第6章 半导体存储器
《半导体存储器》课件

嵌入式系统中的应用
半导体存储器广泛应用于 嵌入式系统,如智能家居、 汽车电子和工业控制。
计算机内存
半导体存储器是计算机主 存储器的重要组成部分, 用于临时存储数据和程序。
智能手机内存
手机内存运行应用程序和 存储数据,半导体存储器 提供了高速和可靠的数据 存取。
未来半导体存储器的发展方向
1 3D垂直存储器
《半导体存储器》PPT课 件
半导体存储器PPT课件大纲
什么是半导体存储器?
半导体存储器定义
半导体存储器是指使用半导体材料制造的存储器,它可以将数据存储在芯片内部的电子元件 中。
存储器的分类
常见的半导体存储器包括静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)和 闪存存储器。
常见的半导体存储器
通过增加垂直堆叠层数来增加存储容量,提高存储密度和性能。
2 非易失性存储器
开发更加稳定和可靠的非易失性存储器,提供更长久的数据存储和保护。
3 全新器件技术
研发新型的器件结构和材料,以满足不断增长的存储需求和更高的速度要求。
总结
半导体存储器的重要性
半导体存储器在现代计算和通信领域发挥着关键作用,对技术和社会的发展产生积极影响。
静态随机存取存储器 (SRAM)
SRAM具有快速读写速度和较 短的访问时间,适用于高性 能的应用。
动态随机存取存储器 (DRAM)
DRAM具有较大的存储容量和 较低的成本,广泛应用于个 人电脑和服务器。
闪存存储器
闪存存储器具有非易失性和 较高的耐用性,适用于便携 设备的存储需求。
半导体存储器的工作原理
1
SRAM的工作原理
SRAM使用触发器实现数据的存储和读取,具有较快的访问速度和数据保持能力。
存储器接口 (2)

地把双端口RAM看作是本地RAM一样进行访问,不 仅方便了软件设计,还大大地提高了系统的工作 效率。
二、半导体存储器的主要性能指标 主要从一下几方面考察: 1、存储容量 2、速度 3、功耗 4、集成度 5、可靠性
三、存储芯片的组成
1、地址译码器:接收来自CPU的N位地址信息, 经译码后产生2的N次方个地址选择信号对片内 寻址。
/CS=0,/OE=0时为读; /CS=0,/WE=0时为写。 /WE和/OE分别接CPU的/WR和/RD信号。
2、存储器与CPU数据总线的连接 根据存储器结构选择连接CPU的数据总线。
6.3 主存储器接口
主存储器的类型不同,则接口不同。以 EPROM、SRAM、DRAM为例分别介绍。
一、EPROM与CPU的接口 目前广泛使用的典型EPROM芯片有Intel公
(1)Tc=总容量/N×8/M=128K/8K×8/8 =16片
(2)Tc=128K/8K×16/8=32片
6.2存储器接口技术
一、存储器接口中应考虑的问题
1、存储器与CPU的时序配合
几个问题: (1)什么是总线周期?(2)什么 是时钟周期?(3)什么是T状态?(4)如何实 现二者之间的时序配合?(5)设计产生等待信 号电路应注意那些问题?(见图6-3)
2、如何完成寻址功能?
