压水堆与沸水堆

合集下载

沸水堆核电厂

沸水堆核电厂

工作原理及主要特点
工作原理及主要特点
图1沸水堆原理图来自汽轮机系统的给水进入反应堆压力容器后(见图1),沿堆芯围筒与容器内壁之间的环形 空间下降,在喷射泵的作用下进入堆下腔室,再折而向上流过堆芯,受热并部分汽化。汽水混合物经汽水分离器 分离后,水分沿环形空间下降,与给水混合;蒸汽则经干燥器后出堆,通往汽轮发电机,做功发电。蒸汽压力约 为7MPa,干度不小于99.75%。汽轮机乏汽冷凝后经净化、加热,再由给水泵送入反应堆压力容器,形成一闭合循 环。再循环泵的作用是使堆内形成强迫循环,其进水取自环形空间底部,升压后再送入反应堆容器内,成为喷射 泵的驱动流。改进型沸水堆取消了主系统管路和喷射泵,而在堆内装有数台内装式再循环泵。自汽水分离器和汽 轮机凝汽器流回的给水由这些泵唧送回到堆芯去再循环,从而增加了堆芯循环倍率。
图2 GE沸水堆安全壳的发展反应堆厂房:沸水堆厂房的特点是在安全壳内还设一干井,反应堆即安装在此井 内,见图2。干井的作用是:①承受失水事故瞬态压力,并通过排汽管将汽水混合物导入抑压水池;②提供屏蔽, 使运行维修人员能在反应堆运行时进入安全壳内干井以外地区;③对失水事故时可能发生甩管、水流冲击和飞射 物提供防护,以保护安全壳。干井顶部有一钢制密封顶,但可拆卸以便进行换料检修。
电厂系统
电厂系统
包括:①主系统(包括反应堆);②蒸汽给水系统;③反应堆辅助系统,其中包括应急堆芯冷却系统;④放射 性废物处理系统;⑤检测和控制系统;⑥厂用电系统。其中蒸汽-给水系统、放射性废物处理系统、厂用电系统以 及反应堆辅助系统中的设备冷却水系统、余热排出系统、厂用水系统等都与压水堆核电厂有关系统类似。
堆芯主要由核燃料组件、控制棒及中子测量器等组成。沸水堆燃料组件为正方形有盒组件。组件盒内燃料棒 排列成7×7或8×8栅阵。棒外径约12.3mm,高约4.1m,其中活性段约3.8m。燃料芯块为不同富集度的UO2,平均 富集度为2.0%~3%,堆芯使用3~4种富集度燃料,在若干芯块中加入Gd2O3可燃毒物,以展平组件内中子注量率分 布并补偿燃耗反应性亏损。燃料棒包壳材料和组件盒材料均为Zr-4合金。堆芯将由800个左右燃料组件排列而成。

五种常见堆型

五种常见堆型

五种常见的核电站堆型1.压水堆压水堆是指使用轻水(即普通净化水)作冷却剂和慢化剂,且水在反应堆内保持液态的核反应堆。

压水堆以水作为冷却剂在主泵的推动下流过燃料组件,吸收了核裂变产生的热能以后流出反应堆,进入蒸汽发生器,在那里把热量传给二次侧的水,使它们变成蒸汽送去发电,而主冷却剂本身的温度就降低了。

从蒸汽发生器出来的主冷却剂再由主泵送回反应堆去加热。

冷却剂的这一循环通道称为一回路,一回路高压由稳压器来维持和调节。

除秦山三期外,我国目前运行的核电机组全部为压水堆。

压水堆作为一种技术十分成熟的堆型,与其他堆型相比,结构紧凑,经济上基建费用低、建设周期短、轻水价格便宜;有放射性的一回路与二回路分开,带有放射性的冷却剂不会进入二回路污染汽轮机,机组运行、维护方便。

