原子力显微镜 AFM —上海交大分析测试中心

合集下载

深度解析AFM(原子力显微镜)—上

深度解析AFM(原子力显微镜)—上

深度解析AFM(原子力显微镜)—上显微镜的发展历史:1877光学显微镜1932透射电子显微镜1965扫描电子显微镜1983扫描隧道显微镜1985原子力显微镜1983年,IBM公司苏黎世实验室的两位科学家GerdB inni g和Heinr ich Rohrer发明了扫描隧道显微镜(STM)。

STM的原理是电子的“隧道效应”,所以只能测导体和部分半导体。

1985年,IBM公司的Binn i ng和Stanford大学的Quate研发出了原子力显微镜(AFM),弥补了STM的不足,可以用来测量任何样品的表面。

AFM的原理AFM是在STM的基础上发展起来的一种显微技术。

首先,了解一下STM的工作原理。

STM是利用原子间的隧道效应进行测量的。

隧道效应经典物理学认为,物体越过势垒,有一阈值能量;粒子能量小于此能量则不能越过,大于此能量则可以越过。

例如骑自行车过小坡,先用力骑,如果坡很低,不蹬自行车也能靠惯性过去。

如果坡很高,不蹬自行车,车到一半就停住,然后退回去。

量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好像有一个隧道,故名隧道效应(quantum tunneling) 。

可见,宏观上的确定性在微观.上往往就具有不确定性。

虽然在通常的情况下,隧道效应并不影响经典的宏观效应,因为隧穿几率极小,但在某些特定的条件下宏观的隧道效应也会出现。

STM就是根据这种效应制成的。

当针尖和样品面间距足够小时(<0.4nm) ,在针尖和样品间施加一偏置电压,便会产生隧道效应,电子会穿过势垒,在针尖和样品间流动,形成隧道电流。

在相同的偏置电压下,电流强度对针尖和样品间的距离十分敏感,隧道电流随间距呈指数变化,样品表面的形貌影响着隧道电流的剧烈变化,这种电流变化有计算机进行处理就可以的到样品表面的形貌了。

STM的结构与工作过程AFM即原子力显微镜,它是继扫描隧道显微镜之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵。

原子力显微镜(AFM)—上海交大分析测试中心

原子力显微镜(AFM)—上海交大分析测试中心
度进行直接测量,还不能将样品磁化强度通针尖与样品间的力对应起 来,因为样品表面附近有很高的磁偶极密度,这样样品漏磁场最高的区 域是空间坐标内磁化强度变化最快的地方,MFM检测到的就是针尖在样 品上方感受到的最强力。 下面首先讲一下升起模式Lift Mode,也是非接触模式
3.2 磁力(MFM)显微镜
1982年
扫描隧道 显微镜
人类第一次能够实时 地观察单个原子在物质表 面的排列状态和与表面电 子行为有关的物理、化学 性质,在表面科学、材料 科学、生命科学等领域的 研究中有着重大的意义和 广阔的应用前景,被国际 科学界公认为八十年代世 界十大科技成就之一。
1.1扫描探针显微镜的产生
扫描隧道显微镜 (STM)
2.2 力-距离曲线
三.扫描力显微镜的分类
3.1 原子力显微镜 3.1.1 斥力模式AFM 3.1.2 摩擦力显微镜 3.1.3 化学力显微镜 3.1.4 检测材料不同组分的技术 a. 相位成像技术 b .力调制技术 3.1.5 检测材料纳米硬度的技术
3.2 磁力显微镜 3.3静电力显微镜
3.1 原子力显微镜ຫໍສະໝຸດ 3.1.1 斥力模式AFM 探针与样品之间进行原子间接触,利用它们
之间的斥力得到样品表面的形貌。 具有两种工作模式:
3.1.1.1 接触模式 3.1.1.2 敲击模式(间歇接触)
3.1.1.1 接触模式(Contact Mode)
接触模式 非接触模式
轻敲模式
接触模式探针
接触模式探针示意图
接触模式工作示意图
Dendrimer-like Gold Nanoparticle[3]
DNA Translocation in Inorganic Nanotubes[4]

