第四章 二烯烃和共轭体系

合集下载

基础有机化学-第四章 二烯烃 共轭体系 共振论

基础有机化学-第四章  二烯烃   共轭体系  共振论

15℃ 氯仿 (37%)
(63%)
极性溶剂利于1,4 –加成反应
B、温度影响
CH2=CH
CH=CH2
HBr 温度..
CH2=CH
CH-CH2 + CH2
CH=CH
CH2
Br H Br
H
80℃
( 80 %)
( 20%)
40 ℃
( 20 %,利于1,4–加成
例如: 对1,3-丁二烯可发生1,2-和1,4-加成的解释:
δ+
δ
CH2 CH CH CH2
HBr( Br)
温度较低 时贡献大
CH2
CH
+
CH
CH2
Br H
+
CH2
CH
CH
CH2
温度较高 时贡献大
Br H
CH2 CHCH CH2 Br H
1,2-加成
CH2CH CHCH2
Br
H
1,4-加成
4.5 共轭二烯烃的化学性质
4个共价键
3、共价键数目相同的极限结构对杂化体的贡献相 同。
4、有电荷分离的极限结构其稳定性比无电荷分离 的差。
.. CH2 CH CH O..
CH2
CH
+
CH
.-. O..
..
5、负电荷处在电负性大的原子上的极限式较负电 荷处在电负性大的原子上的极限式稳定。
CH2
CH
+
CH
O......-
稳定
CH2
4.2 二烯烃的结构
4.2.1 丙二烯的结构
118.4°
sp2
H C C CH2
H
sp

第四章 二烯烃和共轭体系共13页文档

第四章 二烯烃和共轭体系共13页文档

第四章二烯烃共轭体系共振论分子中含有两个碳—碳双键的碳氢化合物称为二烯烃。

通式:C n H2n-2可见,二烯烃与炔烃互为官能团异构。

4.1 二烯烃的分类和命名4.1.1 二烯烃的分类根据分子中两个C=C的相对位置,二烯烃可分为三类。

(1) 孤立二烯烃两双键之间相隔两个或两个以上单键的二烯烃。

例:CH2=CH-CH2-CH=CH2CH2=CH-CH2- CH2-CH=CH21,4-戊二烯1,5-己二烯单双键交替的体系,为共轭体系!由于两个双键共轭,相互影响,其性质特殊,是本章的重点之一。

4.1.2 二烯烃的命名与烯烃相似。

用阿拉伯数字标明两个双键的位次,用“Z/E”或“顺/反”表明双键的构型。

例:4.2 二烯烃的结构4.2.1 丙二烯的结构丙二烯是典型的累积二烯。

仪器测得,丙二烯是线型非平面分子:由于中心碳为sp杂化,两个双键相互⊥(动画),所以丙二烯及累积二烯烃不稳定。

4.2.2 1,3-丁二烯的结构仪器测得,1,3-丁二烯分子中的10个原子共平面:1,3-丁二烯分子中存在着明显的键长平均化趋向!⑴价键理论的解释1,3-丁二烯中的碳原子是sp2杂化态(因为只有sp2杂化才能是平面构型,轨道夹角约120°):四个sp2杂化碳搭起平面构型的1,3-丁二烯的σ骨架:四个P轨道肩并肩地重叠形成大π键:(动画,π-π共轭)除了C1-C2和C3-C4间的P轨道可肩并肩地重叠外,C2-C3间也能肩并肩重叠。

但由键长数据表明,C2-C3间的重叠比C1-C2或C3-C4间的重叠要小。

⑵分子轨道理论的解释(主要用来处理p电子或π电子)丁二烯分子中四个碳原子上的未参加sp2杂化的p轨道,通过线性组合形成四个分子轨道:4.3 电子离域与共轭体系电子离域——共轭体系中,成键原子的电子云运动范围扩大的现象。

电子离域亦称为键的离域。

电子离域使共轭体系能量降低。

共轭体系——三个或三个以上互相平行的p轨道形成的大π键。

二烯烃和共轭体系

二烯烃和共轭体系

4、共轭体系的分类 (1)π-π共轭 结构特征:双(叁)键、单键、双(叁)键交替 连接。 − + − + δ δ δ δ 4 CH2 CH CH CH 2 π4
C H 2= C H
(2)p-π共轭
δ
+
δ

