动力学与动能定理的综合应用教案

合集下载

动能定理的应用物理教案

动能定理的应用物理教案

动能定理的应用-物理教案一、教学目的通过学习动能定理的应用,能够理解动能定理的物理意义和应用方法,掌握动能定理的计算方法及应用技巧,通过实际案例进行分析,加深对动能定理的理解和应用能力;同时,能够培养学生的科学思维、分析问题和解决问题的能力。

二、教学内容1.动能定理的基本概念动能定理是牛顿运动定律的一个重要应用,它是描述物体运动状态的一个重要公式。

其基本表达式为:$W=\Delta E_k$,其中,$W$表示合外力所做的功,$\Delta E_k$表示物体动能的增量。

动能是描述物体运动状态的重要物理量,它是物体速度的平方与质量的乘积,即$E_k=\frac{1}{2}mv^2$。

2.动能定理的应用动能定理可以用来分析物体的运动状态变化,特别在研究机械能的转化和守恒的问题时,使用动能定理非常方便。

体运用如下:(1)计算合外力所做的功当物体在运动过程中受到作用力时,会改变物体的动能。

通过应用动能定理,可以计算出作用外力所做的功。

计算公式为:$W_{\mathrm{AB}}=\Delta E_k=E_{k2}-E_{k1}$,其中,$E_{k2}$表示物体在B点的动能,$E_{k1}$表示物体在A点的动能。

考虑到机械能守恒的条件,合外力做的功可以应用动能定理推导出物体由A点到B点的速度关系式,也就是牛顿第二定律。

(2)计算物体的速度和距离通过应用动能定理,可以计算物体在不同位置的速度大小和移动距离,推导物体运动的运动规律,特别是考虑到重力的作用、摩擦力的作用、空气阻力的影响等,可以准确的计算物体的运动情况。

(3)计算功率和能量转化效率利用动能定理,可以计算物体运动时所产生的功率大小和能量转化效率,这对于实际运动的设备与机器的设计和优化,以及能源的合理利用等有着非常重要的意义。

三、教学方法本节课程通过讲解理论知识和实例分析相结合的方式完成,采用解析和实验的方式教学,既可以通过推导公式和计算实例演示说明动能定理的基本应用,又可以通过物理实验来说明类似实际运动设备的原理,针对具体案例进行思考并引导学生进行讨论与发现。