AFM原子力显微镜操作步骤

AFM原子力显微镜操作步骤

AFM原子力显微镜操作步骤AFM原子力显微镜操作步骤1. AFM仪器开机。

确认电源与控制机箱连接线无误后,依次打开计算机电源→机箱低压电源→高压电源→激光器电源。

2.安装样品以及探针进给。

安装好样品后将固定螺栓微微旋紧,切记勿要用死力!探针进给指的是将样品与探针逼近到进入原子力状态。

仪器提供粗调和细调两种进给机构,每次测试前先将细调旋钮反向退到底,用粗调机构进样至离探针约1mm左右,再用细调机构进样,观察光斑,缓慢细调至光斑移动到PSD信号接收区域,继续微调并观察机箱显示读数:PSD信号约1.600V左右,Z反馈信号约-150至-250。

此时进入反馈状态,进入反馈状态后,控制系统会自动调整和保持样品与探针之间的间距。

3.样品扫描。

运行扫描软件,根据需要设置扫描参数。

进入扫描工作状态。

4.图像显示与存贮。

扫描过程自动进行。

图像以逐行(或逐列) 扫描、逐行(或逐列)显示的方式显示。

在不改变扫描参数的情况下,扫描在同一区域循环重复进行。

也可根据需要改变扫描区域和扫描范围。

对于满意的图像,可随时将图像捕获存贮。

存贮时,计算机自动保存图像信息和扫描参数信息。

5.退出扫描和关机。

如已获得理想的图像,不再作另外扫描,可按“退出”键退出扫描程序。

然后依次关闭高压电源、激光器电源、低压电源等。

注意事项:1. 在进行安装样品操作时,固定螺栓只需轻轻旋紧,勿要用螺刀按压,用力过猛容易损害仪器。

2. 退出扫描后,首先应将样品退出反馈状态,以免误伤探针!3. 在进行样品更换时,为安全考虑,应先关闭高压电源。

更换好以后重新开启高压电源。

简单版原子力显微镜(AFM)Nanoscope V Multimode 8操作方法修订1

简单版原子力显微镜(AFM)Nanoscope V Multimode 8操作方法修订1

原子力显微镜(AFM)Nanoscope V Multimode 8操作方法注意事项:1.开始实验时先开电脑再开控制器(controller)。

2.结束实验时先关控制器(controller)再关电脑。

3.不要对计算机上的设置如字体进行改动。

4. 操作软件关掉后,间隔至少10秒后再打开.5.不能用U盘,只能用CD刻录盘导出文件。

基本操作1. 开机A. 打开计算机和显示器。

B. 打开Nanoscope控制器。

C. 打开光学显微镜VOM光源电源。

注意:请严格遵守以上开机顺序进行操作,否则可能造成系统损坏。

2. 启动软件A. 双击桌面Nanoscope 8.15图标。

B. 点击显微镜图标,在弹出的Select Experiment框中选择实验模式:轻敲模式:框○1选Tapping Mode。

框○2选Tapping Mode in Air。

框○3选Tapping Mode in Air---Standard。

智能模式:框○1选ScanAsyst。

框○2选ScanAsyst in Air。

框○3选ScanAsyst in Air。

然后点击Load Experiment。

3.样品与探针的安装A. 选择合适的探针。

(见具体模式)B. 探针的安装:将探针支架(holder)放在滤纸上,由于探针很脆,用滤纸垫着,以防止用镍子夹探针时掉到桌面上破坏探针。

将探针正面朝上,悬臂朝外放在holder的探针槽里,并用holder上的铜原片压住。

C. 样品放置:(1)确认光学显微镜光斑在样品台中央,红色激光点在光斑中央。

再看电脑屏幕确认激光点进入Video图像视野里。

(2)首先用head上面的Down按钮将扫描管下移,使中间样品台升起。

将待观察样品用双面胶固定在金属原片上,用镊子夹住金属片,轻轻放在样品台边缘,注意,此时一定要轻放,否则容易破坏扫描管中的陶瓷材料,然后用镊子轻轻推金属片,使样品处在样品台中间;再用Up按钮将扫描管升起使扫描管上边缘与样品台平齐。

