高三数学第一轮复习单元教案第38讲导数、定积分新人教版
高三数学第一轮复习 导数小结教案

一.课前预习: 导 数1.设函数()f x 在0x x =处有导数,且1)()2(lim000=∆-∆+→∆xx f x x f x ,则0()f x '=( C ) ()A 1 ()B 0 ()C 2()D 21 2.设()f x '是函数()f x 的导函数,()y f x '=的图象如下图(1)所示,则()y f x =的( D()A ()B ()C ()D 3.若曲线3y x px q =++与x 轴相切,则,p q 之间的关系满足 ( A ) ()A 22()()032p q += ()B 23()()023p q += ()C 2230p q -= ()D 2230q p -= 4.已知函数23()2f x ax x =-的最大值不大于16,又当11[,]42x ∈时,1()8f x ≥,则a = 1 . 5.若对任意3,()4,(1)1x R f x x f '∈==-,则()f x =42x -.四.例题分析:例1.若函数3211()(1)132f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范围. 解:2()1(1)[(1)]f x x ax a x x a '=-+-=---,令()0f x '=得1x =或1x a =-,∴当(1,4)x ∈时,()0f x '≤,当(6,)x ∈+∞时,()0f x '≥,∴416a ≤-≤,∴57a ≤≤.例2.已知函数3()f x ax cx d =++(0)a ≠是R 上的奇函数,当1x =时()f x 取得极值2-,(1)求()f x 的单调区间和极大值;(2)证明对任意12,(1,1)x x ∈-,不等式12|()()|4f x f x -<恒成立.解:(1)由奇函数的定义,应有)()(x f x f -=-,R x ∈,即d cx ax d cx ax ---=+--33,∴ 0=d ,∴cx ax x f +=3)(,∴c ax x f +='23)(,由条件2)1(-=f 为)(x f 的极值,必有0)1(='f ,故⎩⎨⎧=+-=+032c a c a , 解得1=a ,3-=c ,∴x x x f 3)(3-=,)1)(1(333)(2-+=-='x x x x f ,∴0)1()1(='=-'f f ,当)1,(--∞∈x 时,0)(>'x f ,故)(x f 在单调区间)1,(--∞上是增函数;当)1,1(-∈x 时,0)(<'x f ,故)(x f 在单调区间)1,1(-上是减函数;当),1(∞+∈x 时,0)(>'x f ,故)(x f 在单调区间),1(∞+上是增函数,(1)所以,)(x f 在1-=x 处取得极大值,极大值为2)1(=-f .(2)由(1)知,x x x f 3)(3-=)]1,1[(-∈x 是减函数,且)(x f 在]1,1[-上的最大值2)1(=-=f M ,最小值2)1(-==f m ,所以,对任意的1x ,)1,1(2-∈x ,恒有4)2(2)()(21=--=-<-m M x f x f .例3.设函数321()532a b f x x x x -=+++(,,0)a b R a ∈>的定义域为R ,当1x x =时,取得极大值;当2x x =时取得极小值,1||2x <且12||4x x -=.(1)求证:120x x >;(2)求证:22(1)164b a a -=+;(3)求实数b 的取值范围. (1)证明:2()(1)1f x ax b x '=+-+,由题意,2()(1)10f x ax b x '=+-+=的两根为12,x x ,∴1210x x a=>.(2)12||4x x -==,∴22(1)164b a a -=+. (3)①若102x <<,则10(2)4210b f a b ->⎧⎨'=+-<⎩,∴412(1)a b +<-,从而222(41)4(1)4(164)a b a a +<-=+, 解得112a >或14a <-(舍) ∴42(1)3b ->,得13b <. ②若120x -<<,则10(2)4230b f a b -<⎧⎨'-=-+<⎩, ∴412(1)a b +<-,从而222(41)4(1)4(164)a b a a +<-=+, 解得112a >或14a <-(舍) ∴42(1)3b ->,∴53b >, 综上可得,b 的取值范围是15(,)(,)33-∞+∞. 小结:本题主要考查导数、函数、不等式等基础知识,综合分析问题和解决问题的能力.五.课后作业: 班级 学号 姓名1.函数3223125y x x x =--+在[0,3]上的最大值与最小值分别是 ( )()A 5、15- ()B 5、4 ()C 4-、15- ()D 5、16-2.关于函数762)(23+-=x x x f ,下列说法不正确的是 ( )()A 在区间(,0)-∞内,)(x f 为增函数 ()B 在区间(0,2)内,)(x f 为减函数 ()C 在区间(2,)+∞内,)(x f 为增函数 ()D 在区间(,0)(2,)-∞+∞内,)(x f 为增函数3.设)(x f 在0x x =处可导,且000(3)()lim1x f x x f x x∆→-∆-=∆,则)(0x f '等于 ( ) ()A 1 ()B 13- ()C 3- ()D 31 4.设对于任意的x ,都有0)(),()(0≠-=-'-=-k x f x f x f ,则0()f x '= ( )()A k ()B k - ()C k 1 ()D k1- 5.一物体运动方程是)/8.9(3120022s m g gt s =+=,则3=t 时物体的瞬时速度为 . 6.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.7.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨的价格P (元/吨)之间的关系为21242005P x =-,且生产x 吨的成本为50000200R x =+元,问:该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)8.已知1,0b c >->,函数()f x x b =+的图象与函数2()g x x bx c =++的图象相切,(1)求,b c 的关系式(用c 表示b );(2)设函数()()()F x f x g x =在(,)-∞+∞内有极值点,求c 的取值范围.。