高中物理《动能定理的综合应用》教案讲义

高中物理《动能定理的综合应用》教案讲义

习题课4 动能定理的综合应用[学习目标] 1.进一步理解动能定理,领会应用动能定理解题的优越性. 2.会利用动能定理分析变力做功、曲线运动以及多过程问题.[合 作 探 究·攻 重 难] 利用动能定理求变力的功1.动能定理不仅适用于求恒力做功,也适用于求变力做功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W 变+W 其他=ΔE k .图1如图1所示,某人利用跨过定滑轮的轻绳拉质量为10 kg 的物体.定滑轮的位置比A 点高3 m .若此人缓慢地将绳从A 点拉到同一水平高度的B 点,且A 、B 两点处绳与水平方向的夹角分别为37°和30°,则此人拉绳的力做了多少功?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计滑轮的摩擦)[解析] 取物体为研究对象,设绳的拉力对物体做的功为W .根据题意有h =3 m物体升高的高度Δh =h sin 30°-h sin 37°① 对全过程应用动能定理W -mg Δh =0②由①②两式联立并代入数据解得W =100 J则人拉绳的力所做的功W 人=W =100 J.[答案]100 J[针对训练]1.一质量为m的小球,用长为l的轻绳悬挂于O点.小球在水平力F作用下,从平衡位置P点很缓慢地移动到Q点,如图2所示,则力F所做的功为()图2A.mgl cos θB.Fl sin θC.mgl(l-cos θ) D.Fl cos θC[小球的运动过程是缓慢的,因而任一时刻都可看成是平衡状态,因此F 的大小不断变大,F做的功是变力功.小球上升过程只有重力mg和F这两个力做功,由动能定理得W F-mgl(1-cos θ)=0.所以W F=mgl(1-cos θ).]利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和.如图3所示,ABCD为一竖直平面内的轨道,其中BC水平,A点比BC高出10 m,BC长1 m,AB和CD轨道光滑.一质量为1 kg的物体,从A点以4 m/s的速度开始运动,经过BC后滑到高出C点10.3 m的D点速度为0.求:(取g=10 m/s2)图3(1)物体与BC轨道间的动摩擦因数;(2)物体第5次经过B点时的速度;(3)物体最后停止的位置(距B点多少米).思路点拨:①重力做功与物体运动路径无关,其大小为mgΔh,但应注意做功的正、负.②物体第5次经过B点时在水平面BC上的路径为4s BC.[解析](1)由动能定理得-mg(h-H)-μmgs BC=0-12m v21,解得μ=0.5.(2)物体第5次经过B点时,物体在BC上滑动了4次,由动能定理得mgH-μmg·4s BC=12m v 22-12m v21,解得v2=411 m/s≈13.3 m/s.(3)分析整个过程,由动能定理得mgH-μmgs=0-12m v21,解得s=21.6 m.所以物体在轨道上来回运动了10次后,还有1.6 m,故距B点的距离为2 m -1.6 m=0.4 m.[答案](1)0.5(2)13.3 m/s(3)距B点0.4 m(1)当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和.(2)研究初、末动能时,只需关注初、末状态,不必关心中间运动的细节.[针对训练]2.如图4所示,右端连有一个光滑弧形槽的水平桌面AB 长L =1.5 m ,一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的A 端由静止开始向右运动,木块到达B 端时撤去拉力F ,木块与水平桌面间的动摩擦因数μ=0.2,取g =10 m/s 2.求:图4(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽);(2)木块沿弧形槽滑回B 端后,在水平桌面上滑动的最大距离.[解析] (1)设木块沿弧形槽上升的最大高度为h ,木块在最高点时的速度为零.从木块开始运动到弧形槽最高点,由动能定理得:FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N所以h =FL -F f L mg =(1.5-1.0)×1.50.5×10m =0.15 m. (2)设木块离开B 点后沿桌面滑动的最大距离为x .由动能定理得:mgh -F f x =0所以:x =mgh F f=0.5×10×0.151.0 m =0.75 m. [答案] (1)0.15 m (2)0.75 m动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=0.②没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=gR.如图5所示,一可以看成质点的质量m=2 kg的小球以初速度v0沿光滑的水平桌面飞出后,恰好从A点沿切线方向进入圆弧轨道,其中B为轨道的最低点,C为最高点且与水平桌面等高,圆弧AB对应的圆心角θ=53°,轨道半径R=0.5 m,已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g取10 m/s2.图5(1)求小球的初速度v0的大小;(2)若小球恰好能通过最高点C,求在圆弧轨道上摩擦力对小球做的功.[解析](1)在A点由平抛运动规律得:v A=v0cos 53°=53v0 ①小球由桌面到A点的过程中,由动能定理得mg(R+R cos θ)=12m v2A-12m v2②由①②得:v0=3 m/s.(2)在最高点C处有mg=m v2CR,小球从桌面到C点,由动能定理得W f=12m v2C-12m v2,代入数据解得W f=-4 J.[答案](1)3 m/s(2)-4 J[当堂达标·固双基](教师独具)1.如图所示,AB为14圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R.一质量为m的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落时,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为()A.μmgR2B.mgR2C.mgR D.(1-μ)mgRD[设物体在AB段克服摩擦力所做的功为W AB,BC段摩擦力做功-μmgR.故物体从A运动到C的全过程,由动能定理得:mgR-W AB-μmgR=0解得:W AB=mgR-μmgR=(1-μ)mgR,故D正确.]2.如图所示,在半径为0.2 m的固定半球形容器中,一质量为1 kg的小球(可视为质点)自边缘上的A点由静止开始下滑,到达最低点B时,它对容器的正压力大小为15 N.取重力加速度为g=10 m/s2,则球自A点滑到B点的过程中克服摩擦力做的功为()A.0.5 J B.1.0 JC.1.5 J D.1.8 JC [在B 点有N -mg =m v 2R ,得E k B =12m v 2=12(N -mg )R .A 滑到B 的过程中运用动能定理得mgR +W f =12m v 2-0,得W f =12R (N -3mg )=12×0.2×(15-30)J=-1.5 J ,所以球自A 点滑到B 点的过程中克服摩擦力做的功为1.5 J ,C 正确.]3.一个质量为m 的小球拴在绳的一端,绳另一端受大小为F 1的拉力作用,小球在光滑水平面上做半径为R 1的匀速圆周运动(如图所示),今将力的大小变为F 2,使小球在水平面上做匀速圆周运动,但半径变为R 2(R 2<R 1),则小球运动的半径由R 1变为R 2的过程中拉力对小球做的功为多少?[解析] 小球运动的半径由R 1变为R 2时,半径变小,绳子的拉力虽为变力,但对小球做了正功,使小球的速度增大,动能发生了变化,根据动能定理有W F =12m v 22-12m v 21①根据牛顿第二定律有F 1=m v 21R 1故有12F 1R 1=12m v 21② 同理有12F 2R 2=12m v 22③ 由①②③得W F =12(F 2R 2-F 1R 1).[答案] 12(F 2R 2-F 1R 1)。

