结构力学课件
结构力学基础讲义PPT(共270页,图文)

alMM
B bM l
a l
b M
l
17
2. 多跨静定梁: 关键在于正确区分基本部分和附
属部分,熟练掌握截面法求控制截面 弯矩,熟练掌握区段叠加法作单跨梁 内力图。
多跨静定梁——由若干根梁用铰相连, 并用若干支座与基础相连而组成的静 定结构。
17:11
18
附属部分--依赖基本 部分的存在才维持几 何不变的部分。
17:11
24
3. 静定平面刚架 (1) 求反力。
切断C铰,考虑右边平衡,再分析左 边部分。求得反力如图所示:
C
17:11
25
3. 静定平面刚架
(2)作M图 (3)做Q、N图 (4) 校核
17:11M图
N图
Q图
26
§1-4 静定桁架
17:11
27
§1-4 静定桁架
* 桁架的定义:
——由若干个以铰(Pins)结点连接而成的 结构,外部荷载只作用在结点上。
对只有轴力的结构(桁架):
1组7:1合1 结构则应分别对待。
61
§1-5静定结构位移计算
3. 荷载作用下的位移计算
例:求△cy 1. 建立力状态,在C点加单位 EI
竖向力。
2. 建立各杆内力方程:
EI
3. 求位移:
17:11
62
§1-5静定结构位移计算
3. 荷载作用下的位移计算
积分注意事项:
⒈ 逐段、逐杆积分。 ⒉ 两状态中内力函数服从同一坐标系。 ⒊ 弯矩的符号法则两状态一致。
2. 三铰拱的数解法
* 内力计算: ⑴任一截面K(位置):KK截 截面 面形 形心 心处 坐拱 标X轴K切、线YK的倾角 K
结构力学(全套课件131P) ppt课件

的两根链杆的杆轴可以平行、交叉,或延长线交于
一点。
当两个刚片是由有交汇点的虚铰相连时,两个刚
片绕该交点(瞬时中心,简称瞬心)作相对转动。
从微小运动角度考虑,虚铰的作用相当于在瞬时
中心的一个实铰的作用。
19
20
规则二 (三刚片规则): 三个刚片用不全在一条直线上的三个单铰(可以
是虚铰)两两相连,组成无多余约束的几何不变体 系。
两个平行链杆构成沿平行方向上的无穷远虚铰。
三个刚片由三个单铰两两相连,若三个铰都有交 点,容易由三个铰的位置得出体系几何组成的结论 。当三个单铰中有或者全部为无穷远虚铰时,可由 分析得出以下依据和结论:
1、当有一个无穷远虚铰时,若另两个铰心的连 线与该无穷远虚铰方向不平行,体系几何不变;若 平行,体系瞬变。
3、通过依次从外部拆除二元体或从内部(基础、 基本三角形)加二元体的方法,简化体系后再作分 析。
41
第一部分 静定结构内力计算
静定结构的特性: 1、几何组成特性 2、静力特性 静定结构的内力计算依据静力平衡原理。
第三章 静定梁和静定刚架
§3-1 单 跨 静 定 梁
单跨静定梁的类型:简支梁、伸臂梁、悬臂梁 一、截面法求某一指定截面的内力
15
1、单约束(见图2-2-2) 连接两个物体(刚片或点)的约束叫单约束。
1)单链杆(链杆)(上图) 一根单链杆或一个可动铰(一根支座链杆)具
有1个约束。 2)单铰(下图)
一个单铰或一个固定铰支座(两个支座链杆) 具有两个约束。 3)单刚结点
一个单刚结点或一个固定支座具有3个约束。
16
2、复约束 连接3个(含3个)以上物体的约束叫复约束。
三、对体系作几何组成分析的一般途径
结构力学课件.ppt同济大学 朱慈勉

刚片中任一两点间的距离保持不变,既由刚片中 任意两点间的一条直线的位臵可确定刚片中任一点 的位臵。所以可由刚片中的一条直线代表刚片。
