定积分与微积分基本定理(理)
第3讲 定积分与微积分基本定理

定积分与微积分基本定理一、知识梳理 1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x ,即⎠⎛ab f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ).常用结论1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、习题改编1.(选修2-2P66T14改编)设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A.⎠⎛-11x 2d xB .⎠⎛-112x d xC.⎠⎛-10x 2d x +⎠⎛012x d xD .⎠⎛-102x d x +⎠⎛01x 2d x解析:选D.由分段函数的定义及定积分运算性质, 得⎠⎛-11f (x )d x =⎠⎛-102x d x +⎠⎛01x 2d x .故选D.2.(选修2-2P66A 组T14改编)⎠⎛2e +11x -1d x =________. 解析:⎠⎛2e +11x -1d x =ln(x -1)|e +12=ln e -ln 1=1.答案:13.(选修2-2P55A 组T1改编)若⎠⎛0π2(sin x -a cos x )d x =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )⎪⎪⎪π20=1-a =2,a =-1. 答案:-14.(选修2-2P60A 组T6改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________m.解析:s =⎠⎛12(3t +2)d t =⎪⎪⎝⎛⎭⎫32t 2+2t 21 =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 答案:132一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )d x .( )答案:(1)√ (2)√ (3)√ (4)×二、易错纠偏常见误区|K(1)误解积分变量致误; (2)不会利用定积分的几何意义求定积分;(3)f (x ),g (x )的图象与直线x =a ,x =b 所围成的曲边图形的面积的表达式不清致错. 1.定积分⎠⎛-12(t 2+1)d x =________.解析:⎠⎛-12(t 2+1)d x =(t 2+1)x |2-1=2(t 2+1)+(t 2+1)=3t 2+3. 答案:3t 2+3 2.⎠⎛22-x 2d x =________解析:⎠⎛022-x 2d x 表示以原点为圆心,2为半径的14圆的面积,故⎠⎛022-x 2d x =14π×(2)2=π2.答案:π23.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.解析:由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x )d x =⎝⎛⎭⎫-x 33+x 2⎪⎪⎪20=-83+4=43.答案:43[学生用书P53]定积分的计算(多维探究) 角度一 利用微积分基本定理求定积分计算下列定积分:(1)⎠⎛122x d x ;(2)⎠⎛0πcos x d x ;(3)⎠⎛13⎝⎛⎭⎫2x -1x 2d x . 【解】 (1)因为(ln x )′=1x ,所以⎠⎛122x d x =2⎠⎛121xd x =2ln x ⎪⎪⎪21=2(ln 2-ln 1)=2ln 2.(2)因为(sin x )′=cos x ,所以⎠⎛0πcos x d x =sin x ⎪⎪⎪π0=sin π-sin 0=0.(3)因为(x 2)′=2x ,⎝⎛⎭⎫1x ′=-1x 2,所以⎠⎛13⎝⎛⎭⎫2x -1x 2d x =⎠⎛132x d x +⎠⎛13⎝⎛⎭⎫-1x 2d x =x 2⎪⎪⎪31+1x ⎪⎪⎪31=223. 角度二 利用定积分的几何意义求定积分计算下列定积分:(1)⎠⎛011-(x -1)2d x ;(2)⎠⎛-55(3x 3+4sin x )d x .【解】 (1)根据定积分的几何意义,可知⎠⎛011-(x -1)2d x 表示的是圆(x -1)2+y 2=1的面积的14(如图中阴影部分).故⎠⎛011-(x -1)2d x =π4.(2)设y =f (x )=3x 3+4sin x ,则f (-x )=3(-x )3+4sin(-x )=-(3x 3+4sin x )=-f (x ), 所以f (x )=3x 3+4sin x 在[-5,5]上是奇函数. 所以⎠⎛-50(3x 3+4sin x )d x =-⎠⎛05(3x 3+4sin x )d x .所以⎠⎛-55(3x 3+4sin x )d x =⎠⎛-50(3x 3+4sin x )d x +⎠⎛05(3x 3+4sin x )d x =0.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[提醒] 当被积函数的原函数不易求,而被积函数的图象与直线x =a ,x =b ,y =0所围成的曲边梯形的面积易求时,可利用定积分的几何意义求定积分.1.⎠⎛-11e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎛-11e |x |d x =⎠⎛-10e -x d x +⎠⎛01e x d x=-e -x ⎪⎪⎪⎪1-1+e x ⎪⎪⎪⎪1=[-e 0-(-e)]+(e -e 0) =-1+e +e -1=2e -2,故选C. 2.⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =________. 解析:⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分求平面图形的面积(师生共研)(一题多解)求由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积. 【解】如图所示,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,得两交点的坐标分别为(2,-2),(8,4).法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和, 即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =18.法二:选取纵坐标y 为积分变量,则图中阴影部分的面积S =⎠⎛-24⎝⎛⎭⎫y +4-12y 2d y =18.设阴影部分的面积为S ,则对如图所示的四种情况分别有:(1)S =⎠⎛ab f (x )d x .(2)S =-⎠⎛ab f (x )d x .(3)S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .(4)S =⎠⎛ab f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .1.已知曲线C :y =x 2+2x 在点(0,0)处的切线为l ,则由C ,l 以及直线x =1围成的区域的面积等于________.解析:因为y ′=2x +2,所以曲线C :y =x 2+2x 在点(0,0)处的切线的斜率k =y ′|x =0=2,所以切线方程为y =2x ,所以由C ,l 以及直线x =1围成的区域如图中阴影部分所示,其面积S =⎠⎛1(x 2+2x -2x )d x =⎠⎛01x 2d x =x 33⎪⎪⎪10=13.答案:132.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.解析:f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,所以a =-1. 答案:-1定积分在物理中的应用(师生共研)(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2(2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.【解析】 (1)令v (t )=0得,3t 2-4t -32=0, 解得t =4⎝⎛⎭⎫t =-83舍去. 汽车的刹车距离是⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =[7t -32t 2+25ln(t +1)]⎪⎪⎪40 =4+25ln 5.(2)由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42 =10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J).