三角函数图像及其性质带答案

合集下载

5.4 三角函数的图象与性质(解析版).pdf

5.4 三角函数的图象与性质(解析版).pdf

y
1相邻两个交点之间距离为半个周期,从而可求出结
果.
【解析】因为函数
y
tanx
的最小正周期为 π ,由
tanx
1 x
可得

4
, kòZ
所以函数 y tanx 与直线 y 1相邻两个交点之间距离为函数 y tanx 的半个周期,即 2 .
10.(多选)对于函数 f x a sin x b tan x c (其中, a,b R, c Z ),选取 a,b, c 的一组值计算 f 1
y=sin
x
的定义域为[a,b],值域为
1,
1 2
,则
b-a
的最大值和最小值之和等于( )
4 A. 3
8 B. 3
C.2π
D.4π
【参考答案】C
【分析】作出
y=sin
x
的图像,由其值域为
1,
1 2
,可得
b-a
的最大值和最小值,从而可得到结论.
【解析】解:如图,
13 5 4
3 5 2
可知 b-a 的最大值为 6 6 = 3 ,b-a 的最小值为 2 6 = 3 ,

2 cos2
x
cos
x
1
0
,解得
1 2
cos
x
1

2k 2 x 2k 2 , k Z
由余弦函数的图象,知
3
3
,
所以所求函数的定义域为
2k
2 3
,
2k
2 3
,
k
Z

19.利用“五点法”作出函数 y 2 sin x 1( 0 x 2 )的简图.
3 【分析】求出横坐标分别为 0 , 2 , , 2 , 2 时所对应的函数值,通过列表、描点、连线即可作出图象.

(全国通用)高考数学专题14三角函数的图象与性质(含解析)文(new)

(全国通用)高考数学专题14三角函数的图象与性质(含解析)文(new)

考点14三角函数的图象与性质(1)能画出y = si n x ,y = co s x ,y = t a n x 的图象,了解三角函数的周期性。

(2)理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在,22ππ⎛⎫- ⎪⎝⎭内的单调性。

(3)了解函数sin()y A x ωϕ=+的物理意义;能画出函数sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.(4)会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.一、正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质函数sin y x = cos y x =tan y x =图象定义域R R,2x x k k π⎧⎫≠π+∈⎨⎬⎩⎭Z[]1,1- []1,1-R二、函数sin()y A x ωϕ=+的图象与性质 1.函数sin()y A x ωϕ=+的图象的画法(1)变换作图法由函数sin y x =的图象通过变换得到sin()y A x ωϕ=+(A >0,ω〉0)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移".如下图。

(2)五点作图法找五个关键点,分别为使y 取得最小值、最大值的点和曲线与x 轴的交点.其步骤为: ①先确定最小正周期T =2ωπ,在一个周期内作出图象;②令=X x ωϕ+,令X 分别取0,2π,π,322ππ,,求出对应的x 值,列表如下:由此可得五个关键点;③描点画图,再利用函数的周期性把所得简图向左右分别扩展,从而得到sin()y A x ωϕ=+的简图。

2.函数sin()y A x ωϕ=+(A >0,ω〉0)的性质(1)奇偶性:=k ϕπ时,函数sin()y A x ωϕ=+为奇函数;=2k ϕππ+时,函数sin()y A x ωϕ=+为偶函数。