动能和动能定理(教案)

动能和动能定理(教案)

动能和动能定理(教案)第一章:引言1.1 课程背景本节课将介绍物理学中的一个重要概念——动能,并引入动能定理。

动能是物体运动时所具有的能量,它与物体的质量和速度有关。

动能定理则揭示了物体在受力作用下动能的变化规律。

1.2 学习目标通过本节课的学习,学生能理解动能的概念,掌握动能的计算方法,并能运用动能定理分析实际问题。

1.3 教学方法采用讲授法,结合示例和练习,引导学生掌握动能和动能定理的相关知识。

第二章:动能的概念2.1 动能的定义动能是指物体由于运动而具有的能量。

它的计算公式为:动能= 1/2 m v^2,其中m为物体的质量,v为物体的速度。

2.2 动能的性质动能是一种标量,没有方向,只与物体的质量和速度有关。

动能随着物体速度的增加而增加,速度减小而减小。

2.3 动能与势能的转化物体在运动过程中,动能可以与势能相互转化。

例如,在抛体运动中,物体上升时势能增加,下降时势能减少,动能增加。

第三章:动能定理3.1 动能定理的表述动能定理指出,物体所受外力的功等于物体动能的变化。

即:外力所做的功= 物体动能的增加量。

3.2 动能定理的应用动能定理可以用来分析物体在受力作用下的运动状态。

通过计算外力所做的功和物体动能的变化,可以判断物体的速度、质量和加速度等参数。

第四章:动能定理的实际应用4.1 抛体运动以抛体运动为例,运用动能定理分析物体在抛出和落回时的动能变化,以及重力所做的功。

4.2 碰撞问题运用动能定理分析碰撞过程中动能的转移和转化,以及碰撞前后物体的速度和质量变化。

4.3 摩擦力对动能的影响分析摩擦力对物体动能的影响,如摩擦力做功导致物体动能的减少。

第五章:总结与拓展5.1 动能和动能定理的概念和应用本节课介绍了动能和动能定理的概念,以及它们在实际问题中的应用。

5.2 动能和动能定理的拓展研究引导学生思考动能和动能定理在其他领域中的应用,如航空航天、汽车运动等。

5.3 课后作业布置相关练习题,巩固学生对动能和动能定理的理解和应用。

动能和动能定理(教案)

动能和动能定理(教案)

动能和动能定理(教案)章节一:引言教学目标:1. 让学生了解动能的概念。

2. 让学生理解动能定理的含义。

教学内容:1. 动能的定义。

2. 动能定理的表述。

教学步骤:1. 引入话题:讨论物体运动时具有的能量。

2. 讲解动能的概念:物体由于运动而具有的能量。

3. 解释动能定理:物体的动能变化等于所受外力做的功。

教学评估:1. 提问:动能的定义是什么?2. 提问:动能定理的含义是什么?章节二:动能的计算教学目标:1. 让学生掌握动能的计算方法。

2. 让学生了解影响动能的因素。

教学内容:1. 动能的计算公式。

2. 影响动能的因素。

教学步骤:1. 讲解动能的计算公式:动能= 1/2 m v^2,其中m 为物体的质量,v 为物体的速度。

2. 讨论影响动能的因素:质量、速度。

教学评估:1. 提问:动能的计算公式是什么?2. 提问:影响动能的因素有哪些?章节三:动能定理的应用教学目标:1. 让学生掌握动能定理在实际问题中的应用。

2. 让学生学会利用动能定理解决问题。

教学内容:1. 动能定理在实际问题中的应用。

2. 利用动能定理解决问题的步骤。

教学步骤:1. 讲解动能定理在实际问题中的应用:物体在不同高度的动能计算、物体碰撞等问题。

2. 介绍利用动能定理解决问题的步骤:确定已知量和未知量、列式求解。

教学评估:1. 提问:动能定理在实际问题中的应用有哪些?2. 提问:利用动能定理解决问题的步骤是什么?章节四:动能定理的综合应用教学目标:1. 让学生能够综合运用动能定理解决复杂问题。