【答案】 (1)C (2)36定积分在物理中的两个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .1.物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( )A .3B .4C .5D .6解析:选C.因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t ,因为(t 3+t -5t 2)′=3t 2+1-10t ,所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t-5t 2=5,整理得(t -5)(t 2+1)=0,解得t =5.2.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ;力的单位: N).解析:变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x ,因为⎝⎛⎭⎫13x 3+x ′=x 2+1,所以原式=342(J).答案:342[学生用书P274(单独成册)][基础题组练]1.定积分⎠⎛01(3x +e x )d x 的值为( )A .e +1B .eC .e -12D .e +12解析:选D.⎠⎛01(3x +e x )d x =⎝⎛⎭⎫32x 2+e x ⎪⎪⎪10=32+e -1=12+e. 2.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A.因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a 0=a 3,所以由f (f (1))=1得a 3=1,所以a =1.3.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.因为f (x )=x 2+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =⎝⎛⎭⎫13x 3+2x ⎠⎛01f (x )d x |1=13+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =-13. 4.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B .π2+3C.π4+43D .π4+3解析:选A.⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43,故选A.5.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13 B .310C.14D .15解析:选A.由⎩⎨⎧y =x 2,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01(x -x 2)d x =13.故选A.6.定积分⎠⎛-11(x 2+sin x )d x =________.解析:⎠⎛-11(x 2+sin x )d x=⎠⎛-11x 2d x +⎠⎛-11sin x d x=2⎠⎛1x 2d x =2·x 33⎪⎪⎪10=23.答案:237.⎠⎛-11(x 2tan x +x 3+1)d x =________.解析:因为x 2tan x +x 3是奇函数.所以⎠⎛-11(x 2tan x +x 3+1)d x =⎠⎛-111d x =x |1-1=2.答案:28.一物体受到与它运动方向相反的力:F (x )=110e x +x 的作用,则它从x =0运动到x=1时F (x )所做的功等于________.解析:由题意知W =-⎠⎛01⎝⎛⎭⎫110e x +x d x=-⎝⎛⎭⎫110e x +12x 2⎪⎪⎪10=-e 10-25. 答案:-e 10-259.求下列定积分: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ; (2)⎠⎛-π0(cos x +e x )d x .解:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121xd x =x 22⎪⎪⎪21-x 33⎪⎪⎪21+ln x ⎪⎪⎪21=32-73+ln 2=ln 2-56. (2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e x d x=sin x ⎪⎪⎪0-π+e x ⎪⎪⎪-π=1-1e π.10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4),O (0,0),故y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3⎪⎪⎪20=4-83=43. [综合题组练]1.由曲线xy =1,直线y =x ,x =3所围成的封闭平面图形的面积为( )A.329B .4-ln 3C .4+ln 3D .2-ln 3解析:选B.画出平面图形,根据图形确定积分的上、下限及被积函数.由曲线xy =1,直线y =x ,x =3所围成的封闭的平面图形如图所示:由⎩⎪⎨⎪⎧xy =1,y =x ,得⎩⎪⎨⎪⎧x =1,y =1 或⎩⎪⎨⎪⎧x =-1,y =-1.(舍) 由⎩⎪⎨⎪⎧y =x ,x =3,得⎩⎪⎨⎪⎧x =3,y =3.故阴影部分的面积为⎠⎛13⎝⎛⎭⎫x -1x d x = ⎝⎛⎭⎫12x 2-ln x ⎪⎪⎪31=4-ln 3. 2.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =f (x 0)=ax 20+c , 所以x 20=13,x 0=±33. 又因为0≤x 0≤1,所以x 0=33. 答案:33 3.⎠⎛-11(1-x 2+e x -1)d x =________. 解析:⎠⎛-11(1-x 2+e x -1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x -1)d x . 因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积, 所以⎠⎛-111-x 2d x =π2. 而⎠⎛-11(e x -1)d x =(e x -x )⎪⎪⎪1-1 =(e 1-1)-(e -1+1)=e -1e-2, 所以⎠⎛-11(1-x 2+e x -1)d x =π2+e -1e -2. 答案:π2+e -1e-2 4.若函数f (x )在R 上可导,f(x)=x 3+x 2f ′(1),则⎠⎛02f (x )d x =________. 解析:因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故⎠⎛02f (x )d x =⎠⎛02(x 3-3x 2)d x =⎝⎛⎭⎫x 44-x 3⎪⎪⎪20=-4. 答案:-45.如图,在曲线C :y =x 2,x ∈[0,1]上取点P (t ,t 2),过点P 作x 轴的平行线l .曲线C 与直线x =0,x =1及直线l 围成的图形包括两部分,面积分别记为S 1,S 2.当S 1=S 2时,求t 的值.解:根据题意,直线l 的方程是y =t 2,且0<t <1.结合题图,得交点坐标分别是A (0,0),P (t ,t 2),B (1,1).所以S 1=⎠⎛0t (t 2-x 2)d x =⎝⎛⎭⎫t 2x -13x 3⎪⎪⎪t 0 =t 3-13t 3=23t 3,0<t <1. S 2=⎠⎛t 1(x 2-t 2)d x =⎝⎛⎭⎫13x 3-t 2x ⎪⎪⎪1t=⎝⎛⎭⎫13-t 2-⎝⎛⎭⎫13t 3-t 3=23t 3-t 2+13,0<t <1. 由S 1=S 2,得23t 3=23t 3-t 2+13, 所以t 2=13.又0<t <1,所以t =33. 所以当S 1=S 2时,t =33.。
第4节 定积分与微积分基本定理[理]
![第4节 定积分与微积分基本定理[理]](https://img.taocdn.com/s3/m/24b84f80f8c75fbfc67db217.png)
①求被积函数 f(x)的一个原函数 F(x);
②计算 F(b)-F(a).
(2)利用定积分的几何意义求定积分
当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.
1
如:定积分 0
1-x2dx 的几何意义是求单位圆面积的14,所以10
1-x2dx=π4.
返回
2.定积分应用的两条常用结论 (1)当曲边梯形位于 x 轴上方时,定积分的值为正;当曲 边梯形位于 x 轴下方时,定积分的值为负;当位于 x 轴上方 的曲边梯形与位于 x 轴下方的曲边梯形面积相等时,定积分 的值为零. (2)加速度对时间的积分为速度,速度对时间的积分是 路程.
2.∫e12x+1xdx=(
)
A.e2-2
B.e-1
其原函数
是什么?