CH =O
δ
+
δ

π4 4
与双键碳原子直接相连的原子上有 p 轨道 (或未共用电子),这个p 轨道与π 键的 p 轨 道平行,从侧面重叠构成 p ,π - 共轭体系。
+
1,3-丁二烯
CH 2 CH 2
200 C

环己烯
高压
双烯体 亲双烯体
双烯体:共轭双烯。 亲双烯体:烯烃或炔烃( 重键碳上连吸电子基)。
CHO COOR O O O
+Байду номын сангаас
1,3-丁二烯 (s-顺式)
CH2 CH2
=
环状过渡态 环己烯
亲双烯体上带有吸电子基如:-CHO、-COR、 -CN、-NO2时,Diels-Alder反应更容易进行。
1,3-丁二烯的结构示意图
1,3-丁二烯的π键
① 分子在同一平面 内; ② 四个碳原子各余 下一个垂直于此分 子平面的p轨道,且 互相平行,因而形 成一个离域的大π 4 π 键( 4 ),四个p 电子在四个原子间 运动。这样的共轭 也叫做π-π共轭。
δ δ δ CH2 CH CH
极性分子

+

δ CH2
CH2 CH2 CH =CH2 。 1 碳正离子
+
δ
CH =CH2
+
反应活性中间体的稳定性是: 烯丙型碳正离子 >

第四章 二烯烃与共轭体系

第四章 二烯烃与共轭体系
反-5,6-二甲基环己二烯
光照 顺旋
CH3 H CH3 H
(Z,Z,E)-2,4,6-辛三烯
对旋
光照 顺旋
H H CH3 CH3
顺-5,6-二甲基环己二烯
CH3 H H CH3
加热 对旋 (E,Z,E)-2,4,6-辛三烯
4.5.4 双烯合成:Diels-Alder 反应
•含环己烯环的化合物的制备方法
CH2
+
BrCH2CH
CHCH2Br
Br
(37%) (63%)
结论

1,4加成产物更稳定; 1,2加成产物和1,4加成产物是可逆的; 1,2加成产物的活化能低,反应速度快。
练习题: 由丁二烯合成重要的药物前体及 材料合成中间体3-羟甲基戊二酸
HO2C
OH CO2H
HO2C
OH CO2H
第四章 二烯烃与共轭体系
分子中含有两个碳–碳双键的不饱和烃称为二烯 烃, 包括链状二烯烃和环状二烯烃.
链状二烯烃
环状二烯烃
4.1 二烯烃的分类和命名
•隔离二烯烃 •共轭二烯烃
C
•累积二烯烃
4.2 二烯烃的结构
(1) 丙二烯的结构 (2) 1,3–丁二烯的结构
4.2 二烯烃的结构
4.2.1 丙二烯的结构
C +
+
+ C -
C + C +
p *3
C -
C
p2
成 键 轨 道
+ C + C -
+ C + C -
C + + C -
C + + C -
+ C + C C C C C

二烯烃

二烯烃

s-反式 构象 反式
5
1, 3-丁二烯四个 轨道经线性组合成四个π分子轨道 丁二烯四个P轨道经线性组合成四个 丁二烯四个 轨道经线性组合成四个π
π* 4
E
π* 3
LUMO
π2
HOMO
π1
6
π molecular orbitals of 1,3-butadiene
7
π分子轨道 1和ψ2的叠加,不但使 1与C2之间、 分子轨道ψ 的叠加,不但使C 之间、 分子轨道 C3与C4之间的电子云密度增大,而且 2与C3之间 之间的电子云密度增大,而且C 的电子云密度也部分增大,使之与一般的碳碳σ键 的电子云密度也部分增大,使之与一般的碳碳 键 不同,而具有部分双键的性质。 部分双键的性质 不同,而具有部分双键的性质。Leabharlann δ+δ
+
H
+
CH2 CH2
+
CH =CH2
烯丙型碳正离子
。 正 离子 > 1 碳
12
CH2=C CH=CH2 + HBr CH3
CH2=C CH=CH2 + HBr CH3 CH3
+
?
C CH=CH2 CH3 -Br Br CH3 CH3 C CH CH2 CH3 -Br C=CH CH2Br CH3
-1
226 kJ mol
-1
CH3CH2CH2CH2CH3
9
三.共轭双烯的反应 共轭双烯的反应
加成(共轭加成) 1. 1,4—加成(共轭加成) 加成
CH2=CH-CH=CH2 + Br2 CH2 Br CH CH=CH2 + CH2 CH=CH CH2 Br 1,2-加成 加 Br 1,4-加成 , 加 Br