2020-2021学年高三数学一轮复习知识点专题3-1 导数的概念及运算、定积分

2020-2021学年高考数学一轮复习专题3.1 导数的概念及运算、定积分 (精讲)【考情分析】1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数;5.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;6.了解微积分基本定理的含义。
【重点知识梳理】 知识点1.导数的概念(1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li mΔx →0 ΔyΔx=li mΔx →0 f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx。
【特别提醒】函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”。
(2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0)。
【特别提醒】曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线。
(3)函数f (x )的导函数:称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数。
2010年高考数学一轮复习精品学案人教版A版――导数定积分

2010年高考数学一轮复习精品学案(人教版 A 版)导数、定积分一.【课标要求】1 •导数及其应用(1)导数概念及其几何意义①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;②通过函数图像直观地理解导数的几何意义.(2)导数的运算①能根据导数定义求函数y=c, y=x, y=x2, y=x3, y=1/x, y=x的导数;②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 f (ax+b))的导数;③会使用导数公式表•(3)导数在研究函数中的应用①结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
(4)生活中的优化问题举例例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.(5)定积分与微积分基本定理①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念;②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义•(6)数学文化收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。
具体要求见本《标准》中”数学文化”的要求。
二.【命题走向】导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值,估计2010年高考继续以上面的几种形式考察不会有大的变化:(1)考查形式为:选择题、填空题、解答题各种题型都会考察,选择题、填空题一般难度不大,属于高考题中的中低档题,解答题有一定难度,一般与函数及解析几何结合,属于高考的中低档题;(2)2010年高考可能涉及导数综合题,以导数为数学工具考察:导数的物理意义及几何意义,复合函数、数列、不等式等知识。
高中数学高三一轮复习教案:导数概念及其运算、定积分

导数概念及其运算、定积分教学目标知识与技能:1.了解导数概念的实际背景.2.理解导数的几何意义.过程与方法:能根据导数定义求函数y=c(c为常数),y=x,y=x2,y=x3,y=1x,y=x的导数.情感与价值观:主要通过导数的运算及导数的几何意义考查逻辑推理和数学运算能力.第一课时【课题】导数概念及其运算、定积分【授课时间】年月日班级:【教学重点】了解导数概念的实际背景【教学难点】能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数【课型】复习课【教学用具】班班通【教学方法】引导法,练习法,探究法【教学过程】初次备课二次备课二、预习检测:1.什么是导数?三、新课引入:1.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.基本初等函数的导数公式基本初等函数导函数 f (x )=c (c 为常数)f ′(x )=0 f (x )=x α(α∈Q *)f ′(x )=αx α-1 f (x )=sin xf ′(x )=cos_x f (x )=cos xf ′(x )=-sin_x f (x )=e xf ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln_a f (x )=ln xf ′(x )=1x f (x )=log a x(a >0,a ≠1)f ′(x )=1x ln a 3.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.定积分(1)定积分的概念在⎠⎛a bf (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛a b f (x )d x (k 为常数); ②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛a bf 2(x )d x ;③⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛c b f (x )d x (其中a <c <b ).1.若f (x )=x ·e x ,则f ′(1)=________.答案:2e2.曲线y =1-2x +2在点(-1,-1)处的切线方程为________. 答案:2x -y +1=01.(2020·珠海调考)下列求导运算正确的是( )。
