共轭二烯烃
4共轭二烯烃

•低温下 加成为主是由于反应需要的活化能较低 低温下1,2加成为主是由于反应需要的活化能较低 低温下 加成为主是由于反应需要的活化能较低. •高温下 加成为主是由于 加成产物更稳定 高温下1,4加成为主是由于 加成产物更稳定. 高温下 加成为主是由于1,4加成产物更稳定
1,2-加成 加成 1,4-加成 加成
(2)
第二步: 溴离子( 第二步 溴离子 Br- )加成 加成 CH2
δ+
CH
CH-CH3 + Br- →
δ+
CH2-CH=CH-CH3 Br 1,4-加成产物 加成产物
(1)的稳定性 的稳定性
•看成烯丙基碳正 看成烯丙基碳正 离子的取代物
p,π共轭效应—由π键的p轨道和碳正离子中 2碳原子 p,π 由 键的 轨道和碳正离子中sp 轨道和碳正离子中
的空p轨道相互平行且交盖而成的离域效应 叫p~π共轭 的空 轨道相互平行且交盖而成的离域效应, π 轨道相互平行且交盖而成的离域效应 效应. 效应 •在构造式中以箭头表示 π 电子的离域. 在构造式中以箭头表示 电子的离域 •碳正离子 不存在这种离域效应 故(1)稳定 碳正离子(2)不存在这种离域效应 稳定. 碳正离子 不存在这种离域效应, 稳定
共轭二烯烃的命名
H CH3 C=C H H C=C CH3 H
)(2Z, ) , 己二烯 (1)( ,4Z)-2,4-己二烯 )( (2)顺,顺-2,4-己二烯 ) , 己二烯 )(Z, ) , 己二烯 (3)( ,Z)-2,4-己二烯 )(
一, 共轭二烯烃的结构 二烯烃的结构 •最简单的共轭二烯烃 1,3-丁二烯结构 最简单的共轭二烯烃-丁二烯结构: 最简单的共轭二烯烃 丁二烯结构 1,3-丁二烯结构 丁二烯结构
有机化学第四章共轭二烯烃综述

稳定性依次减弱
共轭效应的对分子影响的相对强度:
π ,π > p ,π > σ,π> σ, p
§4.2 共振论
(resonance theory)
Pauling L. 1931-1933年 共振论 1953年诺贝尔奖 一、基本观点: 当一个分子、离子或自由基不能用 一个经典结构表示时,可用几个经典结 构式的叠加——共振杂化体描述。
CH CH2 CH CH2
1,3–丁二烯
1,4–戊二烯
1,4–环己二烯
1,3–环辛二烯
§4.1 .1
二烯烃的分类
隔离双键二烯烃
CH2 CH CH2 CH CH2
1,4–戊二烯
1,5–环辛二烯
累积双键二烯烃
H2C
丙二烯(allene)
CH3 CH2 C CH CH2
C CH2
共轭双键二烯烃
CH2 CH CH CH2
π电子的离域,均会影响到分子的其余部 分,这种电子通过共轭体系传递的现象, 称为共轭效应。
共轭效应的结果将导致:
(1) 键长的平均化,表现在C—C单键的缩短。
(2) 体系能量降低。
氢化热
C H2 = C H C H2 C H= C H2 C H3C H= C H C H= C H2
-1 kj mol 氢化热 = 254 -1 kj mol 氢化热 = 226
三、聚合反应
合成橡胶:Ziegler-Natta 催化剂
