线性回归的方差分析和回归系数的t检验
简单线性回归分析2

)
lXY lXX
a Y bX
03:56
24
b=0.1584,a=-0.1353
Yˆ 0.1353 0.1584X
03:56
25
回归直线的有关性质
(1) 直线通过均点 ( X ,Y )
(2) 各点到该回归线纵向距离平方和较到其它任何直线小。
(Y Yˆ)2 [Yˆ a bX ]2
03:56
残 差 0.0282 22 0.0013
总变异 0.0812 23
R2=SS回归/SS总=0.0530/0.0812=0.6527 说明在空气中NO浓度总变异的65.27%与车流量有关。
03:56
48
二、简单线性回归模型
两变量关系的定量描述 统计推断 统计应用
统计预测
Y 的均值的区间估计:总体回归线的95%置信带(相应X 取值水平下,) ;
回归模型 (regression model):
描述变量之间的依存关系的函数。
简单线性回归(simple linear regression):
模型中只包含两个有“依存关系”的变量,一个变量随 另外一个变量的变化而变化,且呈直线变化趋势,称之 为简单线性回归。
03:56
9
例如,舒张压和血清胆固醇的依存性
统计推断 通过假设检验推断NO平均浓度是否随着车 流量变化而变化;
统计应用 利用模型进行统计预测或控制。
03:56
13
两变量关系的定量描述
散点图 简单线性回归方程 回归系数的计算——回归系数的最小二乘估计 线性回归分析的前提条件
03:56
14
1. 散点图
0.25
0.2
NO浓度/×10-6
正态 (normal)假定是指线性模型的误差项服从正态 分布 。
第12章-多重线性回归分析

6 因变量总变异的分解
P
(X,Y)
Y
(Y Y) (Y Y)
(Y Y)
Y X
Y
Y
9
Y的总变异分解
Y Y Yˆ Y Y Yˆ
Y Y 2 Yˆ Y 2 Y Yˆ 2
总变异 SS总
回归平方和 剩余平方和
SS回
SS剩
10
Y的总变异分解
病程 (X2)
10.0 3.0 15.0 3.0 4.0 6.0 2.9 9.0 5.0 2.0 8.0 20.0
表 12-1 脂联素水平与相关因素的测量数据
空腹
回归模空型腹 ?
瘦素
脂联 BMI 病程 瘦素
脂联
(X3)
血糖 (X4)
素(Y)
(X1)
(X2)
(X3)
血糖 素(Y) (X4)
5.75 13.6 29.36 21.11 9.0 4.90 6.0 17.28
H 0: 1 2 3 4 0 ,即总体中各偏回归系数均为0; H 1:总体中各偏回归系数不为0或不全为0;
= 0.05。
2 计算检验统计量: 3 确定P值,作出推断结论。
拒绝H0,说明从整体上而言,用这四个自变量构成 的回归方程解释糖尿病患者体内脂联素的变化是有统 计学意义的。
的平方和 (Y Yˆ)2为最小。
只有一个自变量
两个自变量
例12-1 为了研究有关糖尿病患者体内脂联素水平的影响因 素,某医师测定30例患者的BMI、病程、瘦素、空腹血糖, 数据如表12-1所示。
BMI (X1)
24.22 24.22 19.03 23.39 19.49 24.38 19.03 21.11 23.32 24.34 23.82 22.86
线性回归精确分析讲课文档

(6)指定作图时各数据点的标志变量(case labels)
11
第十一页,共76页。
一元线性回归分析操作
(二) statistics选项 (1)基本统计量输出
– Estimates:默认.显示回归系数相关统计量.
– confidence intervals:每个非标准化的回归系数95%的置信
起的因变量y的平均变动
(二)多元线性回归分析的主要问题
– 回归方程的检验
– 自变量筛选 – 多重共线性问题
18
第Hale Waihona Puke 八页,共76页。多元线性回归方程的检验
(一)拟和优度检验:
(1)判定系数R2:
– R是y和xi的复相关系数(或观察值与预测值的相关系数),测定了因变量 y与所有自变量全体之间线性相关程度
第二十三页,共76页。
23
多元线性回归分析中的自变量筛选
(二)自变量向前筛选法(forward): • 即:自变量不断进入回归方程的过程. • 首先,选择与因变量具有最高相关系数的自变量进入方程,
并进行各种检验;
• 其次,在剩余的自变量中寻找偏相关系数最高的变量进入回归方 程,并进行检验;
– 默认:回归系数检验的概率值小于PIN(0.05)才可以进入方程.
6
第六页,共76页。
一元线性回归方程的检验
(一)拟和优度检验:
(3)统计量:判定系数
– R2=SSR/SST=1-SSE/SST. – R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现
了因变量总变差中,回归方程所无法解释的比例。
– R2越接近于1,则说明回归平方和占了因变量总变差平方和的绝大
统计学第八章练习题