要完成寻址功能必须具备两种选择:
(1)片选:即首先要从众多存储器中,选中要 进行数据传输的某一存储器芯片,称为片选。一 般由接口电路中的端口译码产生。
(2)字选:然后从该芯片内选择出某一存储单 元,称为字选。由存储器内部的译码电路完成。
3、片选控制的译码方法
常用方法有:线选法、全译码法、部分译码法、 混合译码法等。
或列出地址分配表; ③根据地址分配图或分配表确定译码方法并画出
第6章半导体存储器

(a)
图6-8
(b)
3.快闪存储器(Flash Memory)
而且浮置栅一源区间的电容要比浮置栅一控制栅间的电容小得多 。 当控制栅和源极间加上电压时,大部分电压都将降在浮置栅与源极 之间的电容上。 快闪存储器的存储单元就是用这样一只单管组成的,如图6-8(b)所 示。
(a)
图6-8
(b)
半导体存储器的技术指标
存取容量:表示存储器存放二进制信息的多少。二值 信息以字的形式出现。一个字包含若干位。一个字的 位数称做字长。
例如,16位构成一个字,那么该字的字长为16位。一个存储 单元只能存放一个一位二值代码,即只能存一个0或者一个1。 这样,要存储字长为16的一个字,就需要16个存储单元。若 存储器能够存储1024个字,就得有1024×16个存储单元。 通常,用存储器的存储单元个数表示存储器的存储容量,即 存储容量表示存储器存放二进制信息的多少。存储容量应表 示为字数乘以位数。 例如,某存储器能存储1024个字 ,每个字4位,那它的存储容 量就为1024×4=4096,即该存储器有4096个存储单元。 存储器写入(存)或者读出(取)时,每次只能写入或读出 一个字。若字长为8位,每次必须选中8个存储单元。 选中哪些存储单元,由地址译码器的输出来决定。即由地址 码来决定。地址码的位数n与字数之间存在2n=字数的关系。 如果某存储器有十个地址输入端,那它就能存210=1024个字。
[例6-1]
[例6-1]
根据表6-2可以写出Y的表达式: Y7=∑(12,13,14,15) Y6=∑(8,9,10,11,14,15) Y5=∑(6,7,10,11,13,15) Y4=∑(4,5,7,9,11,12) Y3=∑(3,5,11,13) Y2=∑(2,6,10,14) Y1=0 Y0=∑(1,3,5,7,9,11,13,15 ) 根据上述表达式可画出ROM存储点阵如图6-9所示。
《半导体存储器》课件

制造设备
用于将掺杂剂引入硅片。
用于在硅片上生长单晶层 。
掺杂设备 外延生长设备
用于切割硅片。
晶圆切割机
制造设备
光刻机
用于将电路图形转移到硅片上。
刻蚀机
用于刻蚀硅片表面。
镀膜与去胶设备
用于在硅片表面形成金属层或介质层,并去 除光刻胶。
测试与封装设备
用于对芯片进行电气性能测试和封装成最终 产品。
分类
根据存储方式,半导体存储器可分为随机存取存储器(RAM)和只读存储器( ROM)。
历史与发展
1 2 3
早期阶段
20世纪50年代,半导体存储器开始出现,以晶 体管为基础。
发展阶段
随着技术的进步,20世纪70年代出现了动态随 机存取存储器(DRAM)和静态随机存取存储器 (SRAM)。
当前状况
现代半导体存储器已经广泛应用于计算机、移动 设备、数据中心等领域。
物联网和边缘计算
在物联网和边缘计算领域应用半导体存储器,实现高 效的数据存储和传输。
CHAPTER
05
案例分析:不同类型半导体存 储器的应用场景
DRAM的应用场景
01
DRAM(动态随机存取存储器)是一种常用的半导体存储器,广泛应 用于计算机和服务器等领域。
02
由于其高速读写性能和低成本,DRAM被用作主内存,为CPU提供快 速的数据存取。
外延生长
在硅片上生长一层或多 层所需材料的单晶层。
掺杂
通过扩散或离子注入等 方法,将掺杂剂引入硅 片。
制造流程
01
光刻
利用光刻胶将电路图形转移到硅片 上。
镀膜与去胶
在硅片表面形成金属层或介质层, 并去除光刻胶。
半导体的基础知识教案