导数、定积分考点讲解和习题训练

普通高中课程标准实验教科书—数学 [人教版]
高三新数学第一轮复习教案(讲座 38)—导数、定积分
一.课标要求:
1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导 数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数 y=c,y=x,y=x2,y=x3,y=1/x,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导 数,能求简单的复合函数(仅限于形如 f(ax+b))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数 研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数 求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数 最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中 的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实 际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积 分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建 立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。
高三数学一轮复习精品教案8:3.1 导数的概念及运算教学设计

3.1 导数的概念及运算巩固·夯实基础一、自主梳理1、 导数及有关概念:函数的平均变化率:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy ∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()()()lim x f x x f x f x x∆→+∆-'=∆ 在定义式中,设x x x ∆+=0,则0x x x -=∆,当x ∆趋近于0时,x 趋近于0x , 因此,导数的定义式可写成000000()()()()()lim lim x o x x f x x f x f x f x f x x x x ∆→→+∆--'==∆-. 2.导数的物理意义和几何意义: 导数0000()()()lim x f x x f x f x x∆→+∆-'=∆是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化..的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 000()()()y f x f x x x -='-3.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函数()f x '为函数)(x f y =在开区间内的导函数,简称导数..,也可记作y ',即()f x '=y '=x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim00 说明 :导数与导函数都称为导数,这要加以区分,求一个函数的导数,就是求导函数,求一个函数在给定点处的导数,就是求导函数值.函数)(x f y =在0x 处的导数0x x y ='就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数()f x '在0x 处的函数值,即0x x y ='=0()f x '.所以函数)(x f y =在0x 处的导数也记作0()f x '. 4.可导:如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导.5.可导与连续的关系:如果函数)(x f y =在点0x 处可导,那么函数)(x f y =在点0x 处连续,反之不成立. 函数具有连续性是函数具有可导性的必要条件,而不是充分条件.()3取极限,得导数y '=()f x '=xy x ∆∆→∆0lim 7.几种常见函数的导数:0'=C (C 为常数);1)'(-=n n nx x (Q n ∈);x x cos )'(sin =;x x sin )'(cos -=;1(ln )x x'=; 1(log )log a a x e x '=, ()x x e e '= ;()ln x x a a a '=8.求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=法则3: '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭9.复合函数的导数:设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'10.复合函数的求导法则:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数.11.复合函数求导的基本步骤:分解——求导——相乘——回代12.导数的几何意义:是曲线)(x f y =在点()(,00x f x )处的切线的斜率,即0()k f x =',要注意“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不尽相同的,后者A必为切点,前者未必是切点.