二、研究体系几何组成的任务和目的:
1、研究结构的基本组成规则,用及判定体系是否 可作为结构以及选取结构的合理形式。
2、根据结构的几何组成,选择相应的计算方法和 计算途径。
§2-3 平面体系的几何组成分析
一、几何不变体系的简单组成规则 规则一 (两刚片规则):(图2-3-1) 两个刚片用不全交于一点也不全平行的三根链杆 相连,组成无多余约束的几何不变体系。 或:两个刚片用一个单铰和杆轴不过该铰铰心的 一根链杆相连,组成无多余约束的几何不变体系。 *虚铰的概念: 虚铰是由不直接相连接的两根链杆构成的。虚铰 的两根链杆的杆轴可以平行、交叉,或延长线交于 一点。 当两个刚片是由有交汇点的虚铰相连时,两个刚 片绕该交点(瞬时中心,简称瞬心)作相对转动。 从微小运动角度考虑,虚铰的作用相当于在瞬时 中心的一个实铰的作用。
四、有多余约束的几何不变体系:
拆除约束法:去掉体系的某些约束,使其成为无 多余约束的几何不变体系,则去掉的约束数即是体 系的多余约束数。 1、切断一根链杆或去掉一个支座链杆,相当去 掉一个约束; 2、切开一个单铰或去掉一个固定铰支座,相当 去掉两个约束;
3、切断一根梁式杆或去掉一个固定支座,相当 去掉三个约束; 4、在连续杆(梁式杆)上加一个单铰,相当去 掉一个约束。
§1-2 结构计算简图
1、结构计算简图的概念 2、结构计算简图的简化原则是: 1)计算简图要能反映实际结构的主要受力和变 形特点,即要使计算结果安全可靠; 2)便于计算,即计算简图的简化程度要与计算 手段以及对结果的要求相一致。
3、结构计算简图的几个要点:
结构力学ppt课件

目录
• 结构力学简介 • 结构力学的基本原理 • 结构分析的方法 • 结构力学的应用 • 结构力学的挑战与未来发展 • 结构力学案例分析
01
结构力学简介
什么是结构力学
01
结构力学是研究工程结构在各种外力作用下产生的响
应的一门学科。
02
它主要涉及结构的强度、刚度和稳定性等方面的分析
04
有限元法
有限元法是一种将结构分解为有限个小 的单元,并对每个单元进行力学分析的 方法。
有限元法具有适用范围广、精度较高等 优点,但也存在计算量大、需要较强的 计算机能力等缺点。
通过对所有单元的力学行为进行组合, 可以得到结构的整体力学行为。
它适用于对复杂结构进行分析,例如板 壳结构、三维实体等。
结构力学的历史与发展
结构力学起源于19世纪中叶,随着土木工程和机械工程的发展而逐渐形成。
早期的结构力学主。
目前,结构力学已经广泛应用于各个工程领域,包括建筑、桥梁、机械、航空航天等。同时,结构力学 的研究也在不断深入和发展,以适应各种复杂工程结构的需要。
案例一:桥梁的力学分析
总结词
桥梁结构是力学分析的重要案例,涉及到多种力学因素,包括静载、动载、应 力、应变等。
详细描述
桥梁的力学分析需要考虑多种因素,包括桥梁的跨度、桥墩的支撑方式、桥梁 的材料性质等。在分析过程中,需要建立力学模型,进行静载和动载测试,并 运用结构力学的基本原理进行优化设计。
案例二:航空发动机的力学设计
强度理论
01
强度理论是研究结构在外力作用下达到破坏时的强度条件的科学。
02
强度理论的基本方程包括最大正应力理论、最大剪切应力理论、形状改变比能 理论和最大拉应力理论,用于描述结构在不同外力作用下达到破坏时的条件。
结构力学-课件

6.6 对称结构
7.渐进法
8.设计实例简单分析
1.虚功原理
2.影响线:
2.1 静力法做影响线
2.2 机动法做影响线