半导体的基础知识教案第一章:半导体概述1.1 半导体的定义与特性解释半导体的概念介绍半导体的物理特性讨论半导体的重要参数1.2 半导体的分类与制备说明半导体材料的分类探讨半导体材料的制备方法分析半导体器件的制备过程第二章:PN结与二极管2.1 PN结的形成与特性解释PN结的概念与形成过程探讨PN结的特性分析PN结的应用领域2.2 二极管的结构与工作原理介绍二极管的结构解释二极管的工作原理探讨二极管的主要参数与规格第三章:双极型晶体管(BJT)3.1 BJT的结构与分类解释BJT的概念介绍BJT的结构与分类分析BJT的运作原理3.2 BJT的特性与参数探讨BJT的输入输出特性讨论BJT的主要参数与规格分析BJT的应用领域第四章:场效应晶体管(FET)4.1 FET的结构与分类解释FET的概念介绍FET的结构与分类分析FET的运作原理4.2 FET的特性与参数探讨FET的输入输出特性讨论FET的主要参数与规格分析FET的应用领域第五章:半导体器件的应用5.1 半导体二极管的应用介绍半导体二极管的应用领域分析二极管在不同电路中的应用实例5.2 半导体晶体管的应用解释半导体晶体管在不同电路中的应用探讨晶体管在不同电子设备中的应用实例5.3 半导体集成电路的应用介绍半导体集成电路的概念分析集成电路在不同电子设备中的应用实例第六章:半导体存储器6.1 存储器概述解释存储器的作用与分类探讨半导体存储器的发展历程分析存储器的主要参数6.2 RAM与ROM介绍RAM(随机存取存储器)的原理与应用解释ROM(只读存储器)的原理与应用分析RAM与ROM的区别与联系6.3 闪存与固态硬盘探讨闪存(NAND/NOR)的原理与应用介绍固态硬盘(SSD)的结构与工作原理分析固态硬盘的优势与挑战第七章:太阳能电池与光电子器件7.1 太阳能电池解释太阳能电池的原理与分类探讨太阳能电池的优缺点分析太阳能电池的应用领域7.2 光电子器件解释光电子器件的分类与应用探讨光电子器件的发展趋势第八章:半导体传感器8.1 传感器的基本概念解释传感器的作用与分类探讨传感器的基本原理分析传感器的主要参数8.2 常见半导体传感器介绍常见的半导体传感器类型解释半导体传感器的原理与应用分析半导体传感器的优势与挑战8.3 传感器在物联网中的应用探讨物联网与传感器的关系介绍传感器在物联网应用中的实例分析物联网传感器的发展趋势第九章:半导体激光器与光通信9.1 半导体激光器解释半导体激光器的工作原理探讨半导体激光器的特性与参数分析半导体激光器的应用领域9.2 光通信原理解释光纤通信与无线光通信的区别探讨光通信系统的组成与工作原理9.3 光通信器件与技术介绍光通信器件的类型与功能解释光通信技术的分类与发展趋势分析光通信在现代通信系统中的应用第十章:半导体技术与未来趋势10.1 摩尔定律与半导体技术发展解释摩尔定律的概念与意义探讨摩尔定律对半导体技术发展的影响分析半导体技术的未来发展趋势10.2 纳米技术与半导体器件介绍纳米技术在半导体器件中的应用解释纳米半导体器件的特性与优势探讨纳米半导体器件的未来发展趋势10.3 新兴半导体技术与应用分析新兴半导体技术的种类与应用领域探讨量子计算、生物半导体等未来技术的发展前景预测半导体技术与产业的未来发展趋势重点和难点解析重点环节一:半导体的定义与特性重点环节二:半导体的分类与制备重点环节三:PN结与二极管重点环节四:双极型晶体管(BJT)重点环节五:场效应晶体管(FET)重点环节六:半导体存储器重点环节七:太阳能电池与光电子器件重点环节八:半导体传感器重点环节九:半导体激光器与光通信重点环节十:半导体技术与未来趋势全文总结和概括:本文主要对半导体的基础知识进行了深入的解析,包括半导体材料的分类与特性、半导体的制备方法、PN结与二极管、双极型晶体管(BJT)、场效应晶体管(FET)、半导体存储器、太阳能电池与光电子器件、半导体传感器、半导体激光器与光通信以及半导体技术与未来趋势等内容进行了详细的阐述。
数字电路与逻辑设计 徐秀平 第六章答案

读/写信号: W R 片选信号: CS
地址线: A0 ~ A7 , A8 , A9 读/写信号: W R
五邑大学
6.3 半导体存储器容量扩展
每一片256×8的A0~ A7可提供28=256个地址,为0~0到1~1,用扩展 的字A8、 A9构成的两位代码区别四片256×8的RAM,即将A8、 A9译成四 个低电平信号,分别接到四片256×8RAM的CS ,如下表 数
内容丢失),不能随便撕下。 586以后的ROM BIOS多采用E2PROM(电可擦写只
读ROM),通过跳线开关和系统配带的驱动程序盘,可
以对E2PROM进行重写,方便地实现BIOS升级。
五邑大学
6.1 半导体存储器的分类
ROM存储器的应用实例
数 字 电 路 与 逻 辑 设 计
• U盘是采用flash memory(也称闪存)存储技术的USB设备. USB (Universal Serial Bus)指“通用串行接口”,用 第一个字母U命名,所以简称“U盘”。 • 最新的数码存储卡是一种不需要电来维持其内容的固态