n CH2 CH CH CH2 TiCl4–AlEt3
CH3 n CH2 C CH CH2
CH2 H
CH2 CH3
C
C
CH2 H
CH2 H n
顺丁橡胶
TiCl4–AlEt3
二烯烃,共轭体系

一二烯烃分子中含有不止一个双键的开链烃,按照双键数目的多少,分别叫做二烯烃,三烯烃.....至多烯烃等。
其中以二烯烃最为重要。
而根据二烯烃中双键位置的不同,又可以分为三类:a 累积二烯烃:两个双键连接在同一个碳原子上。
B 共轭二烯烃:两个双键之间,有一个单键相隔。
C 隔离二烯烃:两个双键之间,有两个或以上的单键相隔。
在这里主要介绍共轭二烯烃的性质。
1共轭二烯烃的结构以及共轭效应:1,3—丁二烯是最简单的共轭二烯烃,下面就以它为例来说明共轭二烯烃的结构。
在丁二烯分子中,四个碳原子和六个氢原子都处在同一个平面上。
其每一个碳原子都是sp2杂化,它们以sp2杂化轨道与相邻的碳原子相互交盖形成碳碳单键,与氢原子的1S轨道形成碳氢单键。
分子中一共形成了三个碳碳单键和六个碳氢单键,sp2杂化碳原子的三个σ键指向三角形的三个顶点,三个σ键相互之间的夹角都接近120°。
由于每一个碳原子的σ键都排列在一个平面上,所以就形成了分子中所有σ键都在一个平面的结构,此外,每一个碳原子都有一个未参与杂化的p轨道,它们都和丁二烯分子所在的平面垂直,因此这四个p轨道互相平行,在四个碳原子之间都有电子云交盖,从而电子也并不固定在两个原子之间,从而发生离域。
也就是说四个电子在四个原子轨道形成的共轭体系中流动,并不固定在某一位置。
2 共轭二烯烃的性质A 1,2—加成和1,4—加成共轭二烯烃和卤素,氢卤酸等都容易发生亲电加成,但可产生两种加成产物,如下所示:(1,2—加成产物和1,4—加成产物的键线式)1,2—加成产物是一分子试剂在同一个双键的两个碳原子上的加成,而1,4—加成产物则是一分子试剂加载共轭双键的两端碳原子上,同时原来的双键变为单键,而双键之间的单间变为双键。
1,3—丁二烯之所以有这两种加成方式,与其共轭结构有密切关系。
下面以溴化氢与丁二烯的加成来说明这一原理。
丁二烯与溴化氢的加成第一步也是H+的进攻,加成反应可能发生在C(1)或者C(2)上,然后生成相应的碳正离子(I)和(II)对于这两种碳正离子来说,双键上的碳原子,以及带有正电荷(在键线式中所表达出来的)的碳原子都是sp2杂化,而在(I)碳正离子中,三个碳原子剩余的p轨道均平行于三个碳原子锁组成的平面,因此它们之间存在共轭效应,从而正电荷并不只是单纯的聚集在同一个碳原子上,电荷因共轭效应而被分配到三个碳原子上,并且在C(2)和C(4)上的正电荷相对较多,从而分子比较稳定,生成(I)碳正离子所需要的活化能相对更低,而(II)碳正离子则没有共轭效应,因此反应总是向着(I)碳正离子的方向进行。
有机化学第四章共轭二烯烃

键角和键长变形较大的,贡献小:
§4. 3
共轭二烯烃的化学性质
CH2= CH CH=CH2
一、 1,4 – 加成反应(共轭加成) CH2= CH CH CH2 Br H HBr
CH2 CH= CH CH2 Br H
(1) 为什么共轭二烯烃会有两种加成方式?