2.3 影响线的应用
3.简支梁的包络图和绝对最大弯矩
4.应用虚力原理求刚体体系的位移
4.1 概念介绍
4.2 荷载作用下的位移计算举例
4.3 图乘法
5.力法求解超静定结构
5.1 超静定结构的组成和超静定次数
5.2 力法的基本思路
5.3 对称结构
5.4 支座移动时的位移计算:
6.位移法求解超静定结构
6.1 基本概念
6.2 等ห้องสมุดไป่ตู้面杆件的刚度方程(形常数、载常数)
6.3 无侧移刚架的计算
6.4.有侧移刚架的计算
6.5 位移法的基本体系
结构力学完整课件

(a)
ቤተ መጻሕፍቲ ባይዱ
(b)
(3)桁架
在结点荷载作用下,桁架各杆 发生沿轴线方向伸长或缩短为 主的变形,并产生以轴力为主 的内力。因此,桁架杆又称拉 压杆,或二力杆。
(a) (b)
(4)拱:
拱在竖向荷载作用下会产生 水平支座反力(常称水平推 力)。
(a) (b)
(5)组合结构: (a) (b)
第四节 荷 载
被支承端相对支承物只能 (1) 转动,不能移动。铰支座 固定 对被支承物产生过铰心的 铰支 反力,由于该反力大小、 座 方向均待求,所以一般分
解为相互垂直的两个分力。
(2)活动铰支座
被支承物可绕铰链的铰心转动, 也可沿支承物的支承平面方向 移动。活动铰支座对被支承物 产生过铰心且垂直与支承平面 的反力。
1.杆件之间的 联结——结 点
铰结 点
铰结点所连各杆杆端可做相 对转动,但不能做相对移动。 铰结点不传递力矩,但传递 力。
铰结点构造示意图
0
0 0
铰结点简图
(2)刚结点
各杆端既不能做相对转动,也 不能做相对移动。刚结点可传 递力矩 ,也可传递力。
A1
A
刚结点及简图
2.结构与支承部分(或大地) 的联结——支座
A
(a)
A
A
(b)
(c)
(3)固定支座
被支承物相对支承物既不 能有转动,也不能有移动。 固定支座对被支承物产生 过支承点的两个相互垂直 的反力分量和一个反力矩。
A
A
(b) A (a)
(c)
A
(d)
A
(e)
(4)定向滑动支座
被支承部分只能发生沿支 承物平面的移动。定向滑 动支座对被支承物产生沿 支承平面垂直方向的反力 和反力矩。
【经典】结构力学ppt课件
§2-3 几何不变体系的基本组成规则
二元体:两根不在一直线上的链杆连接成一个新结点的构 造称为二元体。
二元体规则 在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。
铰结点
链杆
链杆 体系
§2-3 几何不变体系的基本组成规则
分析图示铰结体系
以铰结三角形123为基础,增加一个二元体得结点4, 1234为几何不变体系;如此依次增加二元体,最后的体系为几何不变体系,没 有多余联系。
瞬变体系
可变体系
瞬变体系
§2-7 几何构造与静定性的关系
体系
几何不变体系 (形状、位置不变)
几何可变体系 (形状、位置可变)
无多余联系 有多余联系
可变体系 瞬变体系
静定结构 超静定结构
§2-7 几何构造与静定性的关系 分析图a所示体系
分析图b所示体系
无多余联系的几何不变体系 由平衡方程→三个支反力 →截面内力→静定结构 有多余联系的几何不变体系 由平衡方程不能求全部反力
§2-1 概述
一般结构必须是 几何不变体系
几何不变体系—在不考虑材料应变的条件下,体系的位置 和形状是不能改变的。(图a)
几何可变体系—在不考虑材料应变的条件下,体系的位置和 形状是可以改变的。(图b)