AFM-原子力显微镜

AFM-原子力显微镜
两种工作模式:恒高模式(保持样品与探针间的距离不变, 测量每一点作用力的大小)和恒力模式(保持样品和探针间作 用力不变,测量每一点高度的变. 化)。
• 检测微悬臂弯曲的方法:1-隧道电流法; 2-电容检测法;3-光学检测法(干涉法 和光束反射法)
• 选择检测方法的原则:检测方法本身对悬 臂产生的作用力应该小到可以忽略的程度。
表面的高分辨率图象; 3.使用环境宽松; 4.应用领域宽广; 5.价格相对来讲较低。
.
STM的缺陷
1.只限于直接观测导体或半导体的表面结构; 2.非导电材料须在其表面覆盖一层导电膜; 3.当表面存在非单一电子态时,STM得到的是表
面形貌和表面电子性质的综合结果。
.
.
AFM发展概况
• 1981年,Binnig G和Rohrer提出扫描隧道显微镜 (STM)原理.并因此而获得1986年诺贝尔物理奖。 STM的分辨能力达原子级,可以用来确定导电物 质固体表面的原子结构和性质。
.
AFM的优缺点
原子级的高分辨率; 宽松的测试条件; 可以得到力学等众多信息。
➢ AFM观察的始终是样品的外部信息; ➢ 样品固定; ➢ 视野局限;
.
AFM的应用
✓AFM成像(形貌观察) ✓力学性能测试 ✓电、磁性能测试 ✓加工、操纵
.
云母表面结构AFM成像
.
石墨表面结构AFM成像
AFM像中,A和B位置是近乎等同的 .
原子力显微镜 Atomic Force Microscope (AFM)
.
透射电镜成像偏差原因
球差:孔径角不同造成折射能力不同 畸变:离轴距离的改变导致放大倍数的改变 慧形差:旁轴射线与非旁轴射线成像 场曲:磁场汇聚作用的差异 色差:电子初速度不完全相同 轴上色散:磁透镜非严格对称 衍射差:类似光学显微镜由透镜导致的

原子力显微镜AFM

原子力显微镜AFM

四、对样品的要求

原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围 很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中最常用的是 新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片最好要用浓硫酸与 30%双 氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测试时需要导电性能良好的载体,如石墨或 镀有金属的基片。

非接触模式(Non-Contact Mode): 优点:没有力作用于样品表面。
缺点:由于针尖与样品分离,横向分辨率低;为了避免接触吸附层而导致针尖胶粘,其扫描 速度低于Tapping Mode和Contact Mode AFM。通常仅用于非常怕水的样品,吸附液层必须 薄,如果太厚,针尖会陷入液层,引起反馈不稳,刮擦样品。由于上述缺点, oncontact Mode的使用受到限制。

如图所示,二极管激光器(Laser Diode)发出的激光束经 过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂 背面反射到由光电二极管构成的光斑位置检测器 ( Detector )。在样品扫描时,由于样品表面的原子与微 悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表 面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过 光电二极管检测光斑位置的变化,就能获得被测样品表面 形貌的信息。


一、仪器结构

在原子力显微镜(Atomic Force Microscopy, AFM)的系统中,可分成三个部分:力检测部 分、位置检测部分、反馈系统。


1.1力检测部分
在原子力显微镜(AFM)的系统中,所要检测 的力是原子与原子之间的范德华力。所以在本 系统中是使用微小悬臂(cantilever )来检测 原子之间力的变化量。微悬臂通常由一个一般 100~500μ m长和大约500nm~5μ m厚的硅片 或氮化硅片制成。微悬臂顶端有一个尖锐针尖, 用来检测样品-针尖间的相互作用力。这微小 悬臂有一定的规格,例如:长度、宽度、弹性 系数以及针尖的形状,而这些规格的选择是依 照样品的特性,以及操作模式的不同,而选择 不同类型的探针。

afm原子力显微镜简介

afm原子力显微镜简介
• 以原子尺寸观察物质表面结构 • 金属、半导体、绝缘体 • 大气、液体环境下直接观察 • 精确测量样品的尺寸参数精确测
量样品的尺寸参数
•2.工作原理

•在原子力显微镜的系统中, 是 利用微小探针与待测物之间交 互作用力, 来呈现待测物的表面 之物理特性。
2.工作原理
• 将一个对力极为敏感的微悬臂的一端固定, 另一端固定针尖 • 当针尖在样品表面扫描时, 因针尖尖端原子与样品表面原子
• 1.偏移图(错位信号图)