2) 影响加成方式的因素
因 素 温 溶 试 度 剂 以1,2 - 加成为主 。 低温( - 40 ~ - 80 C ) 非极性 ( 如 : Br2 ) 以1,4 - 加成为主 。 高温( 40 ~ 60 C ) 极性溶剂 ( 如:氯仿 ) 极性试剂 ( 如:HCl ) CH2 = C CH= CH2 CH3
CH2 CH CH CH2
CH2 CH CH CH2 CH2 CH CH CH2
(III)
(I)
(II)
极限结构
极限结构
二、说明: •1、任何一个极限结构都不能代表真实的分子 •2、一个分子所具有的结构式越多,分子越稳 定
三、不同极限结构对稳定性的贡献: 共价键数目相等的,贡献相同:
CH 2CH=CH 2 CH 2=CHCH 2
1,2–加成与1,4–加成势能图
结论:
1、温度升高有利于1,4加成 2、极性增加有利于1,4加成 二、双烯合成反应(Diels – Alder)
+
双烯体
。 165 C, 90 MPa 17 h
亲双烯体
O CH2 HC HC CH2 + HC HC C
苯 O 100 ° C
O C CH O CH C O
1,2–加成
H2C
CH2 Br
CH CH
CH2
H2C
δ
+
09-二烯烃--共轭体系和共轭加成

第25页,共63页。
9.4.2 共振结构和共轭效应
+
H2C CH CH2
烯丙基正离子
H2C CH CH2
烯丙基自由基
H2C CH CH2
烯丙基负离子
电子离域结构式——烯丙基碳正离子中的正电荷、烯丙基自由基中 的单电子和烯丙基碳负离子中的负电荷都不是局限在一个p轨道中, 而是分散在了三个碳原子上。
烯丙基正离子
.
H2C CH-CH2
烯丙基自由基
.. H2C CH-CH2-
烯丙基负离子
π键
H H
π键
H H H
第20页,共63页。
CH2=CHCH2Cl 烯丙基氯
CH3CH2CH2Cl 1-氯丙烷 (CH3)2CHCl 2-氯丙烷
CH2=CHCH2+ + Cl- ΔHo= 716 kJ mol-1
S-trans-1,3-butadiene
无法改变的S-顺构象
二环[4.4.0]-1,9-癸二烯
无法改变的S-反构象
第17页,共63页。
H C
H C
C
C
H
H
HH
s-(顺)-1,3 -丁二烯
H C
H
H C
C H
H C
H
s-(反)- 1,3-丁二烯
Ho = -11.7 kJ mol-1
由s-顺式转变成s-反式所需的活化能约为26.8-29.3 kJ/ mol。在 室温下分子的热运动能提供这样多的能量,因此,它们迅速互变, 形成动态平衡。
共轭二烯中最重要的是1,3-丁二烯和2-甲基1,3-丁二烯(异戊
二烯)。
1,3-丁二烯的主要来源是石油裂解和丁烷的催化脱氢。
二烯烃的共轭效应

第五章 二烯烃的共轭效应§1、二烯烃一、二烯烃的分类和命名:二烯烃和炔烃是同分异构体,通式C n H 2n-2 (一) 分类:根据二个烯键在分子中的相对位置分:累积式的二烯烃Ë«¼ü»ýÀÛÔÚͬһCÉÏ ±û¶þÏ©C=C=CCH 2=C=CH 2共轭式二烯烃C=C-C=CCH 2=CH-CH=CH 2¶þ¸öË«¼ü±»Ò»¸öµ¥¼ü¸ô¿ª1£¬3¶¡¶þÏ©孤立式的二烯烃C=C-(CH 2)n-C=Cn > 1¶þ¸öË«¼ü±»¶þ¸öÒÔÉϵ¥¼ü¸ô¿ª其中:孤立式的二烯烃的性质和单烯烃相似。
每个双键各行其势,相互影响很小。
累积式的二烯烃数量少且实际应用也不多。
共轭式二烯烃在理论和实际应用上都很重要。
所以,我们讨论的是共轭二烯烃,它具有新的,特殊的性质。