链接·提示f (x )在x =x 0处的导数f ′(x 0)的实质是“增量之比的极限”,但在计算中取它的应用含义:f ′(x 0)是函数f (x )的导函数f ′(x )当x =x 0时的函数值.二、点击双基1.质点运动方程为s =61t 3-21t 2+1,那么当质点在t =2时的速度为( ) A.0 B.1 C.2 D.32.设函数f (x )在x =x 0处可导,则0lim →h hx f h x f )()(00-+( ) A.与x 0、h 都有关 B.仅与x 0有关而与h 无关C.仅与h 有关而与x 0无关D.与x 0、h 均无关3.函数y =x 2的曲线上点A 处的切线与直线3x -y +1=0的夹角为45°,则点A 的坐标为_ __________________________.4.0lim→x x x θθsin )sin(-+=___________________________.诱思·实例点拨『例1』 若f (x )在R 上可导,(1)求f (-x )在x =a 处的导数与f (x )在x =-a 处的导数的关系;(2)证明若f (x )为偶函数,则f ′(x )为奇函数.链接·拓展(2)中若f (x )为奇函数,f ′(x )的奇偶性如何?『例2』已知函数f (x )=ln x ,g (x )=21x 2+a (a 为常数),直线l 与函数f (x )、g (x )的图象都相切,且l与函数f (x )图象的切点的横坐标为1.求直线l 的方程及a 的值.剖析:由直线l 与函数f (x )切点的横坐标为1,可利用导数求出函数f (x )在该点切线的斜率,利用点斜式求出直线的方程;因为直线l 与函数g (x )的图象相切,所以l 与g (x )有且只有一个公共点,此时可将直线代入g (x ),通过Δ=0,求出a 的值.『例3』 求下列函数的导数:(1)y =x 2sin x ;(2)y =ln(x +21x +);(3)y =11-+x x e e ; (4)y =xx x x sin cos ++.链接·聚焦函数f (x )在点x 0处是否可导与是否连续有什么关系?答案二、点击双基1.『解析』s ′=21t 2-t ,∴s ′(2)=0. 『答案』A2.『答案』B3.『解析』设点A 的坐标为(x 0,y 0),则y ′0|x x ==2x 0|x x ==2x 0=k 1.又直线3x -y +1=0的斜率k 2=3,∴tan 45°=1=|1|||1212k k k k +-=|006123x x +-|. 解得x 0=41或x 0=-1. ∴y 0=161或y 0=1, 即A 点坐标为(41,161)或(-1,1). 『答案』(41,161)或(-1,1) 4. 『解析』0lim →x xx θθsin )sin(-+=sin′θ=cos θ. 『答案』cos θ『例1』剖析:(1)需求f (-x )在x =a 处的导数与f (x )在x =-a 处的导数;(2)求f ′(x ),然后判断其奇偶性.(1)解:设f (-x )=g (x ),则g ′(a )=0lim →∆x xa g x a g ∆-∆+)()( =0lim →∆x xa f x a f ∆--∆--)()( =-0lim →∆x x a f x a f ∆---∆--)()( =-f ′(-a ).∴f (-x )在x =a 处的导数与f (x )在x =-a 处的导数互为相反数.(2)证明:f ′(-x )=0lim →∆x xx f x x f ∆--∆+-)()( =0lim →∆x xx f x x f ∆-∆-)()( =-0lim →∆x x x f x x f ∆--∆-)()( =-f ′(x ).∴f ′(x )为奇函数.讲评:用导数的定义求导数时,要注意Δy 中自变量的变化量应与Δx 一致.『例2』解:由f ′(x )|x =1=1,知k l =1,切点为(1,f (1)),即(1,0),所以直线l 的方程为y =x -1.直线l 与y =g (x )的图象相切,等价于方程组⎪⎩⎪⎨⎧+=-=a x y x y 221,1只有一解,即方程21x 2-x +(1+a )=0有两个相等的实根, ∴Δ=1-4×21(1+a )=0. ∴a =-21. 讲评:本题通过利用导数来求函数的切线、利用方程的思想判断函数图象与直线的交点问题,考查了学生的应用能力及分析问题、解决问题的能力. 『例3』解:(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=211x x ++·(x +21x +)′ =211x x ++(1+21x x+)=211x +.(3)y ′=2)1()'1)(1()1()'1(--+--+x x x x x e e e e e =2)1(2--x xe e . (4)y ′=2)sin ()'sin )(cos ()sin ()'cos (x x x x x x x x x x +++-++ =2)sin ()cos 1)(cos ()sin )(sin 1(x x x x x x x x +++-+- =2)sin (1cos sin sin cos x x x x x x x x +--+--。
高三数学一轮复习备考:导数ppt完美课件 人教课标版
附:全国卷新课改以来文科数学高考涉及导数的题目
考查利用导数研究函数的单调性以及极值问题. 考查学生应用转化与化归的思想、数形结合的 思想、分类讨论的思想解决问题的能力.
高 三 数 学 一 轮复习 备考: 导数pp t完美课 件 人 教 课标 版
高 三 数 学 一 轮复习 备考: 导数pp t完美课 件 人 教 课标 版
四、教学内容设计与课时安排
第一课时:复习导数的概念、运算及几何意义.重点 是切线问题和函数图象的变化问题,难点是数形结 合思想方法的运用.
第二课时:复习利用导数研究函数的单调性、极值、 最值问题.重点是含参函数单调性的讨论,难点是 分类讨论思想和转化与化归思想方法的运用.