在接触模式下, 通过记录反
射激光束在PSPD上的即时信号与预
设信号之间的电压差而成像。
5.辅助图像
• 2.振幅图

在接触模式下, 给微悬臂加上一个小振幅、
低频率的简谐振动后(力调制技术), 通过记录微
悬臂振幅的变化而成像。
• 3. 相图

是与振幅图相类
似, 在轻敲模式下, 通
6.AFM应用
• 观测生物样品
• λ-DNA
• 霍乱菌
6.AFM应用
• 表面信息统计分析
7.AFM的缺陷
• 1.较小的扫描范围, 100μm到 10nm, 容易将局部的、特殊的 结果当作整体的结果而分析, 以及使实验结果缺乏重现性。
• 2.极其高的分辨率, 使得在样 品制备过程中产生的或者是从 背景噪音中产生的极小赝像都 能够被检测、观察到, 产生赝 像。
afm原子力显微镜简介
主要内容
• 1.概述 • 2.工作原理 • 3.仪器介绍 • 4.成像模式 • 5.辅助图像 • 6.AFM应用 • 7.AFM的缺陷
1.概述
• AFM (Atomic Force Microscope)原子力 显微镜 以原子间力为理论基础的显微镜, 从STM(扫描隧道显, 振

AFM

AFM

5.纳米级甲基丙烯酸甲脂的形貌图,把甲基 丙烯酸甲脂滴在云母片新揭开的层面上 , 待其干燥后进行测试得到的纳米尺度的形 貌图 。 其中右图是其三维形貌图。
AFM在DNA领域中研究应用
AFM在DNA研究中应用包括:
1.DNA分子成像的观察 2.DNA的特性(弹性、螺旋系数等)的研究 3.DNA的自组装的研究 4.DNA与其它物质形成复合物AFM研究 5.AFM对DNA的操作
AFM对DNA形态的原位观测
FIG. 2. (A) AFM images of DNA in TE buffer plus 160 mM NaCl. Several regions of a close DNA–DNA contacts are indicated with arrows. (B) Computer traces of a number of high salt images of pSA509 and mini plasmids. YURI L.and LUDA S. Visualization of supercoiled DNA with atomic forcemicroscopy in situ. 1997, Proc. Natl. Acad. Sci. USA