§2-2 平面体系的计算自由度 自由度:确定体系位置所需的独立坐标数
一个点的自由度=2
一个刚片的自由度=2
第一章 绪论
§1-1 结构力学的研究对象和任务 §1-2 荷载的分类 §1-3 结构的计算简图 §1-4 支座和结点的类型 §1-5 结构的分类
§1-1 结构力学的研究对象和任务
结构:工程中担负预定任务、支承荷载的建筑物。 如:房屋、塔架、桥梁、隧道、挡土墙、水坝等。
《结构力学》讲义课件
结构力学讲义第1章绪论§1-1 杆件结构力学的研究对象和任务结构的定义: 建筑物中支承荷载而起骨架作用的部分。
结构的几何分类:按结构的空间特征分类:空间结构和平面结构。
杆件结构力学的任务:(1)讨论结构组成规律与合理形式,以及结构计算简图的合理选择;(2)内力与变形的计算方法.进行结构的强度和刚度验算;(3)讨论结构稳定性及在动力荷载作用下的结构反应。
结构力学的内容(从解决工程实际问题的角度提出)(1) 将实际结构抽象为计算简图;(2) 各种计算简图的计算方法;(3) 将计算结果运用于设计和施工。
§1-2 杆件结构的计算简图1.结构体系的简化一般的构结都是空间结构。
但是,当空间结构在某一平面内的杆系结构承担该平面内的荷载时,可以把空间结构分解成几个平面结构进行计算。
本课程主要讨论平面结构的计算。
当然,也有一些结构具有明显的空间特征而不宜简化成平面结构。
2.杆件的简化铰支座(2) 滚轴支座(3) 固定支座4.(4)定向支座M5.材料性质的简化将结构材料视为连续、均匀、各向同性、理想弹性或理想弹塑性。
6.荷载的简化集中荷载与分布荷载§1-3 杆件结构的类型§1-4 荷载的分类2.4.刚架5.组合结构6.A B荷载可分为恒载和活载。
一、按作用时间的久暂荷载可分为集中荷载和分布荷载 荷载可分为静力荷载和动力荷载 荷载可分为固定荷载和移动荷载。
二、按荷载的作用范围三、按荷载作用的性质四、按荷载位置的变化• §2-1 几何组成分析的目的和概念几何构造分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。
几何不变体系:不考虑材料应变条件下,体系的几何形状和位置保持不变的体系一、几何不变体系和几何可变体系几何可变体系:不考虑材料应变条件下,体系的几何形状和位置可以改变的体系。
二、自由度杆系结构是由结点和杆件构成的,我们可以抽象为点和线,分析一个体系的运动,必须先研究构成体系的点和线的运动。
《结构力学教材》课件
多物理场耦合的研究
未来结构力学将更加注重与流体力学、热力学等 其他物理场的耦合研究,以解决多场耦合的复杂 工程问题。
智能化技术的应用
人工智能、机器学习等技术在结构力学中的应用 将逐渐普及,为结构设计和优化提供新的思路和 方法。
结构力学的重要性
结构力学是工程设计中的关键环节,能够确保结构的稳定性 、安全性和经济性。
通过结构力学分析,可以预测结构的性能,优化设计方案, 提高工程质量。
结构力学的历史与发展
结构力学的发展可以追溯到古代的建 筑实践,如中国的长城、埃及的金字 塔等。
随着科学技术的发展,结构力学不断 吸收新的理论和方法,如有限元方法 、计算机辅助设计等,推动了结构力 学的进步和应用。
结构力学在工程实践中的挑战与机遇
复杂结构的分析
随着工程结构的日益复杂化,对结构 力学在复杂结构分析方面的要求也越 来越高,这既是一个挑战也是一个机 遇。
耐久性与安全性
绿色与可持续发展
随着对环境保护的重视,结构力学在 绿色建筑、节能减排等领域的应用将 更加广泛,为可持续发展提供技术支 持。