高 三 数 学 一 轮复习 备考: 导数pp t完美课 件 人 教 课标 版
高 三 数 学 一 轮复习 备考: 导数pp t完美课 件 人 教 课标 版
三、教法分析
教学过程中倡导学生主动探索、动手实践、合作 交流等学习方式,使课堂教学成为师生互动、对话式 的学生自主探究的学习活动.
本节课主要采用下面的模式进行:给出例题→学 生分组讨论→学生交流总结反思→ 老师点评→布置 作业、强化复习效果 .
根据新课程标准理念,学生是学习的主体,教 师只是学习的帮助者,引导者.本课以问题为中心, 以解决问题为主线展开,通过解决不同类型的问题 引导学生自己观察问题、归纳方法,领会思想方法. 采用自主探究、合作交流的方法进行学习,并使学 生从中体会学习数学的乐趣。
高 三 数 学 一 轮复习 备考: 导数pp t完美课 件 人 教 课标 版
高考数学复习知识点讲解教案第38讲 数列的综合问题
4.某商场为了满足广大数码爱好者的需求,开展商品分期付款活动.已知某商品一次性付款的金额为元,计划以分期付款的形式等额分成 期付清,每期期末所付款是元,每期利率为,则 _ _________.
[解析] 由题意得 ,, .
5.假设每次用相同体积的清水清洗一件衣服,且每次能洗去污垢的 ,那么至少要清洗___次才能使存留的污垢在 以下.
3.[教材改编] 假设某银行的活期存款年利率为 ,某人存入10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存.如果不考虑利息税及利率的变化,经过年到期时的存款余额为万元,那么 ________________________.
,
[解析] 由题意得, ,, ,则易知 .
题组二 常错题
(1) 求数列 的通项公式;
解:因为,所以,,故,,所以等比数列 的公比,故,所以,即等比数列 的通项公式为 .
(2) 记,的前项和分别为,,求满足 的所有数对 .
解: 由已知得,由(1)可知 ,因为,所以 ,则,可得,因为为正整数, ,所以,8,10,则当时,,当时, ,当时,,故满足条件的所有数对为,, .
[总结反思]解决与数列有关的实际问题的一般步骤:首先要认真阅读,学会翻译(数学化),其次考虑用熟悉的数列知识建立数学模型,然后求出问题的解,最后还需验证求得的解是否符合实际.
变式题(1) 某牧场2022年年初牛的存栏数为1200头,计划以后每年存栏数的增长率为 ,且在每年年底卖出100头牛,按照该计划预计_______年年初牛的存栏量首次超过8900头.(参考数据:, )
所以数列是公比为2的等比数列,又 ,,所以,即 ,所以,可得.因为,所以 ,则,由,得 ,可得,所以不等式的解有无限个,故D正确.故选 .
第38讲 用导数的方法研究指数、对数问题(教师版)(1)
第38讲用导数的方法研究指数、对数问题与指、对数函数有关的问题历来是高考的难点,旨在考查思维的灵活性和创造性.在很多时候,若函数表达式中存在指数和对数的形式,则会出现求解不了导数方程的根的情况,导致好多考生望而却步.本专题旨在通过对几类常见的问题的研究,弄清楚指、对数函数的相关性质,从而解决函数恒成立、零点等问题,达到提升能力的目的.题型一形如f (x )e x +g (x )的函数问题1.已知e x ≥1+ax 对任意x ∈[0,+∞)成立,求实数a 的取值范围.法1:原不等式等价于e x -ax -1≥0,令f (x )=e x -ax -1,则f ′(x )=e x -a .当a ≤1时,f ′(x )≥0,f (x )在[0,+∞)上单调递增,f (x )≥f (0)=0,满足题意;当a >1时,由f ′(x )=e x -a =0得x =ln a ,当0<x <ln a 时f ′(x )<0,f (x )在(0,ln a )上单调递减,而f (0)=0,从而f (x )<0,不合题意.综上所述,a ≤1,即实数a 的取值范围为(-∞,1].法2:根据常用不等式e x ≥x +1,且y =x +1与y =e x 相切于(0,1),又y =ax +1也过点(0,1),观察图象可知,要使e x ≥1+ax 对任意x ∈[0,+∞)成立,则a ≤1,即实数a 的取值范围为(-∞,1].变式1:已知x +e x 2x +1≥t 对一切正实数x 恒成立,则实数t 的最大值为________.解:因为e x ≥x +1,所以x +e x 2x +1≥x +x +12x +1=1.则t ≤1,所以t 的最大值为1.变式2:已知函数f (x )=e x -1-x -ax 2,当x ≥0时,f (x )≥0恒成立,求实数a 的取值范围.法1:由f ′(x )=e x -1-2ax ,又e x ≥x +1,所以f ′(x )=e x -1-2ax ≥x -2ax =(1-2a )x ,所以当1-2a ≥0,即a ≤12时,f ′(x )≥0(x ≥0),而f (0)=0,于是当x ≥0时,f (x )≥0,满足题意;又x ≠0时,e x >x +1,所以可得e -x >1-x ,从而当a >12时,f ′(x )=e x -1-2ax ≤e x -e x ·e -x +2a (e -x -1)=(1-e -x )·(e x -2a ),故当x ∈(0,ln2a )时,f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0,综上所述,实数a ,12.法2:因为e x ≥x +1,所以当a ≤0时,e x ≥ax 2+x +1恒成立,故只需讨论a >0的情形.