2021版新高考数学三角函数图象与性质含

2021版新高考数学三角函数图象与性质含

授课资料范本2021版新高考数学:三角函数的图象与性质含答案编辑: __________________时间: __________________第三节三角函数的图象与性质[考点要求 ] 1.能画出 y=sin x,y=cos x,y= tan x 的图象,认识三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质 (如单调性、最大值和最小值、π π图象与 x 轴的交点等 ),理解正切函数在区间-2,2内的单调性.(对应学生用书第70 页)1.用五点法作正弦函数和余弦函数的简图正弦函数 y=sin x, x∈[0 ,2π]图象的五个要点点是: (0,0),π,( π,,123π0),2,- 1 ,(2 π,0).π余弦函数 y=cos x, x∈ [0,2π]图象的五个要点点是: (0,1),2,0 , ( π,3π-1), 2 ,0,(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质函数y=sin x y=cos x y= tan x 图象定义域R值域[-1,1]递加区间:ππ,+, k∈2kπ-22kπ2单调性Z ,递减区间:2kπ+π2k+3π,,k∈2π2ZR[-1,1]递加区间: [2kπ-π,2kπ],k∈Z ,递减区间: [2kπ, 2kπ+π],k∈Zπx x≠ k+π2,k∈ZR递加区间ππ,+,kkπ-2kπ2∈Z奇偶性奇函数对称中心 (kπ, 0),k∈Z 对称性π对称轴 x= kπ+2(k∈Z)周期性2π[ 常用结论 ]偶函数奇函数对称中心kππ对称中心2,0,k kπ+2, 0,k∈Z∈Z对称轴 x= kπ(k∈ Z)2ππ1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个1周期,相邻的对称中心与对称轴之间的距离是4个周期.2.正切曲线相邻两对称中心之间的距离是半个周期.一、思虑辨析 (正确的打“√〞,错误的打“×〞 )(1)函数 y = sin x 的图象关于点 (k π,0)(k ∈ Z)中心对称. ( )(2)正切函数 y =tan x 在定义域内是增函数. ()(3) y = k sin x +1,x ∈R ,那么 y 的最大值为 k + 1.( )(4)y = sin |x|与 y =|sin x|都是周期函数. () [答案] (1)√ (2)× (3)× (4)×二、教材改编1.函数 y =tan 2x 的定义域是 ( )A . xπx ≠ k +π ,k ∈Z4 B . x k π πx ≠ + ,k ∈Z2 8 C . xπ x ≠ k +π ,k ∈Z8 D . x k π πx ≠ + ,k ∈Z2 4π k π πD [由 2x ≠k π+2, k ∈ Z ,得 x ≠2 +4,k ∈ Z ,k π π∴ y = tan 2x 的定义域为 x x ≠2 +4,k ∈Z .]π2.函数 f(x)=cos (2x +4)的最小正周期是 ________.2ππ [T = 2 =π.]. =πsin 2x - 的单调减区间是 ________.3 y 43π 7π π π π π, ∈ 得 2x2k8 8 (k Z) [ 2 2k 4 2 k Z3π7π8 +k π≤ x ≤ 8 +k π, k ∈Z .]ππ4.y =3sin (2x - 6)在区间 [0,2]上的值域是 ________.3 π π π 5π [-2,3] [ 当 x ∈[0 ,2]时, 2x -6∈[ -6, 6 ] ,π 1,1],故 3sin (2x - π - 3,3],∈ sin (2x -6)∈ [-26) [2π3即 y =3sin (2x -6)的值域为 [-2,3].](对应学生用书第 71 页)考点 1三角函数的定义域和值域1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和 cos x 的值域求解.(2)化一法:把所给三角函数化为y=A sin (ωx+φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把 sin x, cos x, sin x cos x 或 sin x± cos x 换成 t,转变成二次函数求解.π1.函数 f(x)=- 2tan (2x+6)的定义域是()πA . x|x ≠6πB . x|x ≠- 12π C . x|x ≠ k +π 〔k ∈ Z 〕6k π πD . x|x ≠2 +6〔k ∈ Z 〕ππD [由正切函数的定义域 ,得 2x +6≠k π+2,k ∈ Z ,k π π即 x ≠ 2 +6(k ∈ Z),应选 D.]3π2.(20xx ·全国卷 Ⅰ)函数 f(x)= sin (2x + 2 )-3cos x 的最小值为 ________.3π - 4 [f(x)=sin (2x + 2 )-3cos x =- cos 2x - 3cos x =- 2cos 2x -3cosx + 1,令 cos x =t ,那么 t ∈[- 1, 1].23217 f(t)=- 2t -3t + 1=- 2(t + 4) + 8 ,易知当 t =1 时,f(t)min =- 2×12- 3× 1+ 1=- 4.故 f(x)的最小值为- 4.].函数ππ∈ - ,a],假设 f(x)的值域是 [ -1,1],3f(x)=sin (x +6),其中 x [ 3 2那么实数 a 的取值范围是 ________.ππ[ 3, π][ ∵x ∈[- 3, a] ,π π π ∴ x + 6∈ [ -6,a +6],π π π1∵当 x +6∈[ -6,2]时, f(x)的值域为 [-2,1] ,ππ 7π π ∴由函数的图象 (图略 )知2≤a +6≤ 6 ,∴3≤a ≤π.]4.