核反应堆原理(压水堆示意图)2.沸水堆沸水堆利用轻水作慢化剂和冷却剂,只有一个回路,水在反应堆内沸腾产生蒸汽直接进入汽轮机发电。

与压水堆相比,沸水堆工作压力低;由于减少了一个回路,其设备成本也比压水堆低;但这样可能使汽轮机等设备受到放射性污染,给设计、运行和维修带来不便。

(沸水堆示意图)3.重水堆重水堆是以重水(氘和氧组成的化合物)作慢化剂的反应堆。

其主要优点是可以直接利用天然铀作核燃料,同时采用不停堆燃料方式;但体积比轻水堆大,建造费用高,重水昂贵、发电成本也比较高。

重水堆核电站是发展较早的核电站,我国秦山三期1、2号机组采用的是加拿大坎杜型(CANDU)压力管式重水堆。

(沸水堆示意图)4.高温气冷堆高温气冷堆用氦气作冷却剂,石墨作慢化剂,堆芯出口温度较高。

高温气冷堆热效率高,建造周期短,系统简单;但堆芯出口温度为850~1000℃甚至更高,对反应堆材料的性能要求也高。

山东石岛湾规划建设20万千瓦级高温气冷堆。

(石岛湾高温气冷堆)5.快中子反应堆(快堆)快中子反应堆直接利用快中子引起链式裂变反应所释放的能量进行发电,因此不需要慢化剂、体积小、功率密度大。

知识:沸水反应堆与压水反应堆

知识:沸水反应堆与压水反应堆

知识:沸水反应堆与压水反应堆知识:沸水反应堆与压水反应堆沸水反应堆:福岛核电站建的年代比较久,其反应堆属于“沸水反应堆”(Boiling Water Reactors),是美国通用电气公司于1950年代中期研发成功的一种轻水核反应堆。

核物质氧化铀通过核裂变之后,产生大量的热量,对轻水进行加热,进而产生大量蒸汽,再将蒸汽中的水脱掉,用热的蒸汽带动汽能机发电,最后蒸汽冷却后再回流至反应堆。

这种核反应堆有一个问题,即在核反应停止后,因为核物质有衰变过程,还会持续产生大量的热量,必须用冷却系统带走。

不然热量越积越多,会导致核燃料熔化,熔化就非常危险了。

压水反应堆:压水反应堆(Pressurized Water Reactor,PWR)是美国贝蒂斯原子能实验室开发成功的一种轻水(普通水)核反应堆。

目前全世界核电站、核潜艇及核动力航空母舰等使用的反应堆中均以压水堆为主,截至2000底,全世界有258座运行中的反应堆,占总数的64.6%。

中国目前已建成的秦山核电站、大亚湾核电站、田湾核电站、岭澳核电站均采用压水反应堆。

压水反应堆利用轻水作为冷却剂和中子慢化剂。

其冷却系统由两个循环回路组成。

一回路连接着堆芯,二回路中的蒸汽发生器,回路内压强保持在150个大气压左右,在此压强下,可将冷却水加热至约343℃而不沸腾。

冷却水在二回路蒸汽发生器的传热管中,将压强约为70个大气压左右的二回路水加热至沸腾(温度约260℃),形成的水蒸气(过滤掉混杂的液态水后)再通过二回路送至汽轮机,推动涡轮发动机运转。

在传热管中释放了热能的一回路水以290℃左右的温度回流至堆芯,完成一回路循环。

从汽轮机流出的二回路水经冷凝器凝结为液态水后,回流至蒸汽发生器,完成二回路循环反应堆堆芯位于压力壳内,由排列为方形的燃料组件组成。

燃料一般是富集程度在2%~4.4%的烧结二氧化铀。

与沸水反应堆相比,压水堆堆芯体积更小,堆芯的功率密度较大(大型压水堆的堆芯功率密度可达100千瓦/升),压水堆的发电效率约为33%;但由于堆芯中的工作压力和温度都较沸水堆高,因此对反应堆材料性能的要求也较沸水堆更高。