接触式
恒力模式 探针的偏转程度 恒定 探针与样品之间 的距离 检测方向 恒高模式

恒定 Z方向

X、Y方向
非接触式

探针针尖始终不与样品表面接触 : 针尖-样品间 作用在微悬臂上的力 振幅
没有接触到表面时:大振幅振动, 接近表面时:振幅将减小 反向远离表面时:振幅恢复

优点:对样品完全没有损伤 ,灵敏度高 (引力<斥力)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AFM_Tapping_Feedback_Loop.swf
液体下敲击模式
操作同液体下的接触模 式
使用的探针是接触模式 使用的探针
由于探针处在液体中, 而非空气中,探针的共 振频率产生了改变,需 要重新设置
探针容易受到污染
3.1.2 摩擦力显微镜(LFM)
3.1.2 摩擦力显微镜(LFM)
3.1.1 斥力模式AFM 探针与样品之间进行原子间接触,利用它们
之间的斥力得到样品表面的形貌。 具有两种工作模式:
3.1.1.1 接触模式 3.1.1.2 敲击模式(间歇接触)
3.1.1.1 接触模式(Contact Mode)
接触模式 非接触模式
轻敲模式
接触模式探针
接触模式探针示意图
接触模式工作示意图
二. 探针与样品之间的作用力 2.1 力的分类
两个物体在距离上互相接近的过程中, 他们之间会产生各种各样的相互作用力,而 且与物体的特性有关。
1. 范德华力
范德华力存在于各种原子或分子之间,它的有 效距离在几个埃到几百埃的范围内.
利用它来测量表面形貌可达到纳米级的分 辨率,在范德华力区域扫描成像是非接触 的,可以避免损伤针尖。
1.2 扫描探针显微镜的特点及其应用
2、可实时地空得到实时间中表面的三维图像,可用于具有 周期性或不具备周期性的表面结构研究。
应用:可用于表面扩散等动态过程的研究。
3、可以观察单个原子层的局部表面结构,而不是体相或整 个表面的平均性质。
应用:可直接观察到表面缺陷、表面重构、表面吸附体的 形态和位置,以及由吸附体引起的表面重构等。
AFM_Contact_Feedback_Loop.swf
接触模式力曲线
接触模式力曲线
各种典型的力曲线
接触模式力的计算
F= k (△ Z ) △ Z =7.6div*10V/div*Z
piezo sensitivity
是探针和样品间范德华 力、静电力、毛细力 等综合力的表现
液体下的接触模式
液体环境下的接触模式
原子力显微镜(AFM)
扫描近场光学显微境 (SNOM)
弹道电子发射显微镜 (BEEM)
扫描力显微镜(SFM)
扫描探针显微镜 (SPM)
1.2扫描探针显微镜的特点及其应用
1. 分辨率高 横向分辨率可达
0.1nm
纵向分辨率可达
0.01nm
HM:高分辨光学显微镜;PCM:相反差显微镜;(S)TEM:(扫描)透射电子显微镜;FIM:场 离子显微镜;REM:反射电子显微镜
探针在垂直方向有一个小的振荡,比扫描 速度要快得多,刚性表面对探针产生更大的 阻力,微悬臂的弯曲就较大。采集微悬臂的 振荡形变(AC)信息,就可以得到力调制数 据,即不同的刚性的区域。
b. 力调制(force modulation)技术
3.1.5 检测纳米硬度的技术
用金刚石针尖可以进行材料表面与薄膜微硬度测 定,微载荷压痕、划痕研究。
3.1.4 检测材料不同组分的技术
a. 相位成像技术 b. 力调制技术
a.相位(phase)成像技术
探针共振时的振幅和相位图
a.相位(phase)成像技术
用于在轻敲模 式下的相分离 扫描
用于复合材料、 表面污染物等 测试
同时也可得到 比较清晰的轮 廓图
SEBS的分相结构
b. 力调制(force modulation)技术
度进行直接测量,还不能将样品磁化强度通针尖与样品间的力对应起 来,因为样品表面附近有很高的磁偶极密度,这样样品漏磁场最高的区 域是空间坐标内磁化强度变化最快的地方,MFM检测到的就是针尖在样 品上方感受到的最强力。 下面首先讲一下升起模式Lift Mode,也是非接触模式
3.2 磁力(MFM)显微镜
2.1 力的分类
2. 短程力:原子间斥力 对于短程力,有效针尖很小,要求在原子尺
寸,但一般的针尖大小在纳米尺度(5- 40nm),如果得到原子尺寸的图像,就要要求 样品表面足够均匀及弹性变化不强。
2.1 力的分类
3. 跳跃接触 当探针和样品两个平面间距足够小时,它
们之间的力梯度等于它们二者中一个或两个 的势能二级导数,悬臂就会发生不稳定,与 样品表面跳跃接触在一起。
第二种原因是它们之间毛细力,相互吸引 使得针尖发生跳触。
2.1 力的分类
4. 黏附力 与样品的表面性质,杂质和缺陷有关
5. 摩擦力 悬臂与表面接触,同时又在表面上横向移动,产生 滑动摩擦。
6. 毛细力 7. 磁力,用以测试磁性材料表面的磁畴。 8. 静电力, 类似于磁力,可以用来测量表面的电荷密
度等。