令F (x )=e -x (1+x +ax 2)-1,问题等价于F (x )≤0,由F ′(x )=e -x [-ax 2+(2a -1)x ]=0得x 1=0,x 2=2a -1a .①当0<a ≤12时,F (x )在[0,+∞)上单调递减,所以F (x )≤F (0)=0恒成立;②当a >12时,因为F (x )在[0,x 2]上单调递增,所以F (x 2)≥F (0)=0恒成立,此时F (x )≤0不恒成立.综上所述,实数a ,12.2.若不等式e x (x -a )+(x +a )>0对任意x ∈(0,+∞)成立,求正实数a 的取值范围.法1:令f (x )=e x (x -a )+(x +a ),则f ′(x )=e x (x -a +1)+1,设g (x )=f ′(x ),则g ′(x )=e x (x -a +2).当0<a ≤2时,∵g ′(x )>0对任意x ∈(0,+∞)成立,∴y =g (x )在(0,+∞)上单调递增,∴f ′(x )>f ′(0)=2-a ≥0,∴y =f (x )在(0,+∞)上单调递增,∴f (x )>f (0)=0,满足题意;当a >2时,由g ′(x )=0得x =a -2>0,∴y =g (x )在(0,a -2)上单调递减,在(a -2,+∞)上单调递增,又∵f ′(0)=2-a <0,∴f ′(x )<0在(0,a -2)上恒成立,∴y =f (x )在(0,a -2)上单调递减,∴当x ∈(0,a -2)时,f (x )<f (0)=0,不合题意.综上所述,正实数a 的取值范围是(0,2].法2:原不等式等价变形为x -1<0,令f (x )x -1,则f ′(x )=-x 2-(a 2-2a )(a +x )2e x ,当a 2-2a ≤0,即0<a ≤2时,f ′(x )<0在(0,+∞)上恒成立,∴y =f (x )在(0,+∞)上单调递减,∴f (x )<f (0)=0,满足题意;当a 2-2a >0,即a >2时,由f ′(x )=0得x =a 2-2a ,∴y =f (x )在(0,a 2-2a )上单调递增,在(a 2-2a ,+∞)上单调递减,∴当x ∈(0,a 2-2a )时,f (x )>f (0)=0,不合题意.综上所述,正实数a 的取值范围是(0,2].题型二形如f(x)lnx +g(x)型的函数3.若不等式x ln x ≥a (x -1)对所有x ≥1都成立,求实数a 的取值范围.法1:设f (x )=x ln x -a (x -1),则f ′(x )=ln x +1-a ,令f ′(x )=0,解得x =e a -1.当a ≤1时,对所有x >1,都有f ′(x )>0,所以f (x )在[1,+∞)上单调递增,因此对x ≥1,有f (x )≥f (1)=0,即a ≤1时,对所有x ≥1,都有x ln x ≥a (x -1),满足题意;当a >1时,当x ∈(1,e a -1)时,f ′(x )<0,f (x )在(1,e a -1)上单调递减,又f (1)=0,所以f (x )<f (1)=0,即x ln x <a (x -1),不合题意.故a 的取值范围是(-∞,1].法2:原问题等价于ln x -a (x -1)x ≥0对所有x ≥1都成立,令f (x )=ln x -a (x -1)x ,则f ′(x )=x -a x 2,当a ≤1时,f ′(x )=x -a x2≥0恒成立,即f (x )在[1,+∞)上单调递增,因而f (x )≥f (1)=0恒成立;当a >1时,令f ′(x )=0,则x =a ,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,f (x )min =f (a )=ln a -a +1<0,不合题意.综上所述,a 的取值范围是(-∞,1].法3:根据常用不等式1-1x ≤ln x ,且y =1-1x 与y =ln x 相切于(1,0),又y =a (1,0),所以要使ln x ≥a (x -1)x对所有x ≥1都成立,只能a ≤1.因此a 的取值范围是(-∞,1].4.已知当x ≥1时,x 2ln x -x +1≥m (x -1)2恒成立,求实数m 的取值范围.解:原不等式等价于ln x -m (x -1)2+(x -1)x 2≥0,令f (x )=ln x -m (x -1)2+(x -1)x 2,则f ′(x )=(x -1)[x -(2m -2)]x 3,令f ′(x )=0,得x 1=1,x 2=2m -2.当2m -2≤1时,即m ≤32时,f ′(x )>0在[1,+∞)上恒成立,f (x )递增,f (x )≥f (1)=0,满足题意;当2m -2>1时,即m >32时,f (x )在(1,2m -2)上单调递减,f (2m -2)<f (1)=0,不合题意;综上所述,m ,32.变式:已知关于x 的不等式(x -3)ln x ≤2λ有解,求整数λ的最小值.法1:令h (x )=(x -3)ln x ,所以h ′(x )=ln x +1-3x 单调递增,h ln 32+1-2<0,h ′(2)=ln2+1-32>0,所以存在唯一x 0使得h ′(x 0)=0,即ln x 0+1-3x 0=0,当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以h min (x )=h (x 0)=(x 0-3)ln x 0=(x 0-(x 0-3)2x 0=60记函数r (x )=6则r (x ),所以h (x 0)<r (2),即h (x 0)-32,由2λ≥-32,且λ为整数,得λ≥0,所以不等式2λ≥h (x )有解时的λ的最小整数为0.