C.e2
D.e+1
解析:
∫e12x+1xdx=(x2+ln
x)|e1=e2.
积分上下限
答案: C
与分段函数
3.设 f(x)=2xx2
x x
的定义域
,则
1 −1
������(������)dx
23.
答案:
1-
3 2
返回
返回
解析: 由图象可知 A=1,T2=23π--π3=π,所以 ω=1,
f(x)=sinx-π6.图中其与 x 轴的交点横坐标为6π,所以图中的阴影部分的
面积为
π 6
0
-sin������-π6dx=cosx-π6|0π6 =1-
b
么从时刻 t=a 到 t=b 所经过的路程 s=av(t)dt. (2)变力做功:一物体在变力 F(x)的作用下,沿着与 F(x)相同方向从 x
b
=a 移动到 x=b 时,力 F(x)所做的功是 W=aF(x)dx.
高考数学一轮复习 214定积分与微积分基本定理课件 理

听 课 记 录 如图,抛物线的焦点坐标为(0,1),所以直线l的
方程为y=1.
由
x2=4y, y=1,
解得
x=-2, y=1
或
x=2, y=1,
即A(-2,1),
B(2,1).
【答案】 C
【规律方法】 利用定积分求解曲边图形的面积,关键要把 握住两点:一是准确确定被积函数,一般的原则是“上”- “下”,即根据曲边图形的结构特征,用上方曲线对应的函数解 析式减去下方曲线对应的函数解析式;二是准确确定定积分的 上、下限,本例中应为曲边图形左、右两端对应点的横坐标, 上、下限的顺序不能颠倒.
,这个结论叫做微积分基本定
a
理,又叫做牛顿—莱布尼茨公式.
其中F(x)叫做f(x)的一个原函数. 为了方便,常把F(b)-F(a)记作 F(x)|ab ,即
bf(x)dx=F(x)|ba=F(b)-F(a).
a
疑点清源 1.定积分计算中应注意 (1)被积函数若含有绝对值号,应去绝对值号,再分段积分; (2)若积分式子中有几个不同的参数,则必须先分清谁是被积 变量; (3)定积分式子中隐含的条件是积分上限不小于积分下限.
bf(x)dx
c
(其中a<c<b).
a
a
2.定积分的几何意义 (1)当函数 f(x)在区间[a,b]上恒为正时,定积分bf(x)dx 的几
a
何意义是由直线 x=a,x=b(a≠b),y=0 和曲线 y=f(x)所围成的 曲边梯形的面积(图①中阴影部分).
(2)一般情况下,定积分bf(x)dx 的几何意义是介于 x 轴、曲线 a
1
0
0
答案 -2
定积分的概念与微积分基本定理知识导学

定积分的概念与微积分基本定理【要点梳理】要点一:定积分的引入 定积分的概念一般地,给定一个在区间[]a b ,上的函数=()y f x ,如图所示.将[]a b ,区间平分成n 份,分点为:0121i i n a x x x x x x b -=<<<<<<<=L L则每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n =L ξ,作和式:11()()n nn i i i i b aS f x f n==-=∆=∑∑ξξ. 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分.记为:()baS f x dx =⎰,定积分的相关名称:⎰——叫做积分号, ()f x ——叫做被积函数, ()d f x x ——叫做被积表达式,x ——叫做积分变量, a ——叫做积分下限, b ——叫做积分上限, [a ,b]——叫做积分区间. 要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()b bbaaaf x dx f u du f t dt ===⎰⎰⎰L (称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如12(1)xdx +⎰与320(1)x dx +⎰的值就不同.用定义求定积分的一般方法: (1)分割:n 等分区间[],a b ; (2)近似代替:取点[]1,i i i x x -∈ξ; (3)求和:1()ni i b af n =-∑ξ; (4)取极限:()1()lim nbi an i b af x dx f n→∞=-=∑⎰ξ. 要点二:定积分的几何意义 定积分()baf x dx ⎰的几何意义:从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分()baf x dx ⎰的几何意义.一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号. 要点诠释:(1)当()0f x ≥时,积分()d baf x x ⎰在几何上表示由()y f x =、x=a 、x=b 与x 轴所围成的曲边梯形的面积;特别地:当a=b 时,有()d 0baf x x =⎰,如图(a ).(2)当()0f x ≤时,由()y f x =、x=a 、x=b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x ⎰在几何上表示上述曲边梯形面积的相反数.所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(3)当()f x 在区间[a ,b]上有正有负时,积分()d baf x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如右图所示的图象中,定积分132()d baf x x S S S =+-⎰.要点三:微积分基本定理 微积分基本定理:一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()baf x x F b F a =-⎰.这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.其中,()F x 叫做()f x 的一个原函数.为了方便,我们常把()()F b F a -记作()ba F x ,即()d ()()()bba af x x F x F b F a ==-⎰.要点诠释:(1)根据定积分定义求定积分,往往比较困难,而利用上述定理求定积分比较方便.(2)设()f x 是定义在区间I 上的一个函数,如果存在函数()F x ,在区间I 上的任何一点x 处都有'()()F x f x =,那么()F x 叫做函数()f x 在区间I 上的一个原函数.根据定义,求函数()f x 的原函数,就是要求一个函数()F x ,使它的导数'()F x 等于()f x .由于[()]''()()F x c F x f x +==,所以()F x c +也是()f x 的原函数,其中c 为常数.(3)利用微积分基本定理求定积分()d baf x x ⎰的关键是找出使'()()F x f x =的函数()F x .通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向求出()F x .