第4章 二烯烃和共轭体系

第4章  二烯烃和共轭体系
的产物(动力学控制)。 1, 4-加成不易进行(活化能较高)。
• 加热时:1, 4-加成为主要产物(达到平衡时比例高),说明较为稳
定。是由稳定性决定的产物(热力学控制)
• 低温产物比例加热后变化: 1, 4-加成产物较稳定,反应可逆。
P 134 习题4.8试判断下列反应的结果,并说明原因.
+
CH3CH=CHCH2CH2
思考题 思考题
上述三种情况,在加成反应的方向 与速率方面与乙烯有何不同?请给 予理论上的解释。
四、共振论
(1)共振论的基本概念
共振论:即离域体系可以用几个经典结构的叠加来描述。
CH2 CH CH CH2
+
CH2 CH CH2 CH2
-
-
CH2 CH CH2 CH2+
1,3-丁二烯的共振杂化体
共振论的基本思想
1,2-加成
ห้องสมุดไป่ตู้
CH2 CH CH CH2 + Br2
1,4-加成
CH2 CH CH CH2 Br Br
CH2 CH CH CH2 Br Br
影响1,2-加成和1,4-加成的的因素主要有反应
物的结构、试剂和溶剂的性质、产物的稳定性及温 度等。
极性溶剂有利于1,4-加成
正己烷 (62%) (38%)
CH2 CH CH CH2 + Br2
实验结果
HBr H2C CH CH CH2
(无过氧化物)
注意:双键位置有变化
H2C CH CH Br CH2 + H2C CH H H CH CH2 Br
1, 2-加成 -80oC 40oC 80% 20%
1, 4-加成 20% 80%

第四章二烯烃共轭体系共振论

第四章二烯烃共轭体系共振论
H
sp2
C CH2
sp
0.131 nm
H
H C C CH2 H
H
H H
图4.1 丙二烯的结构示意图
两个π键相互垂直
CH2 = C = CH2 sp2 sp sp2
丙二烯结构示意图
注意:丙二烯分子中有四个平面相互垂直.
4.2.2 1,3-丁二烯的结构
特点:键长平均化~单键具有部分双键的性质
C=C C C
R CH CH CH3
(II)
R CH CH CH2 Br2
Br
R CH CH CH2 Br
R CH CH CH2 Br2 R CH CH CH2
Br
Br
反应中形成的是烯丙基型自由基,Br2进攻C3生成时 正常取代产物,进攻C1时生成重排产物。即:
R CH3 CH CH2 或 R CH CH CH2
E
E1'
E1
1, 2-加成
E2 1,4-加成 E2'
CH2 CH 1,2-加成产物 H
H
CH2
S-顺-1,3-丁二烯 S-(Z)-1,3 -丁二烯
s 指单键
(single bond)
S-反-1,3-丁二烯 S-(E)- 1,3-丁二烯
s-顺式
s-反式
这里的S—顺、S—反是指两个双键以单键为轴进行 旋转所形成的两种不同的构象。
4.2 二烯烃的结构
4.2.1 丙二烯的结构
118.4°
H C
贡献较小
(d)键长、键角变化大的极限结构对杂化体的贡献小。
贡献大
贡献较小,可忽略不计
4.4.2 书写极限结构式的基本原则: (a)极限结构式要符合价键理论和Lewis结构理论。