(二) 命名:和烯烃相似,主要是分别指出烯键的数目和位置就行2-¼×»ù-1£¬3-¶¡¶þÏ© 1£¬3£¬5-¼ºÈýÏ©| | λÖà ÊýÄ¿CH 2=C CH=CH 2CH 3CH 2=CH-CH=CH-CH=CH 2对多烯烃,每个烯键都可能有顺反构型问题,二个烯键有二个顺反问题,组合起来就有三个顺顺,顺反,反反三种异构体˳£¬Ë³-2¡¢4-¼º ¶þ Ï©(Z),(Z)-C=CCH 3HC=CCH 3H HH˳¡¢·´-2¡¢4¼º¶þÏ© £¨·´£¬Ë³£©(Z),(Z)-·´£¬·´-2¡¢4-¼º ¶þ Ï©(E),(E)-(三)1、3丁二烯的构象:CH 2=CH-CH=CH 2C2¡¢C3 Χ ÈÆ µ¥ ¼ü Ðý ת »á ²ú Éú ²» ͬ µÄ ¿Õ ¼ä ¹¹ ÏóCCCH 2CH 2H¶þ¸öË«¼üÔÚC2¡¢C3ͬ²àS-˳- 1¡¢3-¶¡¶þÏ© S-Sigle µ¥CC CH 2CH 2HHS-·´-1¡¢3¶¡¶þÏ©¶þ¸öË«¼üÔÚC2¡¢C3Ïà·´²à性质上都是围绕单键旋转产生的,从能量上说S-反稳定,但在化学反应中参加反应时,S-反→S-顺。
第八章_烯烃_共轭二烯

Br CH 3 +) H (-
乙烯与溴的加成:
溴鎓离子
Br Br
+
H
H
H C C H
-Br H
Br H C C H
H
Br
②
①
H
① 反式加成 ②
Br C C Br H
H
H
H H
Br C Br C H
H
烯烃与Br2、Cl2的亲电加成反应属于立体 选择性反应-----反式加成
三、烯烃与氢卤酸的加成 -----碳正离子机理 反应式: CH2=C(CH3)2 + HX 反应机理: CH2=C(CH3)2 + H+ 慢
1,5-己二烯 共轭二烯烃
CH2=CH-CH=CH2
1,3-丁二烯 分子中单双键交替出现的体系称为共轭体 系,含共轭体系的多烯烃称为共轭烯烃。
第二节 烯烃的结构特征
一、单烯烃的结构特征 1 双键碳是sp2杂化。 2 键是由p轨道侧面重叠形成。
3 由于室温下双键不能自由 旋转,
所以有Z,E异构体。
CH3CH2CH2Br + Br
4. 自由基加成的适用范围
(1)HCl,HI不能发生类似的反应 (2)多卤代烃 BrCCl3 , CCl4 , ICF3等能发生自由基加成反应。
判断哪根键首先断裂的原则
*1 生成最稳定的自由基
H-CCl3 414.2KJ/mol
CCl3> CHCl2> CH2Cl> CH3
3. 环氧化合物
CH3 O
CH 3 O CH 3
1,2-环氧丙烷
2,3-环氧丁烷
环氧化反应的几点讨论
(1) 速率问题 双键上的电子云密度越高越易反应。 过酸碳上的正性越高越易反应。
共轭二烯烃

超共轭效应表示 超共轭效应表示: 效应
•由于 σ 电子的离域 上式中 由于σ 电子的离域,上式中 上式中C-C单键之间的电子云密 由于 单键之间的电子云密 度增加,所以丙烯的 所以丙烯的C-C单键的键长 单键的键长(0.150nm)缩短 一 缩短.(一 度增加 所以丙烯的 单键的键长 缩短 单键键长为0.154nm) 般烷烃的 C-C 单键键长为
•和碳正原子相连的 α碳氢键越多 也就是能起超共轭效 和碳正原子相连的 碳氢键越多,也就是能起超共轭效 应的碳氢σ键越多,越有利于碳正原子上正电荷的分散 越有利于碳正原子上正电荷的分散,就 应的碳氢σ键越多 越有利于碳正原子上正电荷的分散 就 可使碳正离子的能量更低,更趋于稳定 可使碳正离子的能量更低 更趋于稳定. 更趋于稳定
O CCH3 +
O CCH3 30℃
• 以四个碳原子及以下的烃为原料合成: 以四个碳原子及以下的烃为原料合成:
解:
CH2CCH3 O
“水” 不能少! 不能少!