2. 让学生理解动能定理在物理学中的重要性。

教学内容:1. 动能定理在复杂问题中的应用。

2. 动能定理在物理学中的重要性。

教学步骤:1. 讲解动能定理在复杂问题中的应用:物体在斜面上的运动、物体在空气阻力的影响下的运动等。

2. 强调动能定理在物理学中的重要性:能量守恒、力学问题解决等。

教学评估:1. 提问:动能定理在复杂问题中的应用有哪些?2. 提问:动能定理在物理学中的重要性是什么?章节五:总结与复习教学目标:1. 让学生复习动能和动能定理的知识点。

动能和动能定理(教案)

动能和动能定理(教案)

动能和动能定理(教案)第一章:引言教学目标:1. 了解动能的概念。

2. 理解动能与物体运动状态的关系。

教学内容:1. 动能的定义:介绍动能的定义,即物体由于运动而具有的能量。

2. 动能的单位:解释国际单位制中动能的单位,即焦耳(J)。

3. 动能与速度的关系:阐述动能与物体速度的关系,即速度越大,动能越大。

教学活动:1. 引入动能的概念,让学生初步了解动能的概念。

2. 通过示例或实验,让学生观察和体验动能与物体运动状态的关系。

作业与评估:1. 让学生回答动能的定义和单位。

2. 让学生解释动能与速度的关系,并给出实例。

第二章:动能的计算教学目标:1. 学会计算物体的动能。

2. 理解动能计算公式的含义。

教学内容:1. 动能计算公式:介绍动能计算公式,即动能等于物体的质量乘以速度的平方的一半。

2. 动能与质量和速度的关系:解释动能与物体质量和速度的关系,即质量越大,速度越大,动能越大。

教学活动:1. 讲解动能计算公式的推导过程。

2. 通过示例或练习,让学生运用动能计算公式计算不同物体的动能。

作业与评估:1. 让学生回答动能计算公式及其含义。

2. 让学生运用动能计算公式计算给定物体的动能。

第三章:动能定理教学目标:1. 理解动能定理的概念。

2. 学会应用动能定理解决问题。

教学内容:1. 动能定理的定义:介绍动能定理的定义,即外力对物体所做的功等于物体动能的变化。

2. 动能定理的应用:解释如何应用动能定理解决问题,例如计算物体在受力作用下的动能变化。

教学活动:1. 讲解动能定理的概念和推导过程。

2. 通过示例或练习,让学生应用动能定理解决问题。

作业与评估:1. 让学生回答动能定理的定义及其应用。

2. 让学生应用动能定理解决给定的问题。

第四章:动能定理在实际问题中的应用教学目标:1. 学会将动能定理应用于实际问题。

2. 理解动能定理在物理学和工程学中的应用。

教学内容:1. 动能定理与实际问题的关系:介绍如何将动能定理应用于实际问题,例如计算物体在碰撞、抛射和摩擦力作用下的动能变化。

高三物理教案动能定理及其应用(5篇)

高三物理教案动能定理及其应用(5篇)

高三物理教案动能定理及其应用(5篇)高三物理教案动能定理及其应用(5篇)作为一位兢兢业业的人民教师,前方等待着我们的是新的机遇和挑战,有必要进行细致的教案准备工作,促进思维能力的发展。

怎样写教学设计才更能起到其作用呢?下面是小编收集整理的教案范文。

欢迎分享!高三物理教案动能定理及其应用(精选篇1)1、研究带电物体在电场中运动的两条主要途径带电物体在电场中的运动,是一个综合力和能量的力学问题,研究的方法与质点动力学相同(仅仅增加了电场力),它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动能定理、功能原理等力学规律.研究时,主要可以按以下两条途径分析:(1)力和运动的关系--牛顿第二定律根据带电物体受到的电场力和其它力,用牛顿第二定律求出加速度,结合运动学公式确定带电物体的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.(2)功和能的关系--动能定理根据电场力对带电物体所做的功,引起带电物体的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电物体的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.2、研究带电物体在电场中运动的两类重要方法(1)类比与等效电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电物体的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g值的变化等.(2)整体法(全过程法)电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运动的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题切入点或简化计算高三物理教案动能定理及其应用(精选篇2)1、与技能:掌握运用动量守恒定律的一般步骤。