有机化学 第4章 二烯烃

有机化学  第4章 二烯烃

CH2 CH CH=CH2 (5)
CH2 CH CH=CH2 (6)
CH2=CH CH CH2 (7)
共振式书写的基本原则 ➢ 参与共振的原子应有平行的 p 轨道 ➢ 所有共振式的原子排列相同 ➢ 所有共振式均符合Lewis结构式 ➢ 所有共振式具有相等的未成对电子数
CH2=CHCHCH3
CH2CH=CHCH3
诱导效应 由原子或基团电负性不同引起的;通过静电引 力沿σ键传递。其作用是近程的。
共轭效应 由p电子在整个分子轨道中的离域作用引起的, 沿π键传递。其作用是远程的 。
二者都属电子效应。当二者共存时,哪种效应的作用 占主导,要具体问题具体分析。通常共轭的作用大于诱导 的作用。
3. 超共轭效应
CH 键可以和相邻的 键上的 p 轨道有部分重叠, 电子离域,使体系能量降低,这种作用称为超共轭效 应。
-28.0kJ/mol 离域能
-254.4kJ/mol -226.4kJ/mol
共轭二烯烃比 孤立二烯烃稳定
✓ 共轭二烯的两种平面构象 共轭二烯主要以平面构象存在(为什么?)
例:1,3-丁二烯的两个平面构象
s - trans
s —— single bond 由单键产生的顺反异构
s - cis
s - trans为优势构象,二者仅相差9.6kJ·mol-1
✓ 共轭二烯稳定性
➢ 氢化热比较
氢化热(kJ/mol) 平均每个双键
H2C CH CH CH2 H2C CH CH CH CH3
238.9 226.4
119.5 较稳定
113.2
CH3 CH CH2 H3C CH2 CH CH2 H2C CH CH2 CH CH2
254.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例如,在光或热的作用下,1,3-丁二烯可以转化为环丁烯,反应不经
过碳正离子或自由基等活性中间体,而是经过环状过渡态一步完成:
12
电环化反应的显著特点是具有高度的立体专一性,即在一定的
反应条件下(热或光),一定构型的反应物只生成一种特定构型的产
物*。例如:
加热顺旋被允许,光照对旋被允许。
13
4.2.3 双烯合成 (Diels-A1der反应 )
28
4.3 二烯烃的结构
4.3.1 丙二烯的结构
丙二烯的C2只与两个碳原子相连,是sp杂化;C1和C3各与三 个原子相连,是sp2杂化。
29
4.3.2 1,3-丁二烯的结构
近代实验方法测定结果表明,在
1,3-丁二烯分子中,所有原子都在同 一平面内,所有键角都接近120°, 碳碳双键键长为0.137nm,比一般碳 碳双键0.134nm长,碳碳单键键长为 0 . 1 4 7 nm, 比 乙 烷 碳 碳 单 键 键 长 0.154nm短。1,3-丁二烯分子中碳碳之 间的键长趋向于平均化。
40
值得注意的是,共轭效应的发生是有先决条件的,即构成共轭 体系的原子必须在同一平面内,且其p轨道的对称轴垂直于该平面, 这样p轨道才能彼此相互平行侧面交盖而发生电子离域,否则电子 的离域将减弱或不能发生。
41
另外,共轭效应只存在于共轭体系中;共轭效应在共轭链上产 在多原子分子中: 生电荷正负交替现象;共轭效应的传递不因共轭链的增长而明显减 弱。这些均与诱导效应不同。 像1-氯丁烷这样,由于分子内成键原子的电负性不同, 而引起分子中电子云密度分布不平均,且这种影响沿分 子链静电诱导地传递下去,这种分子内原子间相互影响 的电子效应,称为诱导效应(inductive effect),常用I表示
的隔离双二烯烃高。例如:
CH2=CH-CH2-CH=CH2 CH3-CH=CH-CH=CH2
n20=1.3888 D n20=1.4284 D
CH3-CH=CH-CH2-CH=CH2