函数 y =sin x -cos x +sin x cos x 的值域为 ________.12= sin 2x +cos 2x - 2sinx · cos x , sin x [-2- 2,1][ 设 t =sin x -cos x ,那么 t=1- t2,且- 2≤ t ≤ 2.cos x 2t211∴ y=-2+t+2=-2(t-1)2+ 1, t∈[ -2, 2].当 t= 1 时,y max= 1;1当 t=-2时,y min=-2- 2.1∴函数的值域为 [-2-2,1].]求解三角函数的值域(最值 )常有的几各种类(1)形如 y= a sin x+b cos x+c 的三角函数化为y= A sin (ωx+φ)+ c 的形式,再求值域 (最值 ).(2)形如 y= a sin2x+ b sinx+c 的三角函数,可先设 sin x= t,化为关于 t 的二次函数求值域 (最值 ).(3)形如 y= a sin3x+ b sin2x+c sinx+ d,近似于 (2)进行换元,尔后用导数法求最值.考点 2三角函数的单调性(1)形如 y= A sin (ωx+φ)的函数的单调性问题,一般是将ωx+φ看作一个整体,再结合图象利用y=sin x 的单调性求解; (2)若是函数中自变量的系数为负值,要依照引诱公式把自变量系数化为正当,再确定其单调性.求三角函数的单调性(1)函数 f(x)=tan (2x-π3)的单调递增区间是 ()kπ π kπ 5πA.[ 2-12,2+12](k∈Z)kπ π kπ 5πB.( 2-12,2+12)(k∈ Z)π2πC. (kπ+6, kπ+3 )(k∈Z)π5πD. [kπ-12,kπ+12](k∈Z)13π(2)(20xx 大·连模拟 )函数 y=2sin x+2 cos x(x∈[0,2]) 的单调递加区间是________.ππππ(1)B(2)[0 ,6][(1) 由 kπ-2< 2x-3<kπ+2(k∈ Z),kπ πkπ 5π得2-12<x<2+12(k∈Z),πkππkπ 5π所以函数 f(x)=tan (2x-3)的单调递加区间为 ( 2-12,2+12)(k∈ Z),应选B.13π(2)∵y=2sin x+2cos x=sin (x+3),πππ由 2kπ-2≤x+3≤2kπ+2(k∈Z),5ππ解得 2kπ-6≤x≤2kπ+6(k∈Z).5ππ∴函数的单调递加区间为[2kπ-6,2kπ+6](k∈ Z),ππ又 x∈[0,2],∴单调递加区间为 [0,6].]本例 (2)在用整体思想求得函数y ππ=sin (x+3)的所有增区间后,采用对 k 赋值的方式,求得 x∈ [0 ,2]上的单调增区间.依照函数的单调性求参数(1) ω>0,函数 f(x)=sinπ πωx, π2+4 在 上单调递减,那么 ω的取值范围是 ()A .(0,2]B . 0,12 1 31 5 C . 2,4D . 2,4 (2)(20xx 全·国卷 Ⅱ )假设 f(x)=cos x - sin x 在 [0,a] 是减函数,那么 a 的最大值是()ππ3πA . 4B .2C . 4D .π由ππ3π 2k π π2k π 5π(1)D (2)C[(1) ≤ωx + ≤2k π+2,得ω +≤ x ≤ω + , k2k π+244ω4ω∈Z ,π π因为 f(x)=sin ωx+ 4 在 2, π上单调递减,2k π π π1ω +≤ ,,所以4ω 2 解得 ω≥ 4k +2 因为 k ∈Z ,ω>0,所以 k =0,2k π 5π5ω≤ 2k +ω + ≥π, .4ω 41 5 1 5所以 2≤ω≤4,即 ω的取值范围为 2,4 .应选 D.π(2)f(x)=cos x -sin x =- 2sin x -4 ,ππππ 3π12/24sin x-ππ4单调递加,- 2sin x-4单调递减,π 3π∴ -4,4是 f(x)在原点周边的单调递减区间,π 3π结合条件得 [0,a]?-4,4,3π3π∴ a≤4,即 a max=4,应选 C.]单调区间求参数范围的 3 种方法求出原函数的相应单调区间,由区间是所求某区间的子集,子集法列不等式 (组)求解由所给区间求出整体角的范围,由该范围是某相应正、余弦函数反子集法的某个单调区间的子集,列不等式 (组)求解由所给区间的两个端点到其相对付称中心的距离不高出14周期列周期性法不等式 (组)求解1.假设函数 f(x)= sin ωx(ω> 0)在区ππ π间[0,3] 上单调递加,在区间 [ 3,2] 上单调递减,那么ω=________.3Tπ4π2π 32[ 由得4=3,∴T=3,∴ω=T=2.]-+π2.函数=sin2x的单调减区间为________.f(x)3π5ππkπ-12,kπ+12 (k∈ Z)[ 由,得函数为 y=- sin (2x-3),欲求函数的π单调减区间,只需求 y= sin (2x-3)的单调增区间即可.πππ由 2kπ-2≤2x-3≤ 2kπ+2,k∈ Z ,π5π得 kπ-12≤x≤kπ+12,k∈Z .π,+5π故所求函数的单调减区间为 kπ-12kπ12 (k∈Z).]考点 3三角函数的周期性、奇偶性、对称性14/24求解三角函数 y=sin (ωx+φ)(ω>0)的周期性、奇偶性、对称性问题,其实质都是依照 y=sin x 的对应性质,利用整体代换的思想求解.三角函数的周期性(1)(20xx 全·国卷 Ⅱ )以下函数中,ππ π 单调递加的是 ()以2为周期且在区间 4,2 A . f(x)= |cos 2x| B . f(x)= |sin 2x|C . f(x)= cos |x|D . f(x)= sin |x|π(2)假设函数 f(x)=2tan (kx + 3)的最小正周期 T 满足 1<T <2,那么自然数 k 的值为________.