要点四:定积分的计算1. 求定积分的一般步骤是:(1)找出被积函数中的基本初等函数,将被积函数表示为基本初等函数的和或差的形式; (2)利用定积分的性质,将问题转化为求若干基本初等函数的定积分; (3)分别用求导公式找到各个基本初等函数的原函数; (4)利用牛顿―莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值. 2. 定积分的运算性质①有限个函数代数和(或差)的定积分等于各个函数定积分的代数和(或差),即1212[()()()d ]()d ()d ()d bb b bn n aaaaf x f x f x x f x x f x x f x x ±±±=±±±⎰⎰⎰⎰L L .②常数因子可提到积分符号前面,即()d ()d b baakf x x k f x x =⎰⎰.③当积分上限与下限交换时,积分值一定要反号.即()d ()d baabf x x f x x =-⎰⎰.④定积分的可加性,即对任意的c ,有()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.3. 定积分的计算技巧:(1)对被积函数,要先化简,再求积分.(2)求被积函数是分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分. 要点诠释:① 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.因此,求导运算与求原函数运算互为逆运算.② 把积分上、下限代入原函数求差时,要按步骤进行,以免发生符号错误. ③ 由于[]()'(),F x c f x +=()F x c +也是)(x f 的原函数,其中c 为常数. 【典型例题】类型一:定积分的几何意义例1. 用定积分的几何意义求: (1)1(32)d x x +⎰;(2)322sin d x x ππ⎰;(3)2204x dx -⎰.【思路点拨】画出简图,结合图形确定积分区间. 【解析】(1)如下图:阴影部分面积为(25)1722+⨯=, 从而107(32)d 2x x +=⎰.(2)如下图:由于A 的面积等于B 的面积, 从而322sin d 0x x ππ=⎰.(3)设24y x =-,则224x y +=(0,02)y x ≥≤≤,表示半径为2的41个圆,由定积分的概念可知,204x dx -⎰表示如图所示的以2为半径的41圆的面积, 所以201444x dx ππ-=⨯=⎰【总结升华】(1)利用定积分的几何意义正确画出图形求定积分. (2)()d [()0]baf x x f x >⎰表示曲边梯形的面积,而上半圆可看做特殊曲边梯形(有两边缩为点),这里面积易求,从而得出定积分的值. 举一反三:【变式1】试用定积分的几何意义求31(21)d x x --⎰.【答案】如图所示:计算可得A 的面积为5525224⨯=,B 的面积为339224⨯=, 从而31259(21)d 444x x --=-=⎰.【变式2】利用定积分的几何定义求定积分:(1)⎰-adx x a 022; (2)2016x dx -⎰.【答案】(1)设22x a y -=,则222a y x =+)0,0(a x y ≤≤≥表示41个圆,由定积分的概念可知,所求积分就是41圆的面积,所以⎰-adx x a 02242a π=(2)设216y x -2216x y +=(0,02)y x ≥≤≤表示如图的曲边形, 其面积2233S S S π∆=+=+扇形, 故20216233x dx π-=+⎰类型二:利用微积分基本定理求定积分【高清课堂:微积分基本定理385549 典型例题1】 例2.计算下列定积分: (1)211dx x⎰; (2)312xdx ⎰.【思路点拨】根据求导函数与求原函数互为逆运算,找到被积函数的一个原函数,利用微积分基本定理求解.【解析】(1)因为'1(ln )x x=,所以22111ln |ln 2ln1ln 2dx x x ==-=⎰.(2)323112|817xdx x ==-=⎰.【总结升华】为使解题步骤清晰,通常都是把求原函数和计算原函数值的差用一串等式表示出来.解题格式如下:()d ()()()bba af x x F x F b F a ==-⎰举一反三:【变式】计算下列定积分(1)11dx ⎰; (2)1xdx ⎰;(3)130x dx ⎰; (4)131x dx -⎰.【答案】(1)11001d 101x x ==-=⎰;(2)11222001111d 102222x x x ==⋅-⋅=⎰; (3)130x dx⎰144401*********x ==⋅-⋅=; (4)131x dx -⎰144411111(1)0444x -==⋅-⋅-=. 【高清课堂:微积分基本定理385549 典型例题2】例3.求下列定积分: (1)221(1)d x x x ++⎰; (2)0(sin cos )d x x x π+⎰;(3)2211()d x x x x-+⎰; (4)(cos e )d x x x π--+⎰.【解析】(1)223222222221111111129(1)d d d 1d 326x x x x x x x x x x x ++=++=++=⎰⎰⎰⎰.(2)0000(sin cos )d sin d cos d (cos )sin 2x x x x x x x x x πππππ+=+=-+=⎰⎰⎰.(3)22232222222111111111375()d d d d ln ln 2ln 223236x x x x x x x x x x x x x -+=-+=-+=-+=-⎰⎰⎰⎰.(4)00001(cos e )d cos d e d sin e1e xxx x x x x x x ππππππ------=+=+=-⎰⎰⎰. 【总结升华】(1)求函数()f x 在某个区间上的定积分,关键是求出函数()f x 的一个原函数,要正确运用求导运算与求原函数运算互为逆运算的关系.(2)求复杂函数定积分要依据定积分的性质. 举一反三:【变式1】计算下列定积分的值:(1)22(31)x x dx -+⎰, (2)dx x x ⎰+20)sin (π, (3)180(8)x x dx -⎰【答案】(1)2223200(31)()82x x x dx x x -+=-+=⎰.(2)222201(sin )(cos )128x x dx x x +=-=+⎰πππ.(3)91801871(8)()0ln893ln 29x xx x dx -=-=-⎰.【高清课堂:微积分基本定理385549 典型例题2】 【变式2】计算: (1)120⎰; (2)121x e dx --⎰.【答案】(1)1201==⎰; (2)11222211111222xx e dx ee e -----=-=-⎰. 【变式3】计算下列定积分:(1)20(1)x x dx +⎰; (2)2211()xe dx x+⎰; (3)20sin xdx ⎰π.