法2:令h (x )=(x -3)ln x ,由h (1)=0得,当λ=0时,不等式2λ≥h (x )有解,下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立.显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立,只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立,即证明ln x +2x -3<0.令m (x )=ln x +2x -3,所以m ′(x )=1x -2(x -3)2=x 2-8x +9x (x -3)2,由m ′(x )=0,得x =4-7,当x ∈(1,4-7),m ′(x )>0;当x ∈(4-7,3),m ′(x )<0;所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13=ln2-1<0.所以当λ≤-1时,h (x )>2λ恒成立.综上所述,不等式2λ≥h (x )有解时的λ的最小整数为0.。
导数、定积分精品学案
2013年普通高考数学科一轮复习精品学案第38讲导数、定积分一.课标要求:1.导数及其应用(1)导数概念及其几何意义① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;②通过函数图像直观地理解导数的几何意义。
(2)导数的运算① 能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x 的导数;② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数;③ 会使用导数公式表。
(3)导数在研究函数中的应用① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
(4)生活中的优化问题举例例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。
(5)定积分与微积分基本定理① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念;② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。
(6)数学文化收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。
具体要求见本《标准》中"数学文化"的要求。
二.命题走向导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值,估计2013年高考继续以上面的几种形式考察不会有大的变化:(1)考查形式为:选择题、填空题、解答题各种题型都会考察,选择题、填空题一般难度不大,属于高考题中的中低档题,解答题有一定难度,一般与函数及解析几何结合,属于高考的中低档题;(2)2013年高考可能涉及导数综合题,以导数为数学工具考察:导数的物理意义及几何意义,复合函数、数列、不等式等知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座38)—导数、定积分一.课标要求:1.导数及其应用(1)导数概念及其几何意义① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;②通过函数图像直观地理解导数的几何意义。
(2)导数的运算① 能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x 的导数;② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数;③ 会使用导数公式表。
(3)导数在研究函数中的应用① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
(4)生活中的优化问题举例例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。
(5)定积分与微积分基本定理① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念;② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。
(6)数学文化收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。
具体要求见本《标准》中"数学文化"的要求。
二.命题走向导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值,估计2007年高考继续以上面的几种形式考察不会有大的变化:(1)考查形式为:选择题、填空题、解答题各种题型都会考察,选择题、填空题一般难度不大,属于高考题中的中低档题,解答题有一定难度,一般与函数及解析几何结合,属于高考的中低档题;(2)07年高考可能涉及导数综合题,以导数为数学工具考察:导数的物理意义及几何意义,复合函数、数列、不等式等知识。