全球现有的核反应堆技术概述:轻水堆,压水堆,重水堆,熔盐堆等

全球现有的核反应堆技术概述:轻水堆,压水堆,重水堆,熔盐堆等

全球现有的核反应堆技术概述:轻水堆,压水堆,重水堆,熔盐堆等核反应堆,是一种可以控制和维持自我连锁反应的装置。

核反应堆主要用途是发电(核电厂)和作为船舶的动力装置。

位于瑞士的一座小型研究反应堆其中,一些反应堆还被用来生产医疗和工业用的同位素或者生产武器级钚。

截止2019年初,全球共有680座核反应堆在运行,其中包括226座研究堆。

现有的核反应堆主要包括轻水堆,沸水堆,重水堆,高温气冷堆和熔盐堆。

下面将逐一介绍:1.轻水堆轻水堆中,冷却剂起着减速剂的作用这种反应堆使用压力容器来容纳核燃料、控制棒、慢化剂和冷却剂。

离开压力容器的热放射性水通过蒸汽发生器循环,蒸汽发生器又将次级(非放射性)水环加热成蒸汽,使涡轮机运转。

它们占据了当前反应堆的大多数(约80%)。

VVER1000反应堆结构华龙一号示范工程航拍美军核动力航母编队轻水堆最新的典型代表有俄罗斯的VVER-1000,美国的AP1000,中国的华龙一号和欧洲的EPR。

美国海军军舰上的反应堆也都属于这种类型。

2.沸水堆福岛核事故的反应堆类型就是沸水堆沸水堆就像没有蒸汽发生器的压水堆。

冷却水的较低压力使其在压力容器内沸腾,产生运行涡轮机的蒸汽。

与压水堆不同,没有主回路和副回路。

这些反应堆的热效率更高,结构也更简单,发生两次严重核事故(切尔诺贝利和福岛核事故)的堆型都属于沸水堆。

3.重水堆(CANDU)秦山核电站的两座重水堆(CANDU堆)重水堆非常类似于压水堆,但使用重水。

虽然重水比普通水贵得多,但它具有更大的中子经济性(产生更多的热中子),允许反应堆在没有燃料浓缩设施的情况下运行。

燃料不是像压水堆那样使用一个大型压力容器,而是包含在数百个压力管中。

这些反应堆以天然铀为燃料,重水反应堆可以在满功率时加燃料,这使得它们在铀的使用方面非常高效(这使得堆芯中的流量控制更加精确)。

加拿大、阿根廷、中国、印度、巴基斯坦、罗马尼亚和韩国都建造了重水堆。

4.高能通道反应堆(RBMK)切尔诺贝利核电站(RBMK,沸水堆)RBMKs是一种苏联设计,在某些方面与CANDU相似,因为它们在动力运行期间可以重新加料,并采用压力管设计。