【答案】 (1)2(1)x x x x +=+Q 且32211(),()32x x x x ''==,∴22222232220003211(1)()||321114(20)(20).323x x dx x x dx x dx xdx x x +=+=+=+=⨯-+⨯-=⎰⎰⎰⎰(2)1(ln )x x '=,又222()(2)2x x xe e x e ''=⋅=,得221()2x x e e '= 所以2222222211111111()|ln |2x x x e dx e dx dx e x x x +=+=+⎰⎰⎰ 42421111ln 2ln1ln 2.2222e e e e =-+-=-+ (3)由(sin 2)cos 2(2)2cos 2x x x x ''=⋅=,得1cos 2(sin 2)2x x '=所以200001111sin (cos 2)cos 22222xdx x dx dx xdx ππππ=-=-⎰⎰⎰⎰00111111|(sin 2)|(0)(sin 2sin 0).22222222x x x ππππ=-=---= 类型三:几类特殊被积函数求定积分问题 例4.求值:(1)若2, 0()cos 1, 0x x f x x x ⎧≤=⎨->⎩,求11()d f x x -⎰;(2)计算x 的值.【思路点拨】对于图形由两部分组成的函数在求积分时,应注意用性质()baf x dx ⎰=()c af x dx ⎰+()bcf x dx ⎰进行化简. 【解析】(1)0111230110112()d d (cos 1)d (sin )sin133f x x x x x x xx x ---=+-=+-=-+⎰⎰⎰. (2)xx =20|sin -cos |d x x x π=⎰4204|sin cos |d |sin cos |d x x x x x x πππ=-+-⎰⎰4204cos sin d (sin cos )d x x x x x x πππ=-+-⎰⎰2404(sin cos )(cos sin )1)x x x x πππ=+-+=. 【总结升华】(1)对于分段函数的定积分,通常是依据定积分“对区间的可加性”,先分段积分再求和,要注意各段定积分的上、下限. (2)计算|()|d baf x x ⎰时,需要去掉绝对值符号,这时要讨论()f x 的正负,转化为分段函数求定积分问题.举一反三:【高清课堂:微积分基本定理385549 典型例题3】 【变式1】求定积分: (1)20()f x dx ⎰, 其中2,01()5,12x x f x x ≤<⎧=⎨≤≤⎩(2)31x dx -⎰.【答案】(1)212122101()d 2d 5d 56f x x x x x x x =+=+=⎰⎰⎰(2)31x dx -⎰=11x dx -⎰+311x dx -⎰=10(1)x dx -⎰+31(1)x dx -⎰=21230111()|()|22x x x x -+- =15222+=. 【变式2】计算下列定积分: (1)20|sin |x dx π⎰;(2)dx x |1|22⎰-.【答案】(1)(cos )sin x x '-=Q ,∴220|sin ||sin ||sin |x dx x dx x dx=+⎰⎰⎰ππππ2020sin sin cos |cos |(cos cos 0)(cos 2cos )4.xdx xdxx x =-=-+=--+-=⎰⎰πππππππππ(2)∵0≤x ≤2,于是 ⎪⎩⎪⎨⎧≤≤-≤<-=-)10(1)21(1|1|222x x x x x∴⎰⎰⎰-+-=-2121222)1()1(|1|dxx dx x dx x2131033131⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x x x⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=131********2=.类型四:函数性质在定积分计算中的应用 例5.求定积分:11(cos x x dx -⎰.【思路点拨】考虑利用被积式函数的奇偶性求积分. 【解析】∵cos y x x =是奇函数,∴11cos 0x xdx -=⎰,∵y∴211302x dx -=⎰⎰,∴25113310136(cos 022055x x dx x dx x -=+=⨯=⎰⎰.【总结升华】函数的奇偶性又是解决定积分有关问题的重要工具,利用这两点能简捷地解决定积分的有关问题,结论如下:(1)若()f x 是偶函数,则()2()aaa f x dx f x dx -=⎰⎰;(2)若()f x 是奇函数,则()0aaf x dx -=⎰.举一反三: 【变式1】求333(sin )x x dx -+⎰的值.【答案】∵()f x 是奇函数,∴333(sin )0x x dx -+=⎰.【变式2】设()f x 是偶函数,若2()2f x dx =⎰,则22()f x dx -=⎰ ;【答案】∵()f x 是偶函数,∴222()2()224f x dx f x dx -==⨯=⎰⎰.【变式3】求定积分:2222cos 2x dx ππ-⎰.【答案】∵22cos cos 12xy x ==+是偶函数, ∴222222cos (cos 1)2xdx x dx--=+⎰⎰ππππ2022(cos 1)2(sin )2.x dxx x =+=+=+⎰πππ。
高考数学一轮复习 第15讲定积分与微积分基本定理课件 理 新人教课标A

为_积__分__下__限_____,b 称为_积__分__上__限_____.
第15讲 │知识梳理
2.定积分的几何意义
在区间[a,b]上的连续函数 f(x),若恒有 f(x)≥0,定积分baf(x)dx
表
示
由
_直__线__x_=__a_,__x_=__b_(_a_≠_b_)_,__y_=__0_和__曲__线__y_=__f_(x_)_所__围__成__的__曲__边__梯__形__的___ _面__积____________.
0
中 F(x)可将基本初等函数的导数公式逆向使用得到.当被积函数 含有绝对值(或平方根)时,需按绝对值内的正、负号将定积分区 间分段,然后按区间的可加性逐段积分;同样,当被积函数为分 段函数时,也需按函数定义的分段情形相应的逐段积分.
第15讲 │规律总结
3.利用定积分求平面图形的面积的步骤如下:(1)画出函 数的草图,确定积分变量;(2)求图象的交点,确定积分上、 下限;(3) 将曲边梯形的面积表示为若干定积分之和;(4)利用 定积分求面积.
第15讲 │要点探究
(2)由a (2x-8)dx=(x2-8x)|a0=a2-8a≤0,显然 a≠0,故解集为 0
{a|0<a≤8}.
(3)01f(x)dx=01(ax2+1)dx=
a3x3+x10=a3+1=2,解得 a=3.
第15讲 │要点探究
► 探究点2 利用定积分的几何意义求定积分 例 2 求定积分1[ 1-(x-1)2-x]dx 的值.