定积分是新课标教材新增的内容,主要包括定积分的概念、微积分基本定理、定积分的简单应用,由于定积分在实际问题中非常广泛,因而07年的高考预测会在这方面考察,预测07年高考呈现以下几个特点:(1)新课标第1年考察,难度不会很大,注意基本概念、基本性质、基本公式的考察及简单的应用;高考中本讲的题目一般为选择题、填空题,考查定积分的基本概念及简单运算,属于中低档题;(2)定积分的应用主要是计算面积,诸如计算曲边梯形的面积、变速直线运动等实际问题要很好的转化为数学模型。
三.要点精讲1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.常见函数的导出公式.(1)0)(='C (C 为常数) (2)1)(-⋅='n n x n x (3)x x cos )(sin =' (4)x x sin )(cos -='4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。
形如y=f [x (ϕ])的函数称为复合函数。
复合函数求导步骤:分解——求导——回代。
法则:y '|X = y '|U ·u '|X5.导数的应用(1)一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数;如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数; (2)曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;(3)一般地,在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。
①求函数ƒ)(x 在(a ,b)内的极值; ②求函数ƒ)(x 在区间端点的值ƒ(a)、ƒ(b); ③将函数ƒ)(x 的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。
6.定积分(1)概念设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上取任一点ξi (i =1,2,…n )作和式I n =∑ni f 1=(ξi)△x (其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作:⎰b adx x f )(,即⎰badx x f )(=∑=∞→ni n f 1lim (ξi )△x 。
这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式。
基本的积分公式:⎰dx 0=C ;⎰dx x m =111++m x m +C (m ∈Q , m ≠-1);⎰x1dx =ln x +C ;⎰dx e x=xe +C ;⎰dx a x=aa xln +C ;⎰xdx cos =sin x +C ;⎰xdx sin =-cos x+C (表中C 均为常数)。
(2)定积分的性质①⎰⎰=ba badx x f k dx x kf )()((k 为常数);②⎰⎰⎰±=±ba b abadx x g dx x f dx x g x f )()()()(;③⎰⎰⎰+=bac abcdx x f dx x f dx x f )()()((其中a <c <b )。
(3)定积分求曲边梯形面积由三条直线x =a ,x =b (a <b ),x 轴及一条曲线y =f(x )(f (x )≥0)围成的曲边梯的面积⎰=badx x f S )(。
如果图形由曲线y1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a<b )围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC =⎰⎰-babadx x f dx x f )()(21。
四.典例解析题型1:导数的概念 例1.已知s=221gt ,(1)计算t 从3秒到3.1秒 、3.001秒 、 3.0001秒….各段内平均速度;(2)求t=3秒是瞬时速度。
解析:(1)[]t t ∆=-=∆,1.031.3,1.3,3指时间改变量;.3059.03211.321)3()1.3(22=-=-=∆g g s s s s ∆指时间改变量。
059.313059.0==∆∆=t s v 。
其余各段时间内的平均速度,事先刻在光盘上,待学生回答完第一时间内的平均速度后,即用多媒体出示,让学生思考在各段时间内的平均速度的变化情况。
(2)从(1)可见某段时间内的平均速度t s ∆∆随t ∆变化而变化,t ∆越小,ts ∆∆越接近于一个定值,由极限定义可知,这个值就是0→∆t 时,ts∆∆的极限, V=0lim →∆x t s∆∆=0lim →∆x =∆-∆+ts t s )3()3(0lim→∆x t g t g ∆-∆+22321)3(21 =g 21lim →∆x (6+)t ∆=3g=29.4(米/秒)。
例2.求函数y=24x的导数。
解析:2222)()2(44)(4x x x x x x x x x y ∆+∆+∆-=-∆+=∆, 22)(24x x x xx x y ∆+∆+⋅-=∆∆, ∴00limlim→∆→∆=∆∆x x x y⎥⎦⎤⎢⎣⎡∆+∆+⋅-22)(24x x x x x =-38x 。