沸水堆核电厂简介

沸水堆核电厂简介

沸水堆与压水堆的异同:沸水堆与压水堆同属于清水堆家族,两者的共同点是轻水既作为慢化剂,又作为冷却剂。

但与压水堆不同,在沸水堆芯中释放的热能大部分(82%)用来把水变成蒸汽,用于冷却剂温升的热量只占18%。

由于沸腾过程中的温度保持不变,允许使用较低的系统压力。

此外,这种热量传输方案又有可能将核蒸汽供应系统的蒸汽直接送入汽轮机。

沸水堆的主要结构及系统:堆芯反应堆堆芯由若干燃料棒组件构成。

每一组燃料组件包含64个燃料棒位,布置成8*8的正方形栅格。

在其中2个棒位插入充水的空管,目的是籍助于这两根充水管的加强的慢化作用来展平燃料组件内的中子通量。

燃料的形式是圆柱形二氧化铀烧结芯块,芯块通过烧结和磨削等工序制成。

把烧结芯块装入锆合金管,两端用密封段塞封死,就成为燃料棒。

每根燃料棒的一端留有容纳裂变气体的空腔。

每组燃料组件外面包有锆合金盒,以限制冷却剂在组件盒内流动并对燃料组件盒外控制棒起导向作用。

在每四组燃料组件中间,布置有一根十字形控制棒,它能插到任何轴向位置,而与周围的四组燃料组件构成一个控制棒栅元。

在控制棒的十字形断面内排列着许多充填碳化硼的细钢管,这些才是真正的吸收体。

快速停堆的控制棒驱动机构沸水堆的控制棒驱动机构基本上都是装在压力容器底部,因此控制棒要从下往上插入堆芯。

这种布置是由堆型决定的,因为:1,堆芯中的沸腾过程,使得堆芯下半部的慢化剂密度远大于上半部。

从下端插入控制棒的布置方式可以克制出现于下半部的功率尖峰,从而使沿轴向全长的功率分布在燃耗周期内保持适当深度。

(不均匀因子约1.4)。

2,沸水堆的的停堆反应性主要依靠控制棒,因此控制棒的数目很大,底部布置方式使他们在完全插入时也不影响换料操作。

3,压力容器上部空间被汽水分离和蒸汽干燥装置所占用,如控制棒从上部插入,则会使结构设计十分困难。

汽水分离将反应堆内产生的新蒸汽直接引入汽轮机,需要在一回路中将蒸汽尽量干燥,理由是:1,将尽量少的含水滴的气流引入汽轮机以保护导流部件和转动部件;2,将附着在水滴上的放射性和污染物分离出去以免散布到二回路中。

沸水堆和压水堆

沸水堆和压水堆

浅谈沸水堆与压水堆一. 沸水堆与压水堆工作原理沸水堆(Boiling Water Reactor)字面上来看就是采用沸腾的水来冷却核燃料的一种反应堆,其工作原理为:冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。

福岛核电站建于20世纪70年代,属于沸水堆。

压水堆(Pressurized Water Reactor)字面上看就是采用高压水来冷却核燃料的一种反应堆,其工作原理为:主泵将120~160个大气压的一回路冷却水送入堆芯,把核燃料放出的热能带出堆芯,而后进入蒸汽发生器,通过传热管把热量传给二回路水,使其沸腾并产生蒸汽;一回路冷却水温度下降,进入堆芯,完成一回路水循环;二回路产生的高压蒸汽推动汽轮机发电,再经过冷凝器和预热器进入蒸汽发生器,完成二回路水循环。

中国建成和在建共有13台核电机组,除秦山三期采用CANDU堆技术,山东荣成采用高温气冷堆,其余均为压水堆,二. 沸水堆与压水堆共同点沸水堆和压水堆都是属于轻水堆,两者都使用低浓铀燃料,采用轻水作为冷却剂和慢化剂,沸水堆系统比压水堆简单,特别是省去了蒸汽发生器;燃料都是以组件的形式在堆芯排布,组件由栅格排布的燃料栅元组成,燃料栅元由燃料芯块、包壳构成;燃料放置于压力容器当中,外面有安全壳,具备包壳、压力边界、安全壳三重防泄露屏障;沸水堆和压水堆的发电部分功能也都一样。

三. 沸水堆与压水堆的主要区别沸水堆采用一个回路,压水堆有两个回路;沸水堆由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部进入堆芯;沸水堆具有较低的运行压力(约为70个大气压),冷却水在堆内以汽液形式存在,压水堆一回路压力通常达150个大气压,冷却水不产生沸腾。

四. 压水堆相对沸水堆的优势沸水堆控制棒从堆芯底部引入,因此发生“在某些事故时控制棒应插入堆芯而因机构故障未能插入”的可能性比压水堆大,即在停堆过程中一旦丧失动力,就会停在中间某处,最终可能导致临界事故发生;而压水堆的控制棒组件安装在堆芯上部,如果出现机械或者电气故障,控制棒可以依靠重力落下,一插到底,阻断链式反应。

压 水 堆 与 沸 水 堆

压 水 堆 与 沸 水 堆

压水堆与沸水堆核反应堆(Nuclear Reactor)分核裂变反应堆和核聚变反应堆两类,目前投入商业使用的核反应堆都是裂变堆。

裂变堆按照慢化剂分类,可分为轻水堆、重水堆和石墨沸水反应堆。

轻水堆是目前普遍使用的堆型,又分为沸水堆和压水堆,我国主要以压水堆为主,也有部分沸水堆(中国台湾)和重水堆(秦山三期)。

轻水反应堆(Light Water Reactor,简称LWR)是以水和汽水混合物作为冷却剂和慢化剂的反应堆。

在发生核反应过程中,慢中子轰击铀235,会使其变成2~3种较轻的原子核,同时产生2~3个快中子,水可使产生的快中子减速,变为慢中子,然后继续与铀235发生反应,保证链式反应能够继续进行。