1,2-加成产物 加成产物 例2:
1,4加成产物 加成产物
ห้องสมุดไป่ตู้
CH2=CH-CH=CH2+HBr →CH2-CH-CH=CH2 +CH2-CH=CH-CH2 H Br H Br
1,2-加成产物 加成产物
1,4加成产物 加成产物
反应历程(以 加成为例): 反应历程 以HBr加成为例 加成为例 第一步:亲电试剂 第一步 亲电试剂H+的进攻 亲电试剂 CH2=CH-CH=CH2+HBr → CH2=CH-CH-CH3 + BrCH2=CH-CH2-CH2 + Br(2) C-2加成 加成 (1) C-1加成 加成 + +
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命名:类似烯烃 , 通式 CnH2n-2 (同炔烃) 主链 : 包括两双键的 最长碳链
编号: 靠近双键一端编号
5
4
3 21
CH3-CH=CH-C=CH2 2-乙基-1,3-戊二烯
C2H5
1
CH2=C-CH2-CH2-CH=CH2 2-乙基-1,5-己二烯
CH3
二. 二烯烃的结构、特性、共轭效应
(一). 丙二烯结构 (累积二烯烃) (补充、简讲)
H KJ/mol -126.8
CH2=CH-CH=CH2 + 2 H2
CH3CH2CH2CH3 -238.9
说明共轭二烯烃稳定,共轭能= 126.8*2 - 238.9 =14.7 KJ/mol
CH2=CH-CH2-CH=CH2 + 2 H2 Pt CH3-CH2-CH2-CH2-CH3 H= -254.4 (约为单烯烃的两倍)
附 :考虑:共轭二烯烃本身为稳定体系,为何还能 进行加成反应?
比较两类共轭效应: 静态共轭效应:反应进行前存在的共轭效应。 动态共轭效应:反应中形成的活性中间体所具有
§6-3 共轭二烯烃 一. 二烯烃的分类、命名
根据双键的相对位置分类
SP2 SP SP2
累积二烯烃 : (聚集二烯烃) CH2=C=CH2
不稳定
分类 共轭二烯烃 : CH2=CH-CH=CH2
隔一σ单键
孤立二烯烃 :(隔离二烯烃) CH2=CH (CH2) nCH=CH2 n > 1 (类似烯)
(复习为主)
轭链上出现正负极性交替的现象。 共轭效应不因链的增长而减弱 (区别于诱导效应)
δ δδ δ δ δ δ δ Br CH2=CH-CH=CH-CH=CH-CH=CH2
(以上三点复习为主)
4: 共轭体系具有较低能量,较稳定。 氢化热比较:
CH3CH2CH=CH2 + H2 Pt CH3CH2CH2CH3
1:π -π 共轭: CH2=CH-CH=CH2
分类:
必有 π键
CH2=CH-CH=CH-CH=CH2 π -π 交盖,两双键间隔一个单键,平行重叠大。
2: P-π 共轭 : CH2=CH-CH2 C-C-C 空 P
完全 对称
缺电子 P-π 共轭 (三原子二电子)
CH2=CH-CH2 C-C-C
等电子 P-π 共轭
(四). 共轭效应(共轭体系中存在的特殊电子效应)
——共轭体系中分子内原子间的相互影响,引起 电子云密度分布“ 平均化” ,键长趋于“ 平均化” ,体 系能量降低的效应。
共轭效应的特点: 1:三个或三个以上共平面原子, P 轨道对称轴互相平行。 2: 电子云密度 “ 平均化” ,导致键长 “ 平均化” 3 :共轭体系受外界电场影响时, π 电子云发生转移,共
低温时有利于 1,2-加成:
CH2=CH-CH=CH2 Br2