第八章 相关与回归分析一、填空题8.1.1 客观现象之间的数量联系可以归纳为两种不同的类型,一种是 ,另一种是 。
8.1.2 回归分析中对相互联系的两个或多个变量区分为 和 。
8.1.3 是指变量之间存在的严格确定的依存关系。
8.1.4 变量之间客观存在的非严格确定的依存关系,称为 。
8.1.5 按 的多少不同,相关关系可分为单相关、复相关和偏相关。
8.1.6 两个现象的相关,即一个变量对另一个变量的相关关系,称为 。
8.1.7 在某一现象与多个现象相关的场合,当假定其他变量不变时,其中两个变量的相关关系称为 。
8.1.8 按变量之间相关关系的 不同,可分为完全相关、不完全相关和不相关。
8.1.9 按相关关系的 不同可分为线性相关和非线性相关。
8.1.10 线性相关中按 可分为正相关和负相关。
8.1.11 研究一个变量与另一个变量或另一组变量之间相关方向和相关密切程度的统计分析方法,称为 。
8.1.12 当一个现象的数量由小变大,另一个现象的数量也相应由小变大,这种相关称为 。
8.1.13 当一个现象的数量由小变大,而另一个现象的数量相反地由大变小,这种相关称为 。
8.1.14 当两种现象之间的相关只是表面存在,实质上并没有内在的联系时,称之为 。
8.1.15根据相关关系的具体形态,选择一个合适的数学模型来近似地表达变量间平均变化关系的统计分析方法,称为 。
8.1.16 反映变量之间相关关系及关系密切程度的统计分析指标是 。
8.1.17 就是寻找参数01ββ和的估计值01ββ和,使因变量实际值与估计值的残差平方和达到最小。
8.1.18 正如标准差可以说明平均数代表性大小一样, 则可以说明回归线代表性的大小。
8.1.19 回归分析中的显著性检验包括两方面的内容,一是对 的显著性检验;二是对 的显著性检验。
8.1.20 对各回归系数的显著性检验,通常采用 ;对整个回归方程的显著性检验,通常采用 。
第四章计量经济学答案

第四章一元线性回归第一部分学习目的和要求本章主要介绍一元线性回归模型、回归系数的确定和回归方程的有效性检验方法。
回归方程的有效性检验方法包括方差分析法、t检验方法和相关性系数检验方法。
本章还介绍了如何应用线性模型来建立预测和控制。
需要掌握和理解以下问题:1 一元线性回归模型2 最小二乘方法3 一元线性回归的假设条件4 方差分析方法5 t检验方法6 相关系数检验方法7 参数的区间估计8 应用线性回归方程控制与预测9 线性回归方程的经济解释第二部分练习题一、术语解释1 解释变量2 被解释变量3 线性回归模型4 最小二乘法5 方差分析6 参数估计7 控制8 预测二、填空ξ,目的在于使模型更1 在经济计量模型中引入反映()因素影响的随机扰动项t符合()活动。
2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的()、社会环境与自然环境的()决定了经济变量本身的();(2)建立模型时其他被省略的经济因素的影响都归入了()中;(3)在模型估计时,()与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了()与()之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。
3 ()是因变量离差平方和,它度量因变量的总变动。
就因变量总变动的变异来源看,它由两部分因素所组成。
一个是自变量,另一个是除自变量以外的其他因素。
()是拟合值的离散程度的度量。
它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。
()是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。
4 回归方程中的回归系数是自变量对因变量的()。
某自变量回归系数β的意义,指的是该自变量变化一个单位引起因变量平均变化( )个单位。
5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。
线性回归分析ppt课件