第15讲 │知识梳理
3.定积分的性质
(1)定积分的线性性质
kbf(x)dx bkf(x)dx=____a________(k 为常数);
a
1_定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理)基础巩固强化1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x 2-x )d x B .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d y D .S =⎠⎛01(y -y )d y[答案]B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析]两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .2.如图,阴影部分面积等于( )A .23B .2- 3 C.323D.353 [答案]C[解析]图中阴影部分面积为S =⎠⎛-31(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=323. 3.⎠⎛024-x 2d x =( )A .4πB .2πC .π D.π2 [答案]C[解析]令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )A .在t 1时刻,甲车在乙车前面B .在t 1时刻,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面 [答案]A[解析]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间行驶的路程就是该时间段速度函数的定积分,即速度函数v (t )的图象与t 轴以与时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的面积,因此,在t 0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C ,D 错误;同样,在t 1时刻,v 甲的图象与t 轴和t =t 1围成区域的面积,仍然大于v 乙的图象与t 轴和t =t 1围成区域的面积,所以,可以断定:在t 1时刻,甲车还是在乙车的前面.所以选A.5.向平面区域Ω={(x ,y )|-π4≤x ≤π4,0≤y ≤1}随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )A.π4B.12C.π2-1D.2π [答案]D[解析]平面区域Ω是矩形区域,其面积是π2,在这个区6.的值是( )A .0 B.π4 C .2 D .-2 [答案]D[解析]2(cos sin )2x x ππ---=2(cos sin )2x x ππ---=-2. 7.⎠⎛02(2-|1-x |)d x =________.[答案]3[解析]∵y =⎩⎨⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎛02(2-|1-x |)d x =⎠⎛01(1+x )d x +⎠⎛12(3-x )d x=(x +12x 2)|10+(3x -12x 2)|21=32+32=3. 9.已知a =20(sin cos )x x dx π+⎰,则二项式(a x -1x)6的展开式中含x 2项的系数是________.[答案]-192 [解析]由已知得a =2(sin cos )x x dx π+⎰=(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C r 6×26-r×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 16×25=-192.10.有一条直线与抛物线y =x 2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析]设直线与抛物线的两个交点分别为A (a ,a 2),B (b ,b 2),不妨设a <b ,则直线AB 的方程为y -a 2=b 2-a 2b -a (x -a ),即y =(a +b )x -ab .则直线AB 与抛物线围成图形的面积为S =⎠⎛ab [(a +b )x -ab -x 2]d x=(a +b 2x 2-abx -x 33)|ba =16(b -a )3,∴16(b -a )3=43,解得b -a =2.设线段AB 的中点坐标为P (x ,y ), 其中⎩⎪⎨⎪⎧x =a +b 2,y =a 2+b 22.将b -a =2代入得⎩⎨⎧x =a +1,y =a 2+2a +2.消去a 得y =x 2+1.∴线段AB 的中点P 的轨迹方程为y =x 2+1.能力拓展提升11.等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12 [答案]C [解析]因为S 3=⎠⎛034x d x =2x 2|30=18,所以6q +6q 2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.12.已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1 [答案]A[解析]由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1e ln x d x =(x ln x -x )|e 1=(e ln e -e )-(1×ln1-1)=1.13.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案]18[解析]由方程组⎩⎨⎧y 2=2x ,y =4-x ,解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y ,∴S =⎠⎛-42 [(4-y )-y 22]dy =(4y -y 22-y 36)|2-4=18.14.已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1).直线l 1,l 2与函数f (x )的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S 2表示.直线l 2,y 轴与函数f (x )的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S 1表示.当t 变化时,阴影部分的面积的最小值为________.[答案](e -1)2[解析]由题意得S 1+S 2=⎠⎛0t (e t -1-e x +1)d x +⎠⎛t1(e x -1-e t +1)d x=⎠⎛0t (e t -e x )d x +⎠⎛t1(e x -e t )d x =(xe t -e x )|t 0+(e x -xe t )|1t =(2t -3)e t +e +1,令g (t )=(2t -3)e t +e +1(0≤t ≤1),则g ′(t )=2e t +(2t -3)e t =(2t -1)e t,令g ′(t )=0,得t =12,∴当t ∈[0,12)时,g ′(t )<0,g (t )是减函数,当t ∈(12,1]时,g ′(t )>0,g (t )是增函数,因此g (t )的最小值为g (12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分. (1)⎠⎛1-1|x |d x; (2)⎠⎛πcos 2x2d x ;(3)∫e +121x -1d x . [解析](1)⎠⎛1-1|x |d x =2⎠⎛1x d x =2×12x 2|10=1.(2)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |π0+12sin x |π0=π2. (3)∫e +121x -1d x =ln(x -1)|e +12=1. 16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,求a 的值.[解析]f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0). ∴S 阴影=⎠⎛a0[0-(-x 3+ax 2)]d x=(14x 4-13ax 3)|0a =112a 4=112, ∵a <0,∴a =-1.1.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求22()f x dx ππ-⎰的值,结果是( )A.16+π2 B .π C .1 D .0 [答案]B[解析]22()f x dx ππ-⎰=22ππ-⎰sin 5x d x +22ππ-⎰1d x ,由于函数y =sin 5x 是奇函数,所以22ππ-⎰sin 5x d x =0,而22ππ-⎰1d x =x |π2-π2=π,故选B.2.若函数f (x )=⎩⎨⎧-x -1 (-1≤x <0),cos x (0≤x <π2),的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )A.2+π4B.12 C .1 D.32 [答案]D[解析]由图可知a =12+⎠⎜⎜⎛0π2cos x d x =12+sin x |π20=32.3.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.[答案]22[解析]∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22. 4.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. [答案]33[解析]⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =(ax 33+cx )|10=a 3+c ,故a 3+c =ax 20+c ,即ax 20=a 3,又a ≠0,所以x 20=13,又0≤x 0≤1,所以x 0=33.故填33. 5.设n =⎠⎛12(3x 2-2)d x ,则(x -2x)n 展开式中含x 2项的系数是________.[答案]40[解析]∵(x 3-2x )′=3x 2-2, ∴n =⎠⎛12(3x 2-2)d x =(x 3-2x )|21 =(23-2×2)-(1-2)=5.∴(x -2x )5的通项公式为T r +1=C r 5x 5-r (-2x)r =(-2)r C r 5x 5-3r 2 ,令5-3r2=2,得r =2, ∴x 2项的系数是(-2)2C 25=40.。
定积分与微积分基本定理讲义

定积分与微积分基本定理讲义一、知识梳理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1b -a n f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃb a f (x )d x =lim n →∞∑n i =1 b -a nf (ξi ).在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ). 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).注意:1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有(1)若f (x )为偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x .(2)若f (x )为奇函数,则ʃa -a f (x )d x =0.题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则ʃb a f (x )d x =ʃb a f (t )d t .( )(2)若函数y =f (x )在区间[a ,b ]上连续且恒正,则ʃb a f (x )d x >0.( )(3)若ʃb a f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )(4)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( )题组二:教材改编2.ʃe +121x -1d x =________.3.ʃ0-11-x 2d x =________. 4.[汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________ m. 题组三:易错自纠5.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .46.若ʃT 0x 2d x =9,则常数T 的值为________.7.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为________. 三、典型例题题型一:定积分的计算1.定积分ʃ1-1(x 2+sin x )d x =______.2.ʃ1-1e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +23.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( ) A.34B.45C.56 D .不存在思维升华:运用微积分基本定理求定积分时要注意以下几点:(1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.题型二:定积分的几何意义命题点1:利用定积分的几何意义计算定积分典例 (1)计算:ʃ313+2x -x 2 d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 命题点2:求平面图形的面积典例由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为________.思维升华:(1)根据定积分的几何意义可计算定积分.(2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.跟踪训练 (1)定积分ʃ309-x 2d x 的值为________. (2)如图所示,由抛物线y =-x 2+4x -3及其在点A (0,-3)和点B (3,0)处的切线所围成图形的面积为______.题型三:定积分在物理中的应用典例 一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为____ m.思维升华:定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .跟踪训练 一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( )A. 3 JB.233 JC.433J D .2 3 J答案 C 四、反馈练习1.π220sin d 2x x 等于( ) A .0 B.π4-12C.π4-14D.π2-1 2.ʃ1-1(1-x 2+x )d x 等于( )A .πB.π2 C .π+1 D .π-13.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( )A .2B .-2C .1D .-1 5.设f (x )=⎩⎪⎨⎪⎧ x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( ) A.43B.54C.65D.76 6.设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =17.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .28.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止,则在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2 9.π20π2sin()d 4x x +=⎰ ________. 10.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________. 11.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.12.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.13.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13B.310C.14D.1514.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 115.ʃ1-1(1-x 2+e x -1)d x =______. 16.若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________.。
第三章导数及其应用3-4定积分与微积分基本定理(理)

(4)公式法:套用公式求定积分,避免繁琐 的运算,是求定积分常用的方法. (5)定义法:用定义求定积分是最基本的求 定积分方法.