1
2
1
0
D1 W1 W2 W3
1
0
D2 W0 W2 W3
D3 W1 W3
存 储 内 容 D3 D2 D1 D0
3
1
0
1
0
0
1 0 1
1
0 1 1
0
1 1 1
1
0 1 0
存储器的容量:存储器的容量=字数(m)×字长(n)
五邑大学
6.3 半导体存储器容量扩展
1.位扩展
数 用8片1024(1K)×1位RAM构成的1024×8位RAM系统。 字 I/O I/O I/O 电 I/O I/O I/O 路 ... 102 4×1R AM 102 4×1R AM 102 4×1R AM 与 A A ... A R/W CS A A ... A R/W CS A A ... A R/W CS 逻 辑 A A 设A 计 R/W
《半导体存储器》课件

以上是半导体存储器的相关介绍
半导体存储器是计算机科学中至关重要的一部分,对于数据存储和访问具有重要意义。谢谢您的观看!
原理
DRAM存储器使用电容器存储每个位的电荷来表示数据,电荷需要定期刷新以保持数据的有 效性。
优缺点
DRAM存储器的优点是高容量和较低成本,但缺点是速度较慢且需定期刷新。
应用
DRAM存储器广泛应用于个人电脑、服务器和移动设备等场景,提供了大容量的内存存储。
SRAM存储器
原理
SRAM存储器使用触发器电路作 为存储单元,通过电流控制来保 持数据的稳定性。
1
原理
MOS存储器使用金属氧化物半导体场效应管作为存储单元,通过充电和放电来表 示数据的0和1。
2
分类
MOS存储器包括EPROM、EEPROM和闪存等不同类型,每种类型都有不同的读写 特性。
3
应用
MOS存储器被广泛应用于微处理器、存储卡和嵌入式系统等领域中,提供了非易 失性和高集成度。
DRAM存储器
存储器的作用
存储器用于储存和访问数据, 包括指令和数据,以供计算 机进行处理和操作。
TTL存储器
原理
TTL存储器使用晶体管和逻辑门 电路来储存和读取数据。
优缺点
TTL存储器的优点是速度快且稳 定可靠,但缺点是功耗较高。
应用
TTL存储器常用于高速缓存和存 储器芯片中,提供快速的数据 读写能力。
MOS存储器
优缺点
SRAM存储器的优点是速度快且 无需刷新,但缺点是占用空间较 大。
应用
SRAM存储器常用于高速缓存、 寄存器和高性能处理器等场景, 提供了快速的数据存取能力。
FLASH存储器
1
原理
微型计算机原理 第六章 存储器

3、存储器带宽 单位时间里存储器所存取的信息量,位/秒
4、功耗
半导体存储器的功耗包括“维持功耗”和“操作功耗”。 与计算机的电源容量和机箱内的散热有直接的联系 保证速度的情况下,减小功耗
5、可靠性 可靠性一般是指存储器(焊接、插件板的接触、存储器模块的复杂性)抗外界电磁场、温度等因变化干扰的能力。在出厂时经过全
28系列的E2PROM
① +5V供电,维持电流60mA,最大工作电流160mA ② 读出时间250ns ③ 28引脚 DIP封装 ④ 页写入与查询的做法: 当用户启动写入后,应以(3至20)微秒/B的速度,连续向有关地 址写入16个字节的数据,其中,页内字节由A3至A0确定,页地址 由A12至A4确定,整个芯片有512个页,页加载 如果芯片在规定的20微秒的窗口时间内,用户不再进行写入,则芯 片将会自动把页缓冲器内的数据转存到指定的存储单元,这个过程 称为页存储,在页存储期间芯片将不再接收外部数据。CPU可以通 过读出最后一个字节来查询写入是否完成,若读出数据的最高位与 写入前相反,说明写入还没完成,否则,写入已经完成。
3)R/W(Read/Write)读/写控制引线端。
4)WE写开放引线端,低电平有效时,数据总线上的数据被写入 被寻址的单元。 4、三态双向缓冲器 使组成半导体RAM的各个存储芯片很方便地与系统数据总线相
连接。
6.2.2 静态RAM
1、静态基本存储单元电路
基本单元电路多为静态存储器半导体双稳态触发器结构, NMOS\COMS\TTL\ECL等制造工艺而成。 NMOS工艺制作的静态RAM具有集成度高、功耗价格便宜等优点,
6.2.4
RAM存储容量的扩展方法
1、位扩展方式:16Kx1扩充为16Kx8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 习题参考答案
