示。
2. 系统硬件设计
本系统采用DS18B20温度传感器作为温度检测模块,通过单总线连接到51单片机的
P2.0口,同时将P2.1口连接到蜂鸣器。
数码管采用共阳极数码管,通过P0口进行控制。
系统程序采用C语言编写,在主函数中进行如下操作:
(1) 初始化DS18B20,设置温度传感器工作模式。
(2) 读取温度传感器输出的温度值,进行温度判断。
(3) 将温度值转换为数码管显示的格式并显示在数码管上。
(4) 如果温度超过设定阈值,触发蜂鸣器进行警示。
(5) 循环执行以上操作。
4. 系统仿真
5. 总结
本系统基于51单片机实现了温度检测功能,并且能够进行数码管显示以及蜂鸣器警示,具有一定的实用价值。
本系统的设计和仿真过程对于初学者来说都是一个非常好的练手项目,也有助于掌握单片机的基本编程技能和原理知识。
基于51单片机的温度检测装置的设计

基于51单片机的温度检测装置的设计一、绪论温度检测是电子技术应用的一项基本工作之一。
无论在工业生产中还是家庭日常生活中,温度检测都有着重要的作用。
设计一种简单、实用的温度检测装置,对于提高生产效率、提高安全性等方面都有着重要的作用。
目前市面上有很多种温度检测装置,如数字式温度计、红外线温度计等。
而基于51单片机的温度检测装置,由于其设计简单、易于实现、成本低廉、可靠、灵活等优点,得到了广泛的应用和研究。
二、设计目标1.能实时采集并显示当前温度值;2.具备报警功能,当温度超出设定范围时,能够及时进行报警;3.能够保存历史最高温度值,并进行显示。
三、硬件设计1.温度传感器:DS18B20;2.单片机:STC89C52;3.显示器:1602液晶显示屏;4.报警器:有源蜂鸣器。
1.温度采集与显示模块;2.温度报警模块;3.历史最高温度显示模块。
具体实现如下:1.温度采集与显示模块DS18B20_Init(); //初始化温度传感器LcdIni(); //初始化液晶显示屏然后,在一个while循环中,不断采集温度值,并将其显示在液晶显示屏上,代码如下:while(1){Ds1820Convert(); //触发温度采集Ds1820ReadTemp(temp); //读取温度值LcdCommand(0x80); //光标定位到第一行第一列LcdShowStr("Temp:"); //显示“Temp:”字样LcdShowData(temp[1]); //显示温度值的百位数LcdShowData(temp[0]); //显示温度值的十位数LcdShowData(temp[2]); //显示温度值的个位数LcdShowStr("C "); //显示“C”字母和两个空格}2.温度报警模块为了实现温度报警功能,需要定义一个阈值,并比较当前温度值是否超过了这个阈值。
如果超过了阈值,则触发报警。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言
为了让我们更加深刻的了解并掌握老师课堂上所讲述的知识,提高动手动脑的能力,拓展视野,进行了本次热工仪表课程设计。
我们所选的课题是温度检测,温度是一种基本的环境参数。
在现代的工业生产和人们的日常生活中,温度,压力,物位,流量都是很重要的影响因素,而对温度的检测及对其的控制的精确高低在很大程度上影响了产品的稳定性和人们的生活。
在流量,压力,等物理量的测量中,温度也是一个十分重要的影响量。
因此,实现准确的温度测量,具有十分重要的意义。
此次任务是完成加热炉的温度保持在1200℃左右,最大误差不超过±1℃。
将此项任务进行工业化,可以实现智能温度检测及控制,节省大量时间、人力、物力,并能实现高精度控制。
摘要
本系统以STM32F103单片机为主控制器,以铂铑热电偶温度传感器测出加热炉的温度并通过补偿导线送到温度变送器,温度变送器将温度传给单片机系统,单片机通过与设定温度1200℃比较,产生PWM波控制可控硅电路实现闭环控制,使加热炉的温度保持在1200℃左右。
本系统实现了精确控制、低成本、低功耗的功能。
关键词:温度传感器温度变送器STM32F103单片机精确控制
一方案与论证
1.1系统总体框图与设置
图一系统总框图
通过铂铑热电偶温度传感器测出加热炉的温度并通过补偿导线送到PPM113温度变送器,温度变送器通过A/D转换将采集到的温度送入STM32F103单片机系统,STM32F103通过与设定温度1200℃进行比较,产生PWM波进而控制可控硅电路来实现闭环控制加热炉内的温度保持在1200℃左右。
1.2温度传感器方案
方案一:一般而言,比较常用的热电阻为铂热电阻,型号为Pt100,其他如Cu50等使用量小一些。
常见的为三线接法,有正负端分别,一根线为正端,另一端补偿端两根线随便接。
常见测温范围在-50到+300之间。
方案二:铂铑10-铂热电偶在热电偶系列中具有准确度最高,稳定性最好(±0.25%t),测温温区宽(0-1600℃),使用寿命长,测温上限高等优点。
适用于氧化性和惰性气氛中,也可短期用于真空中。
基于我们测温1200℃,所以选择铂铑10-铂热电偶传感器。
1.3温度变送器方案
方案一:PPM115温度信变送器是将热电偶或热电阻温度传感器信号,经全隔离放大转换成标准输出4-20mA、0-5V等直流信号,实现对被测信号的精确测量。
只能使用24V直流电源供电,工作环境温度为—10℃到70℃。