(1)A (2)2 或 3 [(1) 关于选项 A ,作出 y =|cos 2x|的局部图象 ,如图 1 所π ππ示,那么 f(x)在( 4, 2)上单调递加 ,且最小正周期 T = 2,故 A 正确.π π关于选项 B ,作出 f(x)=|sin 2x|的局部图象 ,如图 2 所示,那么 f(x)在( 4, 2)上π单调递减 ,且最小正周期 T = 2,故 B 不正确.关于选项 C ,∵ f(x)= cos |x|=cosx ,∴最小正周期 T = 2π,故 C 不正确.关于选项 D ,作出 f(x)=sin |x|的局部图象 ,如图 3 所示.显然 f(x) 不是周期函数,故 D 不正确.应选 A.图1图2]图 3ππ(2)由题意得,1<k<2,∴ k<π< 2k,即2<k<π,又 k∈Z,∴ k=2 或 3.]公式莫忘绝对值,对称抓住“心〞与“轴〞(1)公式法求周期2π①正弦型函数 f(x)= A sin (ωx+φ)+B 的周期 T=; |ω|2π②余弦型函数 f(x)= A cos (ωx+φ)+ B 的周期 T=; | ω|π③正切型函数f(x)= A tan (ωx+φ)+B 的周期 T=.| ω|(2)对称性求周期T①两对称轴距离的最小值等于2;T;②两对称中心距离的最小值等于2T③对称中心到对称轴距离的最小值等于4.(3)特色点法求周期①两个最大值点之差的最小值等于T;②两个最小值点之差的最小值等于T;T特色点法求周期实质上就是由图象的对称性求周期,因为最值点与函数图象的对称轴相对应. (说明:此处的 T 均为最小正周期 )三角函数的奇偶性π函数 f(x)=3sin (2x-3+φ),φ∈ (0,π ).(1)假设 f(x)为偶函数,那么φ=________;(2)假设 f(x)为奇函数,那么φ=________.5ππ(1)6π (2)3[(1) 因为 f(x)=3sin (2x-3+φ)为偶函数,ππ所以-3+φ=kπ+2,k∈ Z ,5π又因为φ∈ (0,π),所以φ=6 .π(2)因为 f(x)=3sin (2x-3+φ)为奇函数,π所以-3+φ=kπ,k∈ Z ,又φ∈(0,π),π所以φ=3.]假设 f(x)=A sin (ωx+φ)(A,ω≠π0),那么① f(x)为偶函数的充要条件是φ=2+kπ(k∈ Z);② f(x)为奇函数的充要条件是φ=kπ(k∈Z).三角函数的对称性π(1)函数 f(x)=2sin (ωx+6)(ω>0)的最小正周期为 4π,那么该函数的图象 ( )πA .关于点 (3,0)对称5πB .关于点 ( 3 , 0)对称πC .关于直线 x =3对称5πD .关于直线 x = 3 对称ππ π(2)函数 y =sin (2x +φ)(-2<φ<2)的图象关于直线x =3对称,那么 φ的值为________.ππ(1)B (2)-6 [(1) 因为函数 f(x)= 2sin (ωx+6)(ω>0)的最小正周期是 4π,而2π1T = ω=4π,所以 ω=2,x π即 f(x)=2sin (2+6).π π 2π 令 x+ = + k π(k ∈Z),解得 x =3 +2k π(k ∈Z),2 622π故 f(x)的对称轴为 x = 3 +2k π(k ∈Z),x ππ令 2+ 6= k π(k ∈Z),解得 x =- 3+2k π(k ∈Z).π故 f(x)的对称中心为 (-3+2kπ, 0)(k∈Z),对照选项可知 B 正确.π2π(2)由题意得 f(3)= sin ( 3+φ)=±1,2πππ∴3+φ=kπ+2(k∈Z),∴φ=kπ-6(k∈Z).π ππ∵φ∈ (-2,2),∴φ=-6.]三角函数图象的对称轴和对称中心的求解方法π假设求 f(x)=A sin (ωx+φ)(ω≠ 0)图象的对称轴,那么只需令ωx+φ=2+kπ(k∈Z),求 x;假设求 f(x)= A sin (ωx+φ)(ω≠ 0)图象的对称中心的横坐标,那么只需令ωx+φ= kπ(k∈Z),求 x.π1.[ 多项选择 ] 设函数 f(x)=cos (x+3),那么以下结论正确的选项是 ()A . f(x)的一个周期为- 2π8πB. y=f(x)的图象关于直线x=3对称πC. f(x+π)的一个零点为x=6πD. f(x)在 (2,π)上单调递减πABC [A 项,因为 f(x) =cos (x+3)的周期为 2kπ(k∈ Z),所以 f(x)的一个周期为- 2π,A 项正确;ππB项,因为 f(x)=cos (x+3)图象的对称轴为直线 x= kπ-3(k∈Z),所以 y=8πf(x)的图象关于直线 x=3对称,B 项正确;4πC 项,f(x+π)=cos (x+3 ).4ππ令 x+3= kπ+2(k∈Z),5ππ得 x=kπ-6,当 k= 1 时,x=6,π所以 f(x+π)的一个零点为 x=6,C 项正确;ππ2π3332π 5π单调递加区间为 [2k π+ 3 , 2k π+ 3 ](k ∈Z),π 2π2π 所以 (2, 3 )是 f(x)的单调递减区间 ,[ 3 ,π)是 f(x)的单调递加区间 ,D 项错误. ]π2.(20xx ·成都模拟 )函数 f(x)=sin (ωx+φ)(ω>0,|φ|< 2)的最小正周期为π4π,且 ? x ∈R ,有 f(x)≤f(3)成立,那么 f(x)图象的一个对称中心坐标是 ()A .(- 2ππ 3 ,0) B .(- ,0)3 2π5π C .( 3 , 0)D . (3,0)1A [由 f(x)=sin (ωx+φ)的最小正周期为 4π,得 ω=2.π因为 f(x)≤f(3)恒成立,π所以 f(x)max =f(3),即π π1× + φ= + 2k π(k ∈Z),2 32ππ由 |φ|<2,得 φ=3,1 π 故 f(x)=sin (2x +3).1 π2π令 2x +3=k π(k ∈ Z),得 x =2k π- 3 (k ∈ Z),2π 故 f(x)图象的对称中心为 (2k π- 3 , 0)(k ∈Z),2π当 k =0 时,f(x)图象的对称中心为 (- 3 ,0).]。