2、过程与:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。

《动能定理的应用》教学设计

《动能定理的应用》教学设计

《动能定理的应用》教学设计教学目标:1.理解动能定理的概念和公式;2.掌握动能定理的应用方法;3.能够运用动能定理解决物理问题。

教学重难点:1.动能定理的概念和公式;2.动能定理的应用方法。

教学准备:1.教学课件;2.物体的质量和速度数据。

教学过程:一、导入与激发兴趣(10分钟)1.出示一辆小汽车在高速公路上快速行驶的图片,引出问题:“为什么车越快,遇到阻力就越大?”2.引导学生思考,提出与问题相关的概念:“动能定理”、“动能”、“阻力”等。

二、概念讲解与公式推导(20分钟)1.教师通过课件讲解动能定理的概念,即物体的动能改变等于物体受力做功的大小。

2. 引导学生思考,了解动能的定义和计算公式:动能等于物体质量乘以速度的平方的一半,即KE=1/2mv^23. 分析推导动能定理的公式:物体受力做的功等于力乘以位移,即W=F·s,在动能定理中代入受力为质量乘以加速度,位移为速度乘以时间,即F·s=ma·s=½mv^2-½mu^2,化简即得动能定理的公式。

三、应用实例讲解(30分钟)1.教师通过课件或板书介绍几个动能定理的应用实例,如小球从斜面上滚下来,弹簧上的物体的弹射等。

2.引导学生分析实例中的物体受力情况,列出相关的物理量;3.结合实例,引导学生用动能定理解决问题,计算相应的物理量。

四、小组合作探究(30分钟)1.学生分成小组,每组分配一道应用动能定理解决的问题;2.学生通过讨论、计算等方式,尝试解决问题;3.每组派出代表上台汇报解题思路和结果。

五、拓展应用练习(20分钟)1.学生进行个人或小组的练习,选择典型的动能定理问题进行解答;2.教师进行辅导和指导。

六、总结与提升(10分钟)1.教师对本节课的内容进行总结,简要介绍动能定理的应用和意义;2.学生回答针对动能定理的各类问题,检查学习效果;3.引导学生思考:动能定理在哪些方面有着重要的应用?教学反思:通过引入问题、讲解概念、推导公式、分析实例等多种教学方法,可以使学生在理解动能定理的基础上,掌握运用动能定理解决物理问题的方法。

动能和动能定理(教案)

动能和动能定理(教案)

动能和动能定理(教案)章节一:引言教学目标:1. 让学生了解动能的概念和意义。

2. 让学生理解动能定理的基本原理。

教学内容:1. 动能的定义和计算公式。

2. 动能定理的内容和表达式。

教学步骤:1. 引入话题:讨论物体的运动和它的能量。

2. 介绍动能的概念:解释物体由于运动而具有的能量。

3. 讲解动能的计算公式:KE = 1/2 mv^2,其中m为物体的质量,v为物体的速度。

4. 引入动能定理:动能的变化等于物体所受的合外力做的功。

5. 讲解动能定理的表达式:ΔKE = W,其中ΔKE为动能的变化量,W为合外力做的功。

章节二:动能的计算教学目标:1. 让学生掌握动能的计算方法。

2. 让学生能够运用动能的概念解决实际问题。

教学内容:1. 动能的计算公式:KE = 1/2 mv^2。

2. 动能的单位:焦耳(J)。

教学步骤:1. 回顾动能的概念和计算公式。

2. 讲解动能的单位:1 J = 1 kg·m^2/s^2。

3. 举例说明动能的计算方法:给定物体的质量和速度,计算动能。

4. 练习题:计算不同质量和速度的物体的动能。

章节三:动能定理的应用教学目标:1. 让学生了解动能定理在实际问题中的应用。

2. 让学生能够运用动能定理解决动力学问题。

教学内容:1. 动能定理的应用场景:物体在力的作用下的运动。

2. 动能定理的解题步骤:确定物体的初、末动能和外力做的功。

教学步骤:1. 回顾动能定理的内容和表达式。

2. 讲解动能定理的应用场景:物体在力的作用下的运动。

3. 讲解动能定理的解题步骤:确定物体的初、末动能和外力做的功。

4. 举例说明动能定理的应用:计算物体在力的作用下的位移或力的做功。

5. 练习题:运用动能定理解决实际的动力学问题。

章节四:动能和动能定理的实验教学目标:1. 让学生通过实验观察和验证动能的概念和动能定理。

2. 让学生掌握实验方法和技巧。

教学内容:1. 动能和动能定理的实验原理。

2. 动能和动能定理的实验方法和步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力学与动能定理的综合应用
高三第二轮复习
一、教材分析:
《动能和动能定理》是人教版高中物理必修2第七章《机械能守恒定律》第七节内容。