3.2 磁力(MFM)显微镜 ——Lift Mode
Lift Mode 适用 于在轻敲模式下
6、在技术本身,SPM具有的设备相对简单、体积小、价格便 宜、对安装环境要求较低、对样品无特殊要求、制样容易、检 测快捷、操作简便等特点,同时SPM的日常维护和运行费用也 十分低廉。
1.2 扫描探针显微镜的特点及其应用
微米纳米结构表征,粗糙度,摩擦力,高度分布,自相关 评估,软性材料的弹性和硬度测试
一. 原子力显微镜的产生、基 本应用及其基本工作原理
1.1 扫描探针显微镜的产生的必然性
低能电子衍射 和
X射线衍射
高分辨透射电子 显微镜
光学显微镜 和
扫描电子显微镜
X射线光电子 能谱
场电子显微镜 和
场离子显微镜
样品具有周期性结构
用于薄层样品的体相和界面研究
不足分辨出表面原子
只能提供空间平均的电子结构 信息
是研究纳米摩 擦的工具
受样品表面粗 糙度的影响
受环境湿度温 度等影响
摩擦系数的比较、计算
3.1.3 化学力显微镜
把探针表面进行功能化 修饰,使针尖表面带有 特殊的官能团
这种官能团与样品表面 的官能团成键
在探针抬起的过程中, 这种化学键作用力就会 在力曲线上粘附力中反 应出来
原子力显微镜
Atomic Force Microscopy(AFM)
上海交通大学分析测试中心 李慧琴
基本内容
一. 原子力显微镜的产生、基本应用及其基本 工作原理
二 .探针与样品之间的作用力 三. 原子力显微镜的分类(AFM、MFM、E
FM、CFM等) 四. 原子力显微镜测试结果的影响因素及其应
用展望
1.3 原子力显微镜(AFM)的基本工作原理
微悬臂长为100-200 微米
弹性系数0.0041.85N/m
针尖曲率半径30nm 微悬臂0.01nm的形
变,激光束反射到光
△ F=k*△电z接收器上,可变成 △ △z—形3-1变0n量m的位。
△ k—微悬臂的弹性系数
△ F—作用力
1.3 原子力显微镜(AFM)的基本工作原理
位置的精确控制:通过在电场作用下可以 伸缩的压电陶瓷完成。这种晶体在受到机械 力并发生形变时会产生电场,或给晶体加一 电场会产生物理形变。AFM中常用的是管状 压电陶瓷。
1.3 原子力显微镜(AFM)的基本工作原理
对微悬臂的设计要求
对微悬臂的设计要求: 1. 低的弹性常数,为了测量较小的力 2. 高的力学共振频率,为了得到与STM相当的数据采
2.2 力-距离曲线
三.扫描力显微镜的分类
3.1 原子力显微镜 3.1.1 斥力模式AFM 3.1.2 摩擦力显微镜 3.1.3 化学力显微镜 3.1.4 检测材料不同组分的技术 a. 相位成像技术 b .力调制技术 3.1.5 检测材料纳米硬度的技术
3.2 磁力显微镜 3.3静电力显微镜
3.1 原子力显微镜
照射到微悬臂背面的激光反射到一个具有四个象限的光电 检测器上,检测器不同象限接收的激光强度差值同微悬臂的 形变量形成一的比例关系。如微悬臂的形变为0.01nm,激光 反射到光电检测器上,则可变成3-10nm 的位移,足够产生 可测量的电压差,反馈系统根据检测器电压的变化不断调整 针尖或样品Z轴方向的位置,以保持针尖-样品间的作用力恒 定。通过测量检测器电压对样品扫描位置的变化,就可得到 样品的表面形貌图像。
3.6.6 纳米微硬度研究
微硬度测定
类金刚石薄膜 23,34,45μm 扫描范围500nm
微载荷划痕研究
10nm厚的类金刚石薄膜
扫描范围9μm,划痕长 5μm
3.2 磁力显微镜(MFM)
探针: 表面镀有一层磁性物质,如Co,Ni等 是一种长程力的测试,适用于磁性样品表面 在敲击模式中,同时进行非接触测试 分辨率取决于探针距离样品的距离 MFM是对针尖与样品漏磁场间的磁力作出响应,而不是对样品的磁化强
的程度得到的,检测微悬臂弯曲的方式有: 1. 隧道电流法:同隧道扫描中使用的方法类似,
2. 电容检测法:微悬臂受力而产生的位移将改变与 之相连的电容极间距离,电容值发生变化,电容 极间还可由一个压电陶瓷驱动器来控制
3. 光学检测法,有光干涉法和激光束反射检 测法。 可以检测出微悬臂0.01nm幅度的弯曲。
集速度和成像带宽。 3. 高的横向刚性,将微悬臂制成V形会提高刚性,为
了减少横向力的影响。 4. 短的悬臂长度,臂长越短,悬臂的弯曲角度就越
大,以提高检测灵敏度 5. 传感器带有镜子或电极,使得能通过光学或隧道电
流检测其动态位移 6. 带有一个尽可能尖锐的针尖
微悬臂弯曲的检测方式
AFM 微悬臂弯曲的检测方式: AFM图像是通过在样品扫描时测量微悬臂受力弯曲
Dendrimer-like Gold Nanoparticle[3]
DNA Translocation in Inorganic Nanotubes[4]
Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires[5]
相关文档
最新文档