三角函数图像及性质习题含答案

三角函数图像及性质习题含答案

三角函数一、三角函数的基本概念和同角三角函数关系(一)知识内容1. 角的概念的推广⑴角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形.其中顶点,始边,终边称为角的三要素.角可以是任意大小的.⑵角按其旋转方向可分为:正角,零角,负角.①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角. ⑶在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角. ②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角.2.终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{}360,Z S k k ββα==+⋅︒∈.集合S 的每一个元素都与α的终边相同,当0k =时,对应元素为α.3.弧度制和弧度制与角度制的换算⑴角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制.<教师备案>一些特殊角的度数与弧度数的对应表:板块一:任意角的概念与弧度制⑵1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.任一已知角α的弧度数的绝对值lrα=,这种以“弧度”作为单位来度量角的制度叫做弧度制.⑶弧度与角度的换算:180πrad=,1801rad57.305718π︒⎛⎫'=≈︒=︒⎪⎝⎭板块二:任意角的三角函数(一)知识内容1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(,)x y,它与原点的距离为(0)r r>,那么⑴比值yr叫做α的正弦,记作sinα,即sinyrα=;⑵比值xr叫做α的余弦,记作cosα,即cosxrα=;⑶比值yx叫做α的正切,记作tanα,即tanyxα=;⑷比值xy叫做α的余切,记作cotα,即cotxyα=;⑷比值rx叫做α的正割,记作secα,即secrxα=;⑸比值ry叫做α的余割,记作cscα,即cscryα=.2.三角函数的定义域、值域3.由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知: ⑴正弦值yr对于第一、二象限为正(0,0y r >>),对于第三、四象限为负(0,0y r <>); ⑵余弦值xr对于第一、四象限为正(0,0x r >>),对于第二、三象限为负(0,0x r <>); ⑶正切值yx对于第一、三象限为正(,x y 同号),对于第二、四象限为负(,x y 异号). 可以用下图表示:说明:若终边落在轴线上,则可用定义求出三角函数值.4.同角三角函数的基本关系式:平方关系:22sin cos 1x x +=,22sec tan 1x x -=,22csc cot 1x x -= 商数关系:sin tan cos x x x =,cos cot sin xx x= 倒数关系:111sec ,csc ,tan cos cos cot x x x x x x=== 6.诱导公式:⑴角α与2π()k k α+⋅∈Z 的三角函数间的关系;sin(2π)sin k αα+=,cos(2π)cos k αα+=,tan(2π)=tan k αα+;⑵角α与α-的三角函数间的关系;sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-;⑶角α与(21)π()k k α++∈Z 的三角函数间的关系;[]sin (21)πsin k αα++=-,[]cos (21)πcos k αα++=-,[]tan (21)πtan k αα++=;⑷角α与πα+的三角函数间的关系.πsin cos 2αα⎛⎫+= ⎪⎝⎭,πcos sin 2αα⎛⎫+=- ⎪⎝⎭,πtan cot 2αα⎛⎫+=- ⎪⎝⎭.4.三角函数式的化简与三角恒等式的证明是个难点,需要学生熟悉并灵活运用所学的公式与知识,一般情况下,化简的基本思路是:减少角的种数,减少三角函数的种数,适当配凑和拆分,统一切割化弦等等.二、三角函数的图象与性质(一)知识内容⑴单位圆:半径等于单位长的圆叫做单位圆.设单位圆的圆心与坐标原点重合,则单位圆与x 轴交点分别为(1,0)A ,(1,0)A '-,而与y 轴的交点分别为(0,1)B ,(0,1)B '-.由三角函数的定义可知,点P 的坐标为(cos ,sin )αα,即(cos ,sin )P αα.其中cos OM α=,sin ON α=.α)这就是说,角α的余弦和正弦分别等于角α终边与单位圆交点的横坐标和纵坐标.过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T (或T '),则tan AT α=(或AT '). ⑵有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向.具有方向的线段叫做有向线段.规定:与坐标轴方向一致时为正,与坐标方向相反时为负. ⑶三角函数线的定义:板块一:任意角的概念与弧度制设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交于点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .我们就分别称有向线段MP ,OM ,AT 为正弦线、余弦线、正切线.(一) 知识内容1.2.函数()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象的作法――五点法①确定函数的最小正周期2πT ω=;②令x ωϕ+=0、π2、π、3π2、2π,得x ϕω=-、1π()2ϕω-、1(π)ϕω-、13π()2ϕω-、1(2π)ϕω-,于是得到五个关键点(,0)ϕω-、1π((),1)2ϕω-、1((π),0)ϕω-、13π((),1)2ϕω--、1((2π),0)ϕω-;③描点作图,先作出函数在一个周期内的图象,然后根据函数的周期性,把函数在一个周期内的图象向左、右扩展,得到函数()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象.3.()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象函数()()sin 0,0,y A x A x R ωϕω=+>>∈的图象可以用下面的方法得到:先把sin y x =的图象上所有点向左(0)ϕ>或向右(0)ϕ<平行移动||ϕ个单位;再把所得各点的横坐标缩短(1)ω>或伸长(01)ω<<到原来的1ω倍(纵坐标不变);再把所得的各点的纵坐标伸长(1)A >或缩短板块一:三角函数的图象(01)A <<到原来的A 倍(横坐标不变),从而得到sin()y A x ωϕ=+的图象.当函数sin()y A x ωϕ=+表示一个振动量时:A 叫做振幅;T 叫做周期;1T叫做频率;x ωϕ+叫做相位,ϕ叫做初相.上面是一种函数的平移缩放的过程,可以用这种方法来把一种三角函数转换成另外一种三角函数.下面把这个过程分解一下: (1)相位变换要得到函数sin()(0)y x ϕϕ=+≠的图象,可以令x x ϕ=+,也就是原来的x 变成了现在的x ϕ+,相当于x 减小了(0)ϕϕ<,即可以看做是把sin y x =的图象上的各点向左(0)ϕ>或向右(0)ϕ<平行移动||ϕ个单位而得到的.这种由sin y x =的图象变换为sin()y x ϕ=+的图象的变换,使相位由x 变为x ϕ+,我们称它为相位变换.它实质上是一种左右平移变换. (2)周期变换要得到函数sin (0,1)y x ωωω=>≠的图象,令x x ω=,即现在的x 缩小到了原来的ω倍,就可以看做是把sin y x =的图象上的各点的横坐标缩短(1)ω>或伸长(01)ω<<到原来的1ω倍(纵坐标不变)得到,由sin y x =的图象变换为sin y x ω=的图象,其周期由2π变为2πω,这种变换叫周期变换.周期变换是一种横向的伸缩. (3)振幅变换要得到sin (0,1)y A x A A =>≠且的图象,令yy A=,即相当于y 变为原来的A 倍,也就是把sin y x =的图象上的各点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍(横坐标不变)而得到的.这种变换叫做振幅变换.振幅变换是一种纵向的伸缩.(一)知识内容<教师备案>1.函数图象平移基本结论小结如下:(0)()()a a y f x y f x a >=−−−−−−→=+左移个单位板块二:三角函数图象变换(0)()()a a y f x y f x a >=−−−−−−→=-右移个单位(0)()()a a y f x y a f x >=−−−−−−→-=上移个单位(0)()()a a y f x y a f x >=−−−−−−→+=下移个单位1()()y f x y f x ωω=−−−−−−−−→=各点横坐标变成原来的倍()()y f x Ay f x =−−−−−−−−→=1各点纵坐标变成原来的倍A()()x y f x y f x =−−−−→-=绕轴翻折这些新的解析式可以由图象上任意一点变换后的对应关系得出,以左移a 个单位的解析式变化为例:设00(,)P x y 为()y f x =左移a 个单位后所得图象上的任意一点,则将P右移a 个单位得到的00'(,)P x a y +必在()y f x =的图象上,故00()y f x a =+,又00(,)P x y 点任意,故()y f x =的图象左移a 个单位得到的新的函数的解析式为:()y f x a =+.函数变换可以用下图表示:()()y f x y f x =−−−−→=-绕y 轴翻折板块三:三角函数的性质1.三角函数的性质][(22π,[2π,(21)π]()k k k k +∈Z 在2.sin y x =与sin y x =的性质(数学4必修)第一章 三角函数(上) [基础训练A 组]一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有( )A .①B .②C .③D .④ 3.02120sin 等于( )A .23±B .23C .23-D .21 4.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( )A .43-B .34- C .43 D .345.若α是第四象限的角,则πα-是( )A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角6.4tan 3cos 2sin 的值( )A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________。