6.1 ROM 有哪些种类?各有何特点?
6.2 指出下列的ROM 存储系统各具有多少个存储单元,应有地址线、数据线、字线和位线各多少根?
6.3 一个有16384个存储单元的ROM ,它的每个字是8位。
试问它应有多少个字?有多少根地址线和数据线?
6.4 已知 ROM 如图6.21所示,试列表说明ROM 存储的内容。
A 1
A 图6.21 题6.4的图
解: 存储的数据为01、11、00、10
6.5 ROM 点阵图及地址线上的波形图如图6.22所示,试画出数据线D 3~D 0上的波形图。
A 1
A 0
图6.22 题6.5的图
解:
10A A 3210D D D D 0 00 11 01 10 0 1 11 1 1 00 1 0 0
1 0 1 1
A 1A 0
D 0
D 1D 2
D 3
6.6 试用ROM 设计一个组合逻辑电路,用来产生下列一组逻辑函数。
画出存储矩阵的
点阵图。
D
B D B Y D B D A
C
D C B B A Y D C A D B A D C B A Y D
ABC D C AB D C B A D C B A Y +=+++=++=+++=4321
解:
1234(5,10,13,14)(9,10,11,13)
(1,3,4,5,6,7,9,10,11,13,14)(1,3,4,6,9,11,12,14)
Y ABCD ABCD ABCD ABCD m Y ABCD ABD ACD m Y AB BCD ACD BD m Y BD BD m =+++=∑=++=∑=+++=∑=+=∑
A B C D
Y 4
Y 3
Y 2
Y 1
输出
6.7 试用ROM 设计一个实现8421BCD 码到余3码转换的逻辑电路,要求选择EPROM 的容量,画出简化阵列图。
解:列写真值表,作电路图,选用16×4的EPROM 。
3210B B B B 0 0 1 10 1 0 03210A A A A 0 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 10 1 0 10 1 1 00 1 1 11 0 0 01 0 0 11 0 1 01 0 1 11 1 0 0
8421码余3码
A A A A
6.8 图6.23是用ROM 构成的七段译码电路框图,A 0~A 3为ROM 的输入端。
L T 为试灯输入端;当LT = 1时,无论二进制数为何值,数码管七段全亮; 当LT = 0时,数码管显示与输入的四位二进制码(8421)所对应的十进制数。
试列出实现上述功能的ROM 数据表,并画出ROM 的阵列图。
(采用共阴极数码管)。
a
a b
b c c d d e
f
e f
g
g
ROM A 0A 1A 2A 3LT
图6.23 习题6.8的图
解:列写真值表,作电路图,选用32×8的EPROM 。
1 1 1 1 1 1 0 3210LTA A A A 0 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 10 1 1 0 0 0 01 1 0 1 1 0 11 1 1 1 0 0 1输入
输出
000000000000
01 1 0 1 01 1 1 1 a b c d e f g
0 1 1 0 0 1 11 0 1 1 0 1 11 0 1 1 1 1 11 1 1 0 0 0 01 1 1 1 1 1 11 1 1 1 0 1 10 0 0 0 0 0 00 0 0 0 0 0 0x x x x