[例1] 用定积分的定义求由y=3x,x=0,x =1,y=0
[解析] (1)分割:把区间[0,1]等分成n个小区间
i-1 i 1 n ,n (i=1,2,…,n).其长度为Δx= n ,把曲边
2x
1 2 1 1-1|x|dx=2 xdx=2× x |0 =1; 解析:(1) 2
1 0
1 1 3 1 -3 2 (2) x +x4dx= 3x -3x 1
2 1
2
8 1 1 1 21 = - - + = . 3 3 3×8 3 8
=(x
2
1 3 3 32 3 +3x)|-1 - x |-1 = . 3 3
32 答案: 3
点评:利用定积分求平面图形的面积时,关 键是将待求面积的平面图形看成可求积分的 平面图形的和或差,还要注意待求面积的平 面图形在y轴上方还是下方,以确定积分的 正负.
由曲线y= x,y=x2所围成图形的面积为____.
b a b a
n -1 i =0
分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积 式.此时称函数f(x)在区间[a,b]上可积.
对定义的几点说明:
b f(x)dx是一个常数. (1)定积分
a
(2)用定义求定积分的一般方法是: ①分割区间:将区间分为n个小区间,实际应用 中常常是n等分区间[a,b]; ②近似代替:取点ξi∈[xi-1,xi];
b-a ③求和: f(ξi)· ; n i=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:342
[冲关锦囊] 利用定积分解决变速直线运动问题和变力做功问题时, 关键是求出物体做变速直线运动的速度函数和变力与位移 之间的函数关系,确定好积分区间,得到积分表达式,再
利用微积分基本定理计算即得所求.
易错矫正
因定积分计算问题致误
答案: 1
[冲关锦囊]
计算一些简单的定积分,解题的步骤是:①把被积函 数变形为幂函数、正弦函数、余弦函数、指数函数与常数 的积的和或差;②把定积分用定积分性质变形为求被积函 数为上述函数的定积分;③分别用求导公式找到一个相应
的原函数;④利用牛顿—莱布尼兹公式求出各个定积分的
值;⑤计算原始定积分的值.
[自主解答] 1 ∫e f(x)dx=∫1x2dx+∫e dx 0 0 1 x
1 31 1 4 | 0+ln x| e = +lne= . =3x 1 3 3
4 [答案] 3
ex,x∈[0,1] 本例中f(x)改为f(x)=1 再求∫e f(x)dx的值. 0 ,x∈1,e]. x
[正确解答] 结合函数图像可得所求的面积是定积分
3
cos xdx
3
=sin x 3 图进入
1 ∫e f(x)dx=∫1exdx+∫e dx 解: 0 0 1 x =ex| 1+ln x| e =e-1+lne-ln1=e. 0 1
[巧练模拟]——————(课堂突破保分题,分分必保!)
1.(2012· 齐齐哈尔调研)计算∫π(sin x-cos x)dx=________. 0
解析:∫π(sin x-cos x)dx=∫πsin xdx-∫πcos xdx 0 0 0 =(-cos x)| π-sin x| π=2. 0 0
线f(x)以及直线x=a、x=b之间的曲边梯形面积的代数和 (图(2)中阴影所示),其中在x轴上方的面积等于该区间上的 积分值,在x轴下方的面积等于该区间上积分值的相反数.
3.微积分基本定理 一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x) =f(x).那么
b a
f(x)dx=
F(b)-F(a) .这个结论叫做微积
分基本定理,又叫做牛顿—莱布尼兹公式. 其中F(x)叫做f(x)的一个原函数.
b F(x)|a ,即 为了方便,常把F(b)-F(a)记作
b a
b f(x)dx=F(x)|a=F(b)-F(a).
三、定积分的应用 1.平面图形的面积:
一般地,设由曲线y=f(x),y=g(x)以及直线x=a,x=b
f(x)dx+
f(x)dx
(其中 a<c<b).
二、定积分的几何意义 1.当函数f(x)在区间[a,b]上恒为正时,定积分
b a
f(x)dx的
几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x) 所围成的曲边梯形的面积(图(1)中阴影部分).
b 2.一般情况下,定积分 ∫ a f(x)dx的几何意义是介于x轴、曲
3.(2011· 福建高考)∫1(ex+2x)dx等于 0 A.1 C.e B.e-1 D.e+1
(
)
1 解析:∫1(ex+2x)dx=(ex+x2)| 0=(e1+1)-e0=e. 0
答案: C
4.(教材习题改编)已知函数f(x)=x2-2x-3,则∫1 1f(x)dx - =________.