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。

第20讲-三角函数的图象与性质(解析版)

第20讲-三角函数的图象与性质(解析版)

第20讲-三角函数的图象与性质一、 考情分析1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.二、 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.三、 经典例题考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cosx ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8.规律方法 1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法(1)利用三角函数线求解. (2)利用三角函数的图象求解. 考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.规律方法 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【解析】 令2k π≤x +π6≤2k π+π,k ∈Z , 解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【解析】 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.规律方法 1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.规律方法 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称 (2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称, 所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T=2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ).又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9.规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可. 2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可. [方法技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.6.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .四、 课时作业1.(2020·宝鸡中学高一期中)函数π()tan 23f x x ⎛⎫=-⎪⎝⎭的单调递增区间为( ) A .πππ2π,()2623k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ5π,()212212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z D .π2ππ,π()63k k k ⎛⎫++∈ ⎪⎝⎭Z 【答案】C 【解析】()π2232k x k k Z ππππ-<-<+∈得:5212212k k x ππππ-<<+,所以函数π()tan 23f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z . 2.(2020·陕西省西安中学高一期中)设函数12sin y x =-,则函数的最大值及取到最大值时的x 取值集合分别为( ) A .3,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭B .1,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭C .3,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .1,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【答案】C【解析】由于22sin 2,22sin 2,112sin 3x x x -≤≤-≤-≤-≤-≤, 所以当32,2x k k Z ππ=+∈时,函数12sin y x =-有最大值为3. 3.(2020·吉林省高三其他(文))下列函数中,是奇函数且在其定义域上是增函数的是( ) A .1y x=B .y tanx =C .x x y e e -=-D .2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间, 对于B 选项,由正切函数y tanx =的图像可知不符合题意;对于C 选项,令()x xf x e e -=-知()x x f x e e --=-,所以()()0f x f x +-=所以()x xf x e e -=-为奇函数,又x y e =在定义内单调递增,所以xy e -=-单调递增, 所以函数xxy e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数.4.(2020·武功县普集高级中学高一月考)函数y =的定义域是( )A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z . 所以函数2cos 1y x =+的定义域是()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈. 5.(2020·武功县普集高级中学高一月考)函数sin y x x =的部分图像是( )A .B .C .D .【答案】A【解析】:因为sin y x x =,所以()f x 为偶函数,其图象关于y 轴对称,故可以排除B ,D.又因为函数()f x 在()0,π上函数值为正,故排除C.6.(2019·呼玛县高级中学高一月考)若函数()sin()(0,0,)2πωϕωϕ=+>><f x A x A 的部分图像如图所示,则函数()f x 的解析式为( )A .()sin(2)6f x x π=+B .()cos(2)6f x x π=+ C .()cos(2)3f x x π=+D .()sin(2)3f x x π=+【答案】D【解析】由函数的部分图像可知1A =,22T π=,故T π=,所以2ππω=即2ω=.由函数图像的对称轴为12x π=,所以22,122k k Z ππϕπ⨯+=+∈,因2πϕ<,故3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,故选D . 7.(2019·呼玛县高级中学高一月考)设cos 12a π=,41sin6b π=,7cos 4c π=,则( ) A .a c b >> B .c b a >> C .c a b >> D .b c a >>【答案】A 【解析】4155b sinsin 6sin sin cos 66663ππππππ⎛⎫==+=== ⎪⎝⎭,7c cos cos 44ππ== 因为3412πππ>>,且y cos 0,2x π=在(,)是单调递减函数,所以a c b >>,故选A 8.