动能定理是整个力学的重点。

本节内容在高考中占有很重要的位置。

通过本节内容的学习,既深化了对功的概念的理解,使学生对“功是能量转化的量度”有了进一步的理解,拓展了求功的思路,并为用功能关系处理问题打开了思维通道。

二、学情分析:
因为有前面的基础,本节可以放手让学生自己去研究探讨。

让学生经过从感性认识到理性认识的过程,让每一位同学都积极参与课堂教学,每一位同学都能享受成功的喜悦。

三、教学目标:
知识与技能
会用动能定理解决力学问题,掌握用动能定理解题的一般步骤。

过程与方法
理论联系实际,学习运用动能定理分析解决问题的方法。

情感态度与价值观
1.通过演绎推理的过程,培养对科学研究的兴趣。

2.通过对动能和动能定理的演绎推理,使学生从中领略到物理等自然学中所蕴含的严谨逻辑关系,反映了自然界的真实美
四、教学重难点:应用动能定理解决力学问题。

五、教学过程:
【动能定理的适用条件】
1、动能定理可以由牛顿运动定律和运动学公式推出。

但作用在物体上的力无论是什么性质,即无论是恒力还是变力,无论是作直线运动还是曲线运动,动能定理都适用。

2、动能定理主要用于解决变力做功、曲线运动和多过程的动力学问题,对于未知加速度a和时间t,或不需求加速度和时间的动力学问题,一般用动能定理求解为最佳解法
基础知识梳理】
【热点难点例析】
1.动能定理的表述:合外力做的功等于物体动能的变化。

(这里的合外力指物体受到的所有外力的合力,包括重力)
动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。

实际应用时,后一种表述比较好操作。

不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。

和动量定理一样,动能定理也建立起过程量(功)和状态量(动能)间的联系。

这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。

和动量定理不同的是:功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。

【例1】一个质量为m的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v,在力的方向上获得的速度分别为v1、v2,那么在这段时间内,其中一个力做的功为
2.对外力做功与动能变化关系的理解:
外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.
3.应用动能定理解题的步骤
(1)确定研究对象和研究过程。

和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。

(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。

(2)对研究对象进行受力分析。

(研究对象以外的物体施于研究对象的力都要分析,含重力)。

(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。

如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。

(4)写出物体的初、末动能。

(5)按照动能定理列式求解。

【例2】质量为m的钢珠从高出地面h处由静止自由下落,落到地面进入沙坑h/10停止,则(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?
(2)若让钢珠进入沙坑h/8,则钢珠在h处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。

【动能定理的综合应用】
动能定理可以由牛顿定律推导出来,原则上讲用动能定律能解决物理问题都可以利用牛顿定律解决,但在处理动力学问题中,若用牛顿第二定律和运动学公式来解,则要分阶段考虑,且必须分别求每个阶段中的加速度和末速度,计算较繁琐。

但是,我们用动能定理来解就比较简捷。

【例3】质量为M的木块放在水平台面上,台面比水平地面高出h=0.20m,木块离台的右端L=1.7m。

质量为m=0.10M的子弹以v0=180m/s的速度水平射向木块,并以v=90m/s的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s=1.6m,求木块与台面间的动摩擦因数为μ。

六、课后练习
电机带动水平传送带以速度v匀速转动,一质量为m的小木块由静止轻放在传送带上(传送带足够长),若小木块与传送带之间的动摩擦因数为μ,如图5-4-8所示,当小木块与传送带相对静止时,求:
(1)小木块的位移;
(2)传送带转过的路程;
(3)小木块获得的动能;
(4)摩擦过程产生的摩擦热
七、课后反思
动能定理是一条适用范围很广的物理定理,但教材在推导这一定理时,由一个恒力做功使物体的动能变化,得出力在一个过程中所作的功等于物体在这个过程中动能的变化。

然后逐步扩展到几个力做功和变力做功以及曲线运动的情况。

这个梯度很大,为了帮助学生真正理解动能定理,我设置了一些具体的问题,逐步深入地进行研究,让学生寻找物体动能的变化与哪些力做功相对应,从而使学生能够顺利的准确的理解动能定理的含义。

通过实例和例题分析使学生掌握了应用动能定理的适用范围和解题步骤,同时也使学生体会到了物理对于科技与生活的重要作用。

使同学们更加热爱物理,热爱科学。

相关文档
最新文档