21
多元回归分析中的其他问题 u变量筛选问题 Ø向前筛选策略
解释变量不断进入回归方程的过程,首先选择与被解释变量具有最高 线性相关系数的变量进入方程,并进行各种检验;其次在剩余的变量中挑 选与解释变量偏相关系数最高并通过检验的变量进入回归方程。 Ø向后筛选策略
变量不断剔除出回归方程的过程,首先所有变量全部引入回归方程并 检验,然后在回归系数显著性检验不显著的一个或多个变量中,剔除t检验 值最小的变量。 Ø逐步筛选策略
合准则。
最小二乘法将偏差距离定义为离差平方和,即
n
Q( 0, 1, p) ( yi E( yi ))2
i 1
最小二乘估计就是寻找参数β0
、β1、…
βp的估计
值β̂0 、β ̂1、… β ̂p,使式(1)达到极小。通过
求极值原理(偏导为零)和解方程组,可求得估计值,
SPSS将自动完成。
每个解释变量进 入方程后引起的 判定系数的变化 量和F值的变化 量(偏F统计量)
输出个解释变量 和被解释变量的 均值、标准差、 相关系数矩阵及 单侧检验概率值
输出判定系数、 调整的判定系数、 回归方程的标准 误、回归方程显 著性检验的方差 分析表
输出方程中各解 释变量与被解释 变量之间的简单 相关、偏相关系 数和部分相关
30
n回归分析的其他操作
Ø选项
DW值
输出标准化残差 绝对值大于等于 3(默认)的样 本数据的相关信 息
多重共线性分 析: 输出各解释变 量的容忍度、 方差膨胀因子、
特征值、条件 指标、方差 比例等
31
n回归分析的其他操作
Ø选项
•标准化预测值 •标准化残差 •剔除残差 •调整的预测值 •学生化残差 •剔除学生化残差
卫生统计学习题集三

A.P>0.05 B.P<0.01 C.0.05>P>0.02 D.0.02>P >0.01
E.0.1>P>0.05 27.完全随机设计资料的方差分析中,必然有 A.SS总=SS组间+SS组内B.SS总=SS组间+ SS组内+SS误差 C.ν组间>ν组内D.MS总=MS组间+MS组内 E.SS组间>SS组内 28.某地对 100 名儿童作蛔虫感染情况粪检,发现蛔虫卵阳性者 50 名,估计其 95%的可信区间为 A.35~60% B.37~63% C.30~70% D.45~65% E. 40~60% 29.当一组计量资料呈明显偏态分布时,选用下列指标来描述其 集中趋势和离散趋势。 A.均数、标准差 B.中位数、标准差 C.中位数、 四分位数间距 D.均数、四分位数间距 E.几何均数、标准差 30.配对设计的秩和检验,确定 P 值的方法为
出率.
o 试判断两种检验结果有无差别() 3.某医院用某新药与常规药物治疗婴幼儿贫血,将 20 名贫血患 儿随机分为两组,分别接受两种药物治疗,测得血红蛋白增加量 (g/l)如下,问新药与常规药物的疗效有无差别?
应用回归分析,第3章课后习题参考答案

第3章 多元线性回归思考与练习参考答案3.2 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响?答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。
如果n<=p 对模型的参数估计会带来很严重的影响。
因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。
2. 解释变量X 是确定性变量,要求()1rank p n =+<X ,表明设计矩阵X 中的自变量列之间不相关,即矩阵X 是一个满秩矩阵。
若()1rank p <+X ,则解释变量之间线性相关,1()X X -'是奇异阵,则β的估计不稳定。
3.3证明随机误差项ε的方差σ2的无偏估计。
证明:22122222111112221111ˆ(),111()()(1)(1)()(1)1ˆ()()1n i i n n nnnii ii iiii i i i i i ni i SSE e e e n p n p n p E e D e h h n h n p E E e n p σσσσσσσ======='===------∴==-=-=-=--∴==--∑∑∑∑∑∑∑3.4 一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
因为:1. 在样本容量较少,变量个数较大时,决定系数的值容易接近1,而此时可能F 检验或者关于回归系数的t 检验,所建立的回归方()1ˆ2--=p n SSE σ程都没能通过。
2. 样本决定系数和复相关系数接近于1只能说明Y 与自变量X1,X2,…,Xp 整体上的线性关系成立,而不能判断回归方程和每个自变量是显著的,还需进行F 检验和t 检验。
3. 在应用过程中发现,在样本容量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得 R 2往往增大,因此增加解释变量(尤其是不显著的解释变量)个数引起的R 2的增大与拟合好坏无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令狐采学创作
线性回归的方差分析和回归系数的t检验
令狐采学
对同一资料作总体回归系数β是否为零的假设检验时,方差分析和t检验是等价的并且有tβ2=F。
但并不是可以用t检验来取代回归检验的方差分析,对一元多变量的回归来说,方差分析只能代表总体回归β不等于零,即β1、β2…、βn至少存在一个不为零,如果要检验具体的哪一个β不为零,即确定回归线的具体模型,此时就必须用争对该β的t检验。
对于一元单变量回归线,方差分析与t 检验完全等价。
具体检验方法和公式在很多资料上都有提供,随便一百度就有。
令狐采学创作。