CH3-CH2-CH=CH-CH=CH2
n20=1.4150 D
n20=1.4380 D
CH3-CH=CH-CH=CH-CH3
42
4.4.2超共轭 σ
C—Hσ键与 π键 有部分交盖,σ电子偏离原来的轨道,而倾向
于π轨道。这种涉及到σ键轨道与π轨道参与的电子离域作用,称为
超共轭效应,亦称σ,π-共轭效应。这种体系称为超共轭体系。超共 轭效应比π,π-共轭效应弱得多。
43
在丙烯分子中,由于C—C单键的转动,甲基中的三个C—Hσ 键轨道都有可能与π轨道在侧面交盖,参与超共轭。在超共轭体系 中,参与超共轭的C—Hσ键越多,超共轭效应越强。例如:
第四章 二烯烃和共轭体系
二烯烃是含有两个碳碳双键的开链不饱和烃,亦称双烯烃。它 与碳原子数相同的炔烃是同分异构体,通式也是CnH2n-2,但二烯烃 至少需含有三个碳原子,即n≥3。也有含三个或多个双键的三烯烃或 多烯烃,其性质与二烯烃类似。
1
4.1 二烯烃的分类和命名
4.1.1二烯烃的分类
根据二烯烃分子中两个双键相对位置的不同,可将二烯烃分为
H2C=CH CH=CH2
34
共轭效应: 在共轭分子中,任何一个原子受到外界的影响,由于π
电子在整个体系中的离域,均会影响到分子的其余部分,这种电子
通过共轭体系传递的现象,称为共轭效应。由π电子离域所体现的 共轭效应,称为π,π-共轭效应。
35
共轭体系的特点在分子的物理性质和化学行为上均有所反映:
甚普遍。
3
3.共轭双键二烯烃
两个双键被一个单键隔开的二烯烃,称为共轭双键二烯烃,简 称共轭二烯烃(conjugated diene)。例如:
由于两个双键的相互影响,共轭二烯烃表现出一些特殊的性质, 在理论上和生产中都具有重要价值,是二烯烃中最重要的一类。
4
4.1.2 二烯烃的命名
烯烃的命名与烯烃相似,不同之处在于:分子中含有两个双键 称为二烯,主链必须包括两个双键在内,同时应标明两个双键的位 次。例如:
不同,共轭二烯烃与一分子亲电试剂的加成反应通常有两种可能。
例如:
共轭二烯烃进行加成反应的特点,就是不但可以进行1,2-加成, 而且可以进行1,4-加成。
9
具体到某一个反应,究竟是以1,2-加成为主,还是以1,4-加成为 主,则取决于很多因素,如反应物的结构、试剂和溶剂的性质、产
物的稳定性及反应温度等。 例如,1,3-丁二烯与溴在-15℃进行反应,1,4-加成产物的百分数随
种不同的构象,而不是构型的不同,分别称为s-顺式和s-反式[s指单 键(singlebond)],或以s-(Z)和s-(E)表示。
7
4.2 共轭二烯烃的化学性质
共轭二烯烃除具有单烯烃碳碳双键的性质外,由于两个双键彼 此之间的相互影响,还表现出一些特殊的化学性质。
8
4.2.1 1,4-加成反应
共轭二烯烃与单烯烃相似,也可以与卤素、卤化氢等亲电试 剂进行亲电加成反应,而且一般比单烯烃要容易。但又与单烯烃
面交盖,而且C2与C3的p轨道也有一定 程度交盖。不仅C1与C2之间、C3与C4之 间形成了双键,且C2与C3之间也具有部 分双键性质,构成了一个离域的π键。
32
从分子轨道理论也可以导 出同样的结果。分子轨道法的 近似处理是从分子的整体出发, 如在1,3-丁二烯分子中,四个 碳原子的四个p轨道线性组合 成四个π分子轨道,分别用ψ1、
ψ2、ψ3和ψ4表示。
33
4.4 电子离域与共轭体系
4.4.1 π,π-共轭
在1,3-丁二烯分子中,四个π电子不是两两分别固定在两个双 键碳原子之间,而是扩展到四个碳原子之间,这种现象称为电子
的离域,电子的离域体现了分子内原子间相互影响的电子效应。
这样的分子称为共轭分子。这种单双键交替排列的体系属于共轭 体系,称为π,π-共轭体系。
5