压水堆(Pressurized Water Reactor,简称PWR)特征是水在堆芯内不沸腾,因此水必须保持在高压状态。

燃料用的是二氧化铀陶瓷块,这样的铀芯块本身就起防止放射性物质外逸的作用,即构成了第一道安全屏障。

把这些小的铀块重叠在锆合金管内封闭,即成为铀棒。

锆合金管也能防止放射性物质逸出,故构成第二道安全屏障。

若干根铀棒排列后形成燃料元件,一台百万千瓦的压水堆核电站有100多个这样的燃料元件。

这些燃料原件即构成了整个堆芯放反应堆压力容器内。

压力容器可挡住放射性物质外泄,即使堆芯中有1%的核燃料元件发生破坏,放射性物质也不会从它里面泄漏出来,这就构成了第三道安全屏障。

反应堆压力容器内部压力为155个大气压,可把水加热到330℃以上。

温度升高了的水进入蒸汽发生器内,器内有很多细管,细管中的水接收热量变成蒸汽进入蒸汽轮机发电。

压水堆的第四道屏障是安全壳厂房。

它是阻止放射性物质向环境逸散的最后一道屏障,它一般采用双层壳体结构,对放射性物质有很强的防护作用,万一反应堆发生严重事故,放射性物质从堆内漏出,由于有安全壳厂房的屏障,对厂房外的环境和人员的影响也微乎其微。

沸水堆(Boiling Water Reactor,简称BWR)所用的燃料和燃料组件与压水堆相同,但其工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。

压水堆核电站和沸水堆核电站的区别1

压水堆核电站和沸水堆核电站的区别1

压水堆核电站和沸水堆核电站的区别此次日本发生泄露的核电站为沸水堆,我国运行的核电站均为压水堆,无沸水堆。

说一下压水堆和沸水堆的区别。

简单点说就是一点区别:沸水堆的热交换只有一个回路,堆芯加热冷却水直接驱动汽轮机;压水堆的热交换有两个回路,堆芯加热冷却水,冷却水通过蒸汽交换器产生蒸汽驱动汽轮机。

带来的后果有两个:1、沸水堆驱动汽轮机的蒸汽有放射性,一旦泄露很麻烦2、沸水堆蒸汽回路的压力较小,所以整个蒸汽回路的抗压能力小于压水堆BWR-沸水堆, PWR-压水堆。

沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。

由于冷却剂会沸腾成为蒸汽去推动汽轮机,因此堆芯内冷却剂不断的被消耗,必须由给水系统不断的补充水,水从汽轮机处冷凝得来,由泵送回堆芯内。

由主泵提供动力保证一回路内冷却剂的流动使堆芯内热量分布均匀,并能充分带走燃料棒的热量。

由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入。

在插入过程中,平均反应性逐渐降低,但是功率峰逐渐向燃料组件顶部靠拢,因此。

在插入过程中,燃料组件顶部的温度可能是升高的。

现在来说福岛遇到的问题。

由于丧失厂内电和厂外电,泵全挂,无法对堆芯内失去的冷却剂进行补充,导致堆内水位降低。

使燃料组件裸露,此时失去冷却剂的保护,燃料棒温度肯定是骤然升高,此为一。

同时有传言说福岛电站的燃料棒没有插到位,堆没有完全停下。

那么,可能的原因是在由于电力丧失1 / 3或者机械故障燃料棒行走不到位。

由于沸水堆是从堆芯底部向上插棒,那么一旦丧失动力,就会停在中间某处,使燃料棒上部反应性很大,处于高功率状态,温度也较高。

这样就会加剧燃料棒上部失去冷却剂后的恶劣情况,此为二。

现在把一和二结合起来看,就知道福岛面临很严峻的燃料组件烧毁的风险。

此时听到传言说福岛电站用人命去填,手动把控制棒顶上去了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沸水堆与压水堆的主要区别
• 沸水堆采用一个回路,压水堆有两个回路; 沸水堆由于堆芯顶部要安装汽水分离器等 设备,故控制棒需从堆芯底部向上插入, 控制棒为十字形控制棒,压水堆为棒束型 控制棒,从堆芯顶部进入堆芯;沸水堆具 有较低的运行压力(约为70个大气压), 冷却水在堆内以汽液形式存在,压水堆一 回路压力通常达150个大气压,冷却水不产 生沸腾。
7
中核集团首台百万级压水堆核电站的蒸汽发生器
我国正在运行的核电机组(除秦山三期)全部为压水堆堆型,作为一种 技术相当成熟的堆型,具有以下特点:
1.压水堆以轻水作慢化剂及冷却剂,反应堆体积小,建设周期短.造价较低。 2.压水堆采用低富集度铀作燃料,铀的浓缩技术已经过关。
3.压水堆核电厂有放射性的一回路系统与二回路系统相分开,放射性冷却剂 不会进入回路而污染汽轮机,运行、维护方便,需要处理的放射惮废气、 废水、废物量较少。

20世纪90年代,美国和欧洲核电先进国家对今 后建设的核电厂的安全、技术、经济性确定了一 系列具体的奋斗目标。各国也着手研发同时满足 这些要求的第三代压水堆。其中有代表的有法、 德合作开发的欧洲动力堆EPR和美国西屋公司研 发的AP1000。EPR提出在未来压水堆设计中采用 共同的安全方法,通过降低堆芯熔化和严重事故 概率和提高安全壳能力来提高安全性,从放射性 保护、废物处理、维修改进、减少人为失误等方 面根本改善运行条件;AP1000则以全非能动安全 系统、简化设计和布置以及模块化建造为主要特 色。
9
压水堆堆芯(reactor core)
堆芯设计满足的一般要求: 1 堆芯功率分布尽量均匀,以便堆芯有最大的功率输出 2 尽量减少堆芯内不必要的中子吸收材料,提高中子经济性
3 要有最佳的冷却剂流量分配和最小的流动阻力
4 有较长的堆芯寿命,适当的减少换料操作次数 5 堆 来自汽轮机系统的给水进入反应堆压力容器后,沿堆芯围筒与容器内 壁之间的环形空间下降,在喷射泵的作用下进入堆下腔室,再折而向 上流过堆芯,受热并部分汽化。汽水混合物经汽水分离器分离后,水 分沿环形空间下降,与给水混合;蒸汽则经干燥器后出堆,通往汽轮 发电机,做功发电。蒸汽压力约为7MPa,干度不小于99.75%。汽轮 机乏汽冷凝后经净化、加热再由给水泵送入反应堆压力容器,形成一 闭合循环。再循环泵的作用是使堆内形成强迫循环,其进水取自环形 空间底部,升压后再送入反应堆容器内,成为喷射泵的驱动流。某些 沸水堆用堆内循环泵取代再循环泵和喷射泵。 • 沸水堆的控制棒从堆底引入,原因是:①沸水堆堆芯上部蒸汽含 量较多,造成堆芯上部中子慢化不足,这样,堆芯热中子通量分布不 均匀,其峰值下移。控制棒由堆芯底部引入有助于展平中子通量密度。 ②可以空出堆芯上方空间以安装汽水分离器和干燥器。但控制棒自堆 底引入后就不能在控制动力源丧失后靠重力自动插进堆芯,因此沸水 堆的控制棒驱动机构需非常可靠,通常都采用液压驱动,也有采用机 械/液压或电气/液压驱动。在后两种设计中,机械或电气驱动用于正 常控制。快速紧急停堆则都用液压驱动,且每个机构或每两个机构配 有一单独的蓄压器。
19
中子源组件
作用: 1 提高中子通量水平 2 点火 初级中子源
结构与材料:锎
次级中子源
结构与材料:锑、铍
20
阻力塞组件
作用:
阻力塞组件 thimbleplugassembly在不 插控制棒、可燃毒物和中子 源的燃料组件内,为限制导 向管旁流而设置的组件