方案二:PPM113只能温度隔离变送器是基于高性能单片机,高级别的万能输入信号,允许热电阻,热电偶,电阻,电流,电压信号输入,可输出二线制电流电压多种信号,支持HART 协议通过PC编程在线调整, 国际通用尺寸,导轨安装结构紧凑。
既可以使用24V直流电源,又可以使用220V交流电源供电,并可以通过LCD,工作环境温度为—40℃到80℃,工作环境温度范围宽,负载影响为<=0.02%/100Ω。
综上所述,选用PPM113作为温度变送器。
1.4加热炉控制器方案
方案一:MCS-51为8位单片机,价格低,技术成熟,但I/O少,RAM、ROM容量小,需要外接A/D,运算速度低,功耗高。
方案二:采用STM32F103单片机,内部有非常丰富的资源,运算速度快,具有强大的PWM 输出功能,低电压供电,超低损耗,可以实现更高的性价比要求,可以满足PWM的控制要求。
综上所述,选用方案二STM32F103作为主控芯片。
1.5显示方案
方案一:选用1602,但1602界面简单,只能显示字母和阿拉伯数字。
方案二:选用12864,12864除了现实字母与阿拉伯数字外,还可以显示汉字,人机界面比较好。
综上所述选用方案二用12864作为显示。
1.5补偿导线方案
方案一:选用铂铑30—铂铑6所对应的补偿导线,正极为BC,补偿导线合金丝负极为铜,绝缘层为铜的补偿导线
方案二:选用铂铑10-铂所对应的补偿导线,正极为SC,补偿导线合金丝负极为SPC(铜),绝缘层为SNC(铜镍0.6)。
基于不同的热电偶配用不同的补偿导线,我们选择方案二。
二理论分析与计算
2.1铂铑热电偶温度传感器模块
两种导体(或半导体)A和B的两端分别焊接在一起,形成一个闭合的回路,若两个节点处于不同的温度,回路中就会产生电动势,因而在回路中形成电流,这种现象称为热电效应,而这种电动势称为热电势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
热电偶回路的总热电动势:
E AB(T,T0)=(K/e)(T-T0)㏑(N A/N B)+∫(δA -δB)dT
K—玻尔兹曼常数
T—接触处的热力学温度
q—电子电荷量
N A,N B—分别为金属A,B的自由电子密度
δA ,δB分别为导体A,B的温差系数
热电偶产生的热电势与两个电极的材料及两个节点的温度有关。
2.2温度变送器模块
因为感温元件品种繁多,其信号输出类型也多。
为了便于自动化检测,所以对各种温度传感器的信号输出做了统一的规定,也就是为统一的4~20mA信号。
为了使各种温度传感器的输出能统一为4~20MA的信号,所以用了温度变送器。
利用温度变送器来使输入的各种电阻和电势信号,变成了统一的4~20MA的电流信号,这就是温度变送器的由来。
温度变送器完成测量信号的采集后转化成统一的4~20MA电流信号输出。
同时还起隔离作用。
2.3补偿导线模块
工业测温时,被测点与指示仪表之间往往有很长的距离,同时为了避免冷端温度受被测点温度变化的影响,也需使热电偶的冷端远离工作端。
补偿导线需注意的地方包括不同的热电偶配用不同的补偿导线;补偿导线与热电偶的两个节点的温度必须相同,且不得超过规定的范围(一般为0—100℃);补偿导线的正负极以其绝缘层的颜色来区分。
三程序框图
1200℃箱式高温加热炉实验
实验目的:1、实现高温加热炉的自动化控制
2、了解高温加热炉的工作原理及运行过程
3、检测我想到的实验的可行性
工作原理:内采用耐高温陶瓷,外采用SECC钢板、精粉体烤漆处理。
加热材质为高温发热丝,通过PID微电脑控制可控硅电路实行PID+SSR加热方式,具有计时器功能,当温度达到1200℃则进行恒温措施,开关电路处于断开状态;当温度低于1200℃时,开关电路处于导通状态,给发热丝加热。
SSR的基本架构是利用光耦合OC将输入端与输出端隔离,利用微弱的输入信号驱动控制光耦合OC,再利用光耦合OC输出,控制POWER MOSFET。
AC开关型的SSR有一个优点就是会零交越导通,也就是只会在AC相位0V时才导通输出。
VR型的SSR是最特殊的是,他不会零点才导通,他是利用控制电压来改变TRIAC每一周的导通相位角度,而使得每一周TRIAC 的导通时间改变,进而控制其输出电压。
实验步骤:1、实行开环控制,给高温发热丝两端加220VAC,功率为2KW的供电电源,使高温炉达到1200℃。
2、当第一步成功达到1200℃,并处于稳定状态时,加闭环控制,首先编好程
序,然后通过程序根据设定温度与采集到的温度进行比较,输出不同的PWM
波,进而控制SSR来控制MOSFET的导通与关断,使温度保持在1200℃左
右。
3、加液晶显示模块,通过编程及将12864连接到单片机,使12864显示当前温
度、设定温度及温度误差。
心的体会
在此次课程设计中,我了解到工业化生产过程的自动化过程,并进一步认识了我们的专业,巩固了所学的认识。
在设计的过程中通过查阅课本及网上资料进一步认识热电偶温度传感器、温度变送器、补偿导线以及SSR的工作原理,补偿导线在使用过程中需要注意的问题。
虽然在设计过程中遇到很多问题,比如器件应该怎样选型,补偿导线应该怎样选择等,我还是通过上网进一步查询,找到了我想要的答案。
它不仅让我学会上网自己获取自己想要的知识,而且让我学会遇到困难时,要敢于迎难而上,直到找出我想要的为止。
参考文献
1、《现代检测技术及仪表》高等教育出版社孙传友、翁惠辉
2、《电力电子技术》(第五版)机械工业出版社王兆安、刘进军
3、《模拟电子技术基础》高等教育出版社童诗白、华成英
4、《C语言程序设计》(第二版)清华大学出版社谭浩强。