答案:2
2 2.(2012· 石家庄模拟)∫0|1-x|dx=________.
解析:若1-x≥0,则x≤1, 若1-x<0,则x>1,于是
2 ∫2|1-x|dx=∫1(1-x)dx+∫1(x-1)dx 0 0
2 1 2 1 1 2 =x-2x | 0+2x -x| 1=1.
答案: -2
利用微积分基本定理(即牛顿—莱布尼兹公式)求定积 分,关键是找到满足F′(x)=f(x)的函数F(x),即找被积函数
f(x)的原函数F(x),利用求导运算与求原函数运算互为逆运
算的关系,运用基本初等函数求导公式和导数四则运算法 则从反方向上求出F(x).
[精析考题]
[例1]
lg x, x>0, (2011· 陕西高考)设f(x)= a x+∫03t2dt,x≤0,
[答案] C
[巧练模拟]—————(课堂突破保分题,分分必保!) 5.(2011· 唐山一模)设变力F(x)作用在质点M上,使M沿 x轴正向从x=1运动到x=10,已知F(x)=x2+1且方
向和x轴正向相同,则变力F(x)对质点M所做的功为
________ J(x的单位:m,力的单位:N).
解析:变力F(x)=x2+1使质点M沿x轴正向从x=1运动到 x=10所做的功为 W=∫10F(x)dx=∫10(x2+1)dx 1 1
若f(f(1))=1,则a=________.
[自主解答] 得a=1.
显然f(1)=lg 1=0,f(0)=0+∫a3t2dt=t3| a=1, 0 0
[答案] 1
[例 2]
x2,x∈[0,1], (2012· 西安模拟)设 f(x)=1 x,x∈1,e],
(e 为自然对数的底数),则∫e f(x)dx 的值为________. 0
(
)
1 1 1 1 1 ∫1x2dx= x3|0= ×1- ×0= . 解析: 0 3 3 3 3
答案:B
2.求曲线y=x2与y=x所围成图形的面积,其中正确的是
1 A.S=∫0(x2-x)dx 1 C.S=∫0(y2-y)dy
(
)
B.S=∫1(x-x2)dx 0
1 D.S=∫0(y- y)dy
答案:B
1 解析:∫1 1f(x)dx=∫-1(x2-2x-3)dx -
1 3 1 16 2 =3x -x -3x| -1=- 3 .
16 答案:- 3
5.如果∫1f(x)dx=1,∫2f(x)dx=-1,则∫2f(x)dx=________. 0 0 1
2 解析:∵∫0f(x)dx=∫1f(x)dx+∫2f(x)dx, 0 1 1 ∴∫2f(x)dx=∫2f(x)dx-∫0f(x)dx=-1-1=-2. 1 0
一、定积分的性质 1. kf(x)dx= k
b
b
a
a
f(x)dx(k为常数) ;
b a
2. [f(x)± g(x)]dx=
3.
b a
b a
f(x)dx± g(x)dx
b c
b a
;
f(x)dx=
c a
[考题范例] π π (2011· 湖南高考)由直线x=-3,x=3,y=0与曲线y=cos 成的封闭图形的面积为 1 A.2 B.1 3 C. 2 D. 3 x所围 ( )
[失误展板] 错解:因
3
3
cos xdx=-sin x 3 =- 3.
3
错因:原函数sin x和被积函数cos x位置颠倒致误.
m处,同时以v=10t(m/s)的速度与A同向运动,出发后物
体A追上物体B所用的时间t(s)为 A.3 C.5 B.4 D.6 ( )
[自主解答]
因为物体A在t秒内行驶的路程为∫t0(3t2+1)dt,物
体B在t秒内行驶的路程为∫t010tdt,所以∫t0(3t2+1-10t)dt= (t3+t-5t2)| t0=t3+t-5t2=5⇒(t-5)(t2+1)=0,即t=5.
[答案] C
[巧练模拟]———————(课堂突破保分题,分分必保!)
1 3.(2012· 威海模拟)曲线y=sin x(0≤x≤π)与直线y=2围成的封 闭图形的面积是 A. 3 π C.2-3 B.2- 3 π D. 3-3 ( )
1 π 5π 解析:由sin x=2与0≤x≤π得x=6或 6 , 1 所以曲线y=sin x(0≤x≤π)与直线y=2围成的封闭图形的面积 1 5π π π 是S= sin xdx-2× 6 -6=-cos x -3 6 6 π π 5π =-cos 6 --cos6-3 π = 3-3.
定积分与微积分基本定理
[备考方向要明了] 考 什 么
1.了解定积分的实际背景,了解定积分的基本思想,
了解定积分的概念. 2.了解微积分基本定理的含义.
怎 么 考 本部分主要有两种题型,一是定积分的计算,二是用 定积分求平面图形的面积.高考中,多以选择题或填空题 的形式考查定积分的概念和计算以及曲边梯形面积的求法, 难度较小.
5 6
5 6
答案:D
1 4.(2012· 合肥模拟)计算∫0 1-x2dx=________.
解析:令y= 1-x2, 则y2=1-x2(y≥0), ∴x2+y2=1(y≥0), 其图形为在x轴上方的半圆,如图, 则∫1 1-x2dx的值为阴影部分的面积, 0 1 π 2 所以所求值为4×π×1 =4. π 答案:4
[精析考题] [例3] (2011· 新课标全国卷)由曲线y= x,直线y=x-2及y轴所围 ( B.4 D.6 )
成的图形的面积为 10 A. 3 16 C. 3
[自主解答]
由y= x及y=x-2可得,x=4,所以由y= x及
y=x-2及y轴所围成的封闭图形面积为 ∫4( 0
2 3 16 1 2 - x2+2x| 4= x x-x+2)dx= 0 3. 2 3
[冲关锦囊] 利用定积分求曲边梯形面积的步骤
(1)画出曲线的草图.
(2)借助图形,确定被积函数,求出交点坐标,确定积分的 上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.
[精析考题] [例4] (2011· 广州模拟)物体A以v=3t2+1(m/s)的速度在 一直线l上运动,物体B在直线l上,且在物体A的正前方5