40℃ 1,2-加成 :20% -80℃ 1,2-加成: 80%
极性溶剂有利于 1,4-加成:
溶剂:正丁烷 (无极性) :1,4-加成 :38%
CHCl3 (极性) :
63%
CH3COOH (极性):
70%
原因:可能与1,4-加成的产物的极性大有关。
(一). 1,4-加成与1,2-加成
CH2=CH-CH=CH2
1,2加成 CH2-CH-CH=CH2
Br2
Br Br
1,4加成 CH2-CH=CH-CH2
Br
Br
1,2加成 CH3-CH-CH=CH2
HBr
Br
1,4加成 CH3-CH=CH-CH2
Br
以何种方式进行:决定于反应热力学、动力学 因素的占优势,对于外界条件决定于温度、溶剂。 (一般情况以 1,4-加成为主)
1,2-加成的活化能低,反应速度快,在较短时间
及低温时(反应不易达平衡),产物以 1,2-加成为主 -----由动力学因素决定。
较高温度及反应较长时间(易达平衡),原先的
1,2-加成产物也会转变成更稳定的 1,4-加成产物为主,
即由产物的热力学因素决定。
(一般加成未注明条件, 以 1,4-加成为主)
P 电子运动到四个碳上----离域,形成π -π 大π 键,键长
平均化,电子云密度趋于"平均化" ( C2-C3 间略小)
(三). 共轭体系 (复习为主)
(注:许多教科书把超共轭效应归入共轭体系) 共轭体系:分子结构中 含三个或三个以上的
相邻的共平面原子,这些原子各含有一个对称轴互相 平行的 P 轨道的体系。
SP2 SP SP2
CH2=C=CH2
未参加杂化的 两 P 轨道互相垂直,且垂直于两杂化 轨道所在轴线,三个碳在一线,两 =CH2 平面垂直, 两π 键垂直。
H
H
CCC
H
H
注:π 键垂直, R' C=C=C R" 不存在顺反异构,
R"
R'
属于光学异构(手性分子).无手性碳,能量高,不稳定.
(只具理论意义)
CH2=CH-CH=CH-CH3 + 2H2 P t CH3CH2CH2CH2CH3 H= -226.4 共轭能= 254.4-226.2 =28.2 KJ/mol 更稳定
1,3-戊二烯有超共轭存在,共轭能 > 1,3-丁二烯
三. 共轭二烯烃的化学性质
化学性质: 除了发生单烯烃的常有的加成、氧化外 还有特殊的性质
② CH3 CδH
δCH
δ CH2
Br-
1,4加成 CH3-CH=CH-CH2 五个超共轭 Br (稳定)
1,2加成 CH3-CH-CH=CH2 一个超共轭 Br
电子云总趋向:由双键移向正碳,正碳仍带部分正电, C1也带部
分正电,(三个碳带电不均,极性交替)
第二步反应 (Br- 加上):(1,2加成--1,4加成的取向)
能量变化曲线 (注意两产物能量高低,第二步活化能高低)
1,3-丁二烯与HBr加成
反应历程 :亲电加成 : CH2=CH-CH=CH2 + HBr (H+ 作为亲电试剂)
① CH2=CH-CH=CH2 H+
空P
CH3-CH-CH-CH2
P-π 共轭 -CH3诱导
三个超共轭
CH2-CH2-CH-CH2 两个超共轭
(二).共轭二烯烃 CH2=CH-CH=CH2
四个碳均为 SBiblioteka 2 杂化H1.08
C1.337C
H
1.47
H
C
H
CH H
键角122.4。119.8。
比较
1.54
CH3 CH3
CH21.33CH2
所有原子及σ 键共平面, C2-C3 间 P 轨道部分重叠
(比 C1-C2间弱), C2-C3 电子云密度比单键增加.