前述各种堆芯相关组件 都含有中子源组件, 只有阻力塞组件全 部是阻力塞组件
BWR追求简易化的历史
刻意追求简易-直接循环 采用验证技术 传统式BWR 初期的BWR
内置循环泵 取消堆芯周围管道 (1990年代~至今) 内置射流泵 减少周围管道式 (1970年代~至今)
ABWR
带蒸气包/汽水分离器 双重循环式 (1950年代~60年代)
内置汽水分离器 直接循环式 (1960年代)

沸水堆压力远低于压水堆压力,因此在系 统设备、管道、泵、阀门等的耐高压方面 的要求低于压水堆。压水堆由于压力高, 且多了蒸汽发生器、稳压器等设备,技术 性能要求及造价都要高许多。但正是由于 压水堆一、二回路将放射性冷却剂分开, 因此安全性高于沸水堆。
压水堆的发展趋势
• 压水堆核电厂因其功率密度高、结构紧凑、 安全易控、技术成熟、造价和发电成本相 对较低等特点,成为目前国际上最广泛采 用的商用核电堆型,占轻水堆核电机组总 数的3/4。我国核电站以及潜艇基本都采用 了先进的压水堆核电机组,安全性比福岛 高很多。
• 安全可靠是核电站发展的基石,中国 也始终把核电安全放在第一位。我们 有理由相信,随着经验的积累以及技 术的进步,核电站的安全性能将逐步 得到进一步提高,将要发展的第三代 反应堆和未来的第四代反应堆会为我 们安全利用核能营造新的环境。
• 四个发展阶段 50—60 年代采用带蒸气汽包和蒸气分离器的双重 式循环; 70年代取消蒸汽发生器采用直接循环; 80年代采用堆内型喷射泵; 90年代采用堆内型再循环泵。 • 三次标准改进 第一次在76—77年,第二次在78—80年,第三次 在 81 —85年。三次改进后沸水堆的设计,安全性 发生了较大的变化,成为了我们目前所研究的先 进沸水堆。
典型压水堆压力容器与堆芯结 11 构原理图
堆芯横截 面图
12
压 水 堆 纵 剖 面 图
13
压水堆堆芯组件
核燃料组件
棒束控制棒组件
可燃毒物组件
中子源组件
阻力塞组件
14
核燃料组件
采用无盒、带指形控制组件的 棒束型燃料组件。 主要结构:燃料棒+骨架
骨架:上下管座,8
层定位格架,导向管采用 17×17=289=264+24+1 正方形 排列。
21
大亚湾核电厂首次装料堆芯相关 组件种类以及数量
22
大亚湾核电站
• /w_19rqy67b69.html
这个网站有压水堆的视频,我电脑太 卡打不开,等了都快一个小时了,你试 试吧,现在可能网速又好了.要是看着 还行就存下来. 插到PPT里
沸水堆的发展历程