工程结构的耐久性与安全性是结构力 学的重要研究内容,未来将面临更多 的挑战和机遇。
02
结构力学的基本原理
静力学原理
静力学原理总结
静力学是研究物体在静止状态下受力与变形 的关系。
静力学基本概念
静力学涉及到的基本概念包括力、力矩、力 偶、约束等。
静力学平衡条件
静力学平衡条件是物体在力的作用下保持静 止或匀速直线运动的状态。
静力学应用
静力学原理广泛应用于工程结构、机械系统 等领域。
结构力学讲义ppt课件
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同时发生两种或以 上的基本变形
第 1节
轴向拉(压)杆
一、轴力 为了对拉、压杆的失效计算,首先必须要分析其内 力。截面法是求杆件内力的基本方法。下面通过求解图 所示拉杆m-m横截面上的内力来具体介绍截面法求内力。 m m
FP
FP FP
FP
FP FN FN
FP
上一页 下一页
返回
第一步:沿需要求内力的横截面,假想地把杆件截成两
2 1 1kN 4kN A 1 B 2
1kN 1kN 4kN
3 5kN 2kN
C
3 D
FN1 FN2 FN3 2kN
+
-
2kN
FN图
1kN +
3kN
上一页 下一页
返回
四、轴向拉(压)杆的内力: (一)轴向拉(压)杆的内力——轴力 (二)截面法求内力步骤 (1)用截面截断杆件 (2)取研究对象画出受力图,标注上内力,一般先假 设为正。 (3)利用平衡方程求内力。 (三)轴力图 以与杆件轴线平行的横坐标x表示杆的横截面位置, 以纵坐标表示相应的轴力值,且根据轴力的正负值 画在横坐标轴的不同侧,那么如此绘制出的轴力与 横截面位置关系图,称为轴力图。
轴力计算规则:任意一个截面的轴力等于该截面任一 侧所有外力沿着杆件轴线方向投影的代数和。力的箭 头离开所求内力截面时为正,指向截面时为负,即拉 力为正,压力为负。 例2 作图示杆件的轴力图,并指出| FN |max 。
I
50kN
150kN
II
100kN
I 50kN I II FN2 100kN II FN2= -100kN FN1 FN1=50kN
30kN· m。试计算Ⅰ-Ⅰ、Ⅱ-Ⅱ、Ⅲ-Ⅲ截面的扭矩,并绘制出该 轴的扭矩图。 解(1) Ⅰ-Ⅰ截面 ∑Mx=0 -Me1+ T1 =0 T1=Me1=60 kN· m (2) Ⅱ-Ⅱ截面 ∑Mx=0 -Me1+Me2 + T2 =0 T2=Me1 -Me2 =50 kN· m (3) Ⅲ-Ⅲ截面 ∑Mx=0 T3-Me1+Me2 +Me3 =0
上一页 下一页
返回
三、扭矩图
若在轴上有多个外力偶矩作用时,显然,轴上不
同截面上的扭矩是不一样的。为了清晰地表达出轴上
各截面的扭矩大小、正负,可以效仿拉压杆轴力图的
方法,绘制出轴的扭矩图 。
上一页 下一页
返回
例4-3 设一等截面圆轴如图所示,作用在轴上的外力偶矩Me
分别为: M e1 = 60kN· m,M e2 = 10kN· m, M e3 =20kN· m,M e4 =
I
50kN FN
II
+
100kN
| FN |max=100kN
例3.求杆件的内力并画内力 图。 解(1)截面1、2、3位置 如图所示 (2)利用规则计算各段 轴力: AB段:N1=-6F(压力) BC段:N2=-9F(压力) CD段:N3=-7F(压力) (3)画出轴力图。
1 6F A 1 L B 3F L