1 1 1 1 1 1 1
A B C D
e f c d b a 输出
g
6.9 如图6.24所示的电路是用3位二进制计数器和8×4 EPROM 组成的波形发生器电
路。
在某时刻EPROM 存储的二进制数码如表6.5所示,试画出CP 和Y 0~Y 3的波形。
三位二进制计数器
EPROM
Q 1Q 0A 0
Q 2A 1
A 2D 1
D 0D 2
D 3
Y 1Y 0Y 2Y 3
CP
图6.24 题6.9的图
表6.5 题6.9的 EPROM 数据表
解:作波形图如下
CP Y 3
Y 2Y 1
Y 0
6.10 ROM 和 RAM 有什么相同之处?只读存储器写入信息有几种方式?
解:ROM 和 RAM 的相同之处:在结构上都有地址译码矩阵,存在字线和位线,都能按字从存储单元读出数据。
只读存储器写入信息方式有:掩模、编程器写入。
6.11 某台计算机的内部存储器设置有32位的地址线,16位并行数据输入/输出端,试计算它的最大存储量为多少?
解:232×16=67108864=4096M ×16
6.12 一个有32768个存储单元的RAM ,它能存储4096个字。
试问每个字是多少位?此存储器应有多少根地址线?多少根数据线?
解:32768÷4096=8 2n =4096 n=12
6.13 一个容量为512×4位的RAM ,需要多少根地址线?多少根数据线?共有多少个存储单元?每次可以访问多少个存储单元?
解:
6.14 设一片RAM 芯片的字数n, 位数为d ,扩展后的字数为N ,位数为D ,求需要的片数x 的公式。
解:分别确定字扩展和位扩展所需要的芯片数,然后把二者相乘。
当N
n
不是整数时,取不小于
N n 的整数,当D d 不是整数时,取不小于D
d
的整数。
当二者都为整数时有: N D
x n d
=
⋅ 6.15 已知4×4
位RAM 如图6.25所示。
如果把它们扩展成8×8位RAM ,问: (1) 需要几片4×4位RAM ;
(2) 画出扩展电路图(可以用少量的非门)。
图6.25 题6.16的图
解:(1) 需要4片4×4位RAM 。
(2)扩展电路图
A A R/W A 2
I /O I/O 1I/O 2I/O 3
I /O I/O 5I/O 6I/O 7
6.16 256×4 位 RAM 芯片的符号图如图6.26所示。
试用位扩展的方法组成256×8 位 RAM ,并画出逻辑图。
图6.26 题6.17的图
解:作图如下:
A 1A 0A 3A 2A 5A 7
A 6A 4R/W
CS I/O 0
I/O 1
I/O 2
I/O 3
6.17 试用4片2114(2144是静态RAM ,其存储容量为1024×4位)和3线—8线译码器74LS138组成4096×4位的RAM 。
解
I /O I/O 1I/O 2I/O 3
1011
此题对于74138的A 2A 1A 0与A 11A 10的连接,可以有多种选择,当然上图所示的连接形式,最直接也最明显,但其他连接形式也是选项之一。
具体连接形式如下表:
74138
0(1) CS A 2 A 1 A 0RAM 2114(2)CS (3)CS (4)CS
A 11A 10
Y 0 Y 1 Y 2 Y 31A 11A 10
Y 4 Y 5 Y 6 Y 70
A 11A 10Y 0 Y 2 Y 4 Y 61A 11A 10Y 1 Y 3 Y 5 Y 70A 11Y 0 Y 1 Y 4 Y 5A 101A 11Y 2 Y 3 Y 6 Y 7
A 10
6.18 试用16片2114(2144是静态RAM ,其存储容量为1024×4位)和3线—8线译码器74LS138接成8K×8位的RAM 。
解:此题既要求位扩展,又要求字扩展。
可先用2片2114扩展成1024×8;再利用74LS138和8片已扩展的1024×8进行字扩展,具体电路连接图省略。
A 9
A 8A 1A 0A 3A 2A 5A 7A 6A 4R/W /O I/O I/O 6I/O CS。