目前全世界核电站、核潜艇和核动力航空 母舰等使用的反应堆中均以压水堆为主, 截至2000年底,全世界有258座运行中的反 应堆,占总数的64.6% • 最早用作核潜艇的军用反应堆。1961年, 美国建成世界上第一座商用压水堆核电站。 压水堆由压力容器、堆芯、堆内构件及控 制棒组件等构成。压力容器的寿命期为40 年。
• 反应堆的功率调节除用控制棒外,还可用改变再循环流量 来实现。再循环流量提高,汽泡带出率就提高,堆芯空泡 减少,使反应性增加,功率上升,汽泡增多,直至达到新 的平衡。这种功率调节比单独用控制棒更方便灵活。仅用 再循环流量调节就可使功率改变25%满功率而不需控制棒 任何运动。 • 沸水堆不用化学补偿(反应性)。燃耗反应性亏损除 用控制棒外,还用燃料棒内加Gd203可燃毒物进行补偿。 • 沸水堆蒸汽直接由堆内产生,故不可避地要挟带出由 水中16O原子核经快中子(n,p)反应所产生的16N。 16N有很强的辐射,因此汽轮机系统在正常运行时都带有 强放射性,运行人员不能接近,还需有适当的屏蔽,但 16N的半衰期仅7.13s,故停机后不久就可完全衰变,不 影响设备检修。
沸水堆简介
• 沸水堆与压水堆不同之处在于冷却水保持在较低的压力 沸水堆是轻水堆的一种,沸水堆核电站工作流程是:冷却 剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃 (约为 70个大气压)下,水通过堆芯变成约285℃的蒸 料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物, 汽,并直接被引入汽轮机。所以,沸水堆只有一个回路, 经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽 省去了容易发生泄漏的蒸汽发生器,因而显得很简单。 轮发电机组发电。 总之,轻水堆核电站的最大优点是结构和运行都比 • 较简单,尺寸较小,造价也低廉,燃料也比较经济,具 沸水堆是由压力容器及其中间的燃料元件、十字形控 制棒和汽水分离器等组成。汽水分离器在堆芯的上部,它 有良好的安全性、可靠性与经济性。它的缺点是必须使 的作用是把蒸汽和水滴分开、防止水进入汽轮机,造成汽 用低浓铀,目前采用轻水堆的国家,在核燃料供应上大 轮机叶片损坏。沸水堆所用的燃料和燃料组件与压水堆相 多依赖美国和独联体。此外,轻水堆对天然铀的利用率 同。沸腾水既作慢化剂又作冷却剂。 低。如果系列地发展轻水堆要比系列地发展重水堆多用 • 天然铀50%以上。
沸水堆工作原理图:
沸水堆内部结构图
沸水堆内部结构图
先进沸水堆
• 利用先进技术和成熟的经验,代表当今核电站发展水平。 它与GE研制的前六代沸水堆(BWR1-BWR6)及欧洲沸水堆相 比,就单相系统或设备的设计而言,在技术上没有明显的 突破,但它集以往沸水堆技术及经验之大成, 更符合先进 轻水堆URD设计规范,在整体上体现出了它综合的优势。 • 精密控制棒驱动系统维修率低,高性能的防辐射材料,长 寿命的中子监视器,改进的水化学系统等等。 • 先进沸水堆通过改进堆芯及燃料的设计使功率振荡衰减比 非常小,堆的稳定性大大提高。 • 先进堆堆内设置自动运行,保护器禁止堆运行在高功率密 度/低流量区,来防止两相流不稳定性的发生。
压水堆相对沸水堆的优势
• 沸水堆与压水堆不同之处在于沸水堆没有蒸汽发 生器,一回路水通过堆芯加热变成约285℃的蒸 汽并直接引入汽轮机,因此常规岛布置有一回路 的冷却剂管道,管道失效可能引起冷却剂泄漏。 压水堆的一回路和蒸汽系统通过蒸汽发生器分隔 开,而且蒸汽发生器安置在安全壳内,只要蒸汽 发生器完整,放射性物质不会释放到环境中,即 使蒸汽发生器故障破损,利用安全壳贯穿件关闭, 放射性物质也不会释放到环境中。
• 从维修来看,压水堆因为一回路和蒸汽系统分开,汽轮机 未受放射性的沾污,所以,容易维修。而沸水堆是堆内产 生的蒸汽直接进入汽轮机,这样,汽轮机会受到放射性的 沾污,所以在这方面的设计与维修都比压水堆要麻烦一些。 • 以沸水堆为动力源的核电厂。沸水堆是以沸腾轻水为 慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽 的动力堆。沸水堆与压水堆同属轻水堆,都有结构紧凑、 安全可靠、建造费用低和负荷跟随能力强等优点;它们都 须使用低浓铀,且须停堆换料。截至1996年底为止,全世 界已运行的沸水堆有94座,总功率78285MW,占全世界 已运行核电厂反应堆总数的21.7%和总功率的22.7%,仅 次于压水堆;在建的沸水堆有6座,总功率7320MW,占 全世界在建核电厂反应堆总数的9.5%和总功率的14.1%。
相关文档
最新文档