如果以与杆件轴线平行的横坐标x表示杆的横截面位置,
以纵坐标表示相应的轴力值,且轴力的正负值画在横
坐标轴的不同侧,那么如此绘制出的轴力与横截面位
置关系图,称为轴力图。
上一页 下一页
返回
例4-1 一直杆受拉(压)如图所
示,试求横截面1-1、2-2、3-3
上的轴力,并绘制出轴力图。 解 (1)AB段 ∑Fx=0 FN1–1kN=0 FN1=1 kN (拉) (2)BC段 ∑Fx=0 FN2–1kN+4kN=0 FN2=–3 kN (压) (3)CD段 ∑Fx=0 –FN3+2kN=0 FN3=2 kN作为研究对象,标上内力。由于
内力与外力平衡,所以横截面上分布内力的合力FN的
作用线也一定与杆的轴线重合。这种内力的合力称为
轴力 。
第三步:平衡方程,求出未知内力,即轴力。由 FN-F=0 得 FN=F 轴力正负号的规定:拉力为正,压力为负。
二、轴力图
应用截面法可求得杆上所有横截面上的轴力。
第二步:分析可知,由于 左端有外力偶作用,为了 使其保持转动平衡,则在 截面m-m必然存在一内力 第三步:由转动平衡方程 T- Me =0 T=Me
偶矩,称为扭矩T。它是截
面上分布内力的合力偶矩。
扭矩的正负号作如下规定:用右手四指沿扭矩转
向,若大拇指指向与截面的外法线方向相同,则为正; 反之,大拇指指向与截面的外法线方向相反,则为负。 该方法称为右手螺旋法则。
在扭转时的横截面上的内力。本节仅限于圆轴的内力计算。
上一页 下一页
返回
一、外力偶矩Me的计算
工程中作用于轴上的外力偶矩往往不是直接给出
的,而是给出轴的传递功率及轴的转速,需要把它换
算成外力偶矩。它们之间的关系为:
Me=9549P/n(N· m)
(4-1)
式中 P——轴的传递功率,单位为千瓦(kW); n——轴的转速,单位为转/分(r/min); Me——轴扭转外力偶矩,单位为牛顿· 米(N· m)。
上一页 下一页
返回
一、扭矩T
传动轴的外力偶矩Me
计算出来后,便可通过截
面法求得传动轴上的内
力——扭矩。
设有一圆截面轴如图所 示,作用在轴上的外力偶 矩Me已知,轴在Me作用下 处于转动平衡。现仍用截
面法求任意m-m截面上的
内力。
上一页 下一页
返回
第一步:将轴沿m-m处假
想地截开,取其中任意一
段作为研究对象。
绘制出轴力图 FN图
上一页 下一页
W=ga2x
返回
第2节
扭转轴
工程中往往有这样一类杆件,在垂直于杆轴线平面内
受到一对大小相等、转向相反的外力偶矩的作用,杆件任 意两横截面绕杆的轴线发生相对转动,如图所示,将该种 变形定义为扭转变形。以扭转变形为主的杆件,通常被称 为扭转轴。为了便于了解轴扭转时的失效,必须要计算轴
第4章
静定结构的内力分析
第1节 轴向拉(压)杆
第2节 扭转轴
第3节 平面弯曲梁 第4节 平面刚架 第5节 平面桁架 第6节 平面组合结构 第7节 三铰拱
上一页 下一页
返回
杆件变形的基本形式
P (a)轴向拉伸 P Me
P
P
P
轴向压缩
(c)剪切变形
P Me Me
g
j
(b)扭转变形
Me
组合变形-----(d)弯曲变形
2 2F C 2 L
3
D 3
6F 9F
7F
例4-2 竖杆AB如图所示,其横截面 解 为正方形,边长为a ,杆长为l ,材料的堆
密度为,试绘出竖杆的轴力图。
∑Fx=0 FN(x)-W = 0 FN(x)=ga2x x=0 FN(x) = 0 x=l
ga2l
a A
a
+
l
FN(x)
B x
FN(x) = ga2l