与单烯烃相似,当二烯烃的双键两端连接的原子或基团各不相 同时,也存在顺反异构现象。而且由于有两个双键的存在,异构现
象比单烯烃更复杂。命名时要逐个标明其构型。例如:
6
在1,3-丁二烯分于中,两个双键还可以在碳碳(C2和C3之间) 单键的同侧和异侧存在两种不同的空间排布,但由于C2和C3之间的
单键在室温仍可以自由旋转,因此这两种不同的空间排布,只是两
①共平面性(构成共轭体系的原子必须在同一平面内) ②键长趋于平均化 例如:π,π-共轭效应使1,3-丁二烯的碳碳单键键长相对缩短, 使单双键产生了平均化的趋势。 虽然1,3-丁二烯的构造式用CH2=CH—CH=CH2 表示,但应 牢记分子中的单双键已不是普通的单键和双键。
36
③折射率高
由于共轭体系的π 电子云更易极化,因此它的折射率也比相应
21
周环反应与一般自由基型反应和离子型反应不同,其主要特
点是:
(1)反应过程是旧键的断裂和新键的生成同时进行、一步完成 的,是经环状过渡态进行的协同反应; (2)这类反应受反应条件加热或光照的制约,而且加热和光照 所产生的结果也不同,一般不受溶剂极性、酸碱催化剂和自由基
引发剂及抑制剂的影响;
(3)这类反应具有高度的立体化学专属性,即一定立体构型的 反应物,在一定的反应条件下,只生成特定构型的产物。
三种类型。
1.隔离双键二烯烃(孤立二烯烃 isolated diene)
由于两个双键位次相距较远,相互影响较小,其性质与单烯烃 相似。
2
2.累积双键二烯烃
两个双键连接在同一个碳原子上的二烯烃,称为累积双键二
烯烃(cumulative diene)。例如:
由于累积双键很不稳定,累积双键二烯烃的存在和应用均不
共轭二烯烃及其衍生物与含有碳碳双键、三键等的化合物进行 1,4-加成生成环状化合物的反应,称为双烯合成(diene synthesis),亦
称Diels-A1der反应(协同反应的一种)。这是共轭二烯烃的另一特征
反应。例如:
14
在这类反应中,两种反应物相互作用,旧键的断裂和新键的生 成同时进行,经过一个环状过渡态,形成产物。反应是一步完成的,
可进行反应。
18
ห้องสมุดไป่ตู้
*双烯体均以s-顺式参加反应,若不能形成s-顺式,则反应不能 进行。如2,3-二叔丁基-1,3-丁二烯,由于两个叔丁基体积很大,空 间位阻的结果,不能形成s-顺式构象,故不发生双烯合成反应。
C(CH3)3 H 2C C C (CH3)3 C(CH3)3
不能形成
CH2
H 2C C C CH2 (CH3)3C
22
4.2.4 聚合反应与合成橡胶
共轭二烯烃也容易进行聚合反应,生成相对分子质量高的聚 合物。在聚合时,与加成反应类似,可以进行1,2-加成聚合,也可 以进行1,4-加成聚合。在1,4-加成聚合时,既可以顺式聚合,也可 以反式聚合。例如,1,3-丁二烯的聚合:
共轭二烯烃,既可以自身聚合,也可以与其它化合物发生共聚合。
23
橡胶是一类在很宽的温度范围内具有弹性的高分子化合物,分
为天然橡胶和合成橡胶两大类。天然橡胶可以认为是相对分子质量
不等的异戊二烯的高相对分子质量聚合物的混合体,其干馏产物是
2-甲基-1,3-丁二烯。
天然橡胶的结构是:
顺-1,4-聚异戊二烯,平
均分子量为20万~50万。
24
顺-1,4-聚丁二烯橡胶(简称顺丁橡胶或BR)
19
由两个分子的π体系相互作用,π键断裂并在两端生成两个σ键
而闭合成环,这类反应称为环加成反应。双烯合成反应是重要的环
加成反应之一。
20
电环化反应和环加成反应,从反应机理考虑有共同点,它们只
通过过渡态而不生成任何活性中间体,这类反应称为协同反应。在 反应过程中形成的过渡态是环状过渡态的一些协同反应,称为周环 反应。它主要包括电环化反应、环加成反应和σ键迁移反应。
相关文档
最新文档