(2019·延安市第一中学高三月考(理))已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( )A .关于点,012π⎛⎫- ⎪⎝⎭对称B .关于点,012π⎛⎫⎪⎝⎭对称C .关于直线12x π=-对称D .关于直线12x π=对称【答案】B【解析】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±, 所以2sin 13πφ⎛⎫+=±⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确.9.(2020·河北省故城县高级中学高一期中)关于函数sin(),2y x π=+在以下说法中正确的是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]-ππ上是减函数【答案】B【解析】sin()cos 2y x x π=+=,它在[0,]π上是减函数.10.(2020·上海高一课时练习)下列命题中正确的是( ) A .cos y x =在第一象限和第四象限内是减函数 B .sin y x =在第一象限和第三象限内是增函数 C .cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是减函数 D .sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数 【答案】D【解析】对于cos y x =,该函数的单调递减区间为:[]2,2,k k k Z πππ+∈,故A 错,C 错. 对于sin y x =,该函数的单调递增区间为:2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,故B 错,D 对.11.(2020·陕西省西安中学高三其他(理))关于函数()2sinsin 222x x f x x π⎛⎫=+- ⎪⎝⎭有下述四个结论: ①函数()f x 的图象把圆221x y +=的面积两等分②()f x 是周期为π的函数③函数()f x 在区间(,)-∞+∞上有3个零点④函数()f x 在区间(,)-∞+∞上单调递减 其中所有正确结论的编号是( ) A .①③④ B .②④C .①④D .①③【答案】C【解析】f (x )=2sin2x sin (2π+2x )﹣x =2sin 2x cos 2x﹣x =sin x ﹣x , 对于①,因为f (﹣x )=sin (﹣x )﹣(﹣x )=﹣sin x +x =﹣f (x ),所以函数f (x )为奇函数,关于原点对称,且过圆心,而圆x 2+y 2=1也是关于原点对称,所以①正确;对于②,因为f (x +π)=sin (x +π)﹣(x +π)=﹣sin x ﹣x ﹣π≠f (x ),所以f (x )的周期不是π,即②错误;对于③,因为()'f x =cos x ﹣1≤0,所以f (x )单调递减,所以f (x )在区间(﹣∞,+∞)上至多有1个零点, 即③错误; 对于④,()'fx =cos x ﹣1≤0,所以f (x )单调递减,即④正确.12.(2020·山西省高三其他(文))已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为( ) A .2 B .3C .4D .6【答案】C【解析】因为()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称, 所以()f x 关于点,03π⎛⎫⎪⎝⎭对称, 又()f x 的图象既关于直线524x π=对称, 设()f x 的最小正周期为T ,则()()2153244k T k N ππ+-=∈, 即()21284k k N ππω+⎛⎫=⋅∈ ⎪⎝⎭,所以()84k k N ω=+∈,取0k =,得4ω=,13.(2020·上海高二课时练习)设直线的斜率(,1][1,)k ∈-∞-⋃+∞,则该直线的倾斜角α满足( ). A .44ππα- B .42ππα<或324ππα< C .04πα或34παπ< D .04πα或34παπ【答案】B【解析】因为tan k α=, 所以当1k ≤-时,324ππα<≤, 当1k时,42ππα≤<,即直线的倾斜角α满足42ππα<或324ππα<, 14.(2020·调兵山市第一高级中学高一月考)方程10sin x x =的根的个数是( ) A .6 B .7C .8D .9【答案】B【解析】分别作函数,10sin y x y x ==图象,如图,由图可得交点个数为7,所以方程10sin x x =的根的个数是715.(2020·福建省高三其他(文))图数()1cos f x x x x ⎛⎫=+ ⎪⎝⎭,[)(],00,x ππ∈-的图象可能为( )A .B .C .D .【答案】A【解析】由题知:()()11cos cos ()f x x x x x f x x x ⎛⎫⎛⎫-=---=-+=- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 为奇函数,故排除B ,D. 又因为02x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故排除C.16.(2020·上海高一期中)函数sin cos y x x =⋅的最小正周期和最大值分别为( ) A .π,1 B .π,12C .2π,1D .2π,12【答案】B【解析】1sin cos =sin 22y x x x =⋅, 函数sin cos y x x =⋅的最小正周期22T ππ==, 1sin 21x -≤≤,∴111sin 2222x -≤≤,∴函数sin cos y x x =⋅的最大值为12. 17.(2020·山西省高三其他(文))对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k kk Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B【解析】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为21,2⎡-⎢⎣⎦,①错误; 函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 18.(多选题)(2020·海南省海南中学高三月考)已知函数()()sin f x A x =+ωϕ(0,0A ω>>)在1x =处取得最大值,且最小正周期为2,则下列说法正确的有( ). A .函数()1f x -是奇函数B .函数()1f x +是偶函数C .函数()2f x +在[]0,1上单调递增D .函数()3f x +是周期函数【答案】BCD【解析】因为()()sin f x A x =+ωϕ在1x =处取得最大值, 所以有2()2k k Z πωϕπ+=+∈,又因为()()sin f x A x =+ωϕ的最小正周期为2, 所以有22,0πωωπω=>∴=,因此()()sin sin 2cos 2f x A x A x k A x πωϕπππ⎛⎫=+=+-=- ⎪⎝⎭.选项A :设()()1cos[(1)]cos g x f x A x A x ππ=-=--=, 因为()cos[()]cos ()g x A x A x g x ππ-=-==, 所以()()1g x f x =-是偶函数,故本选项说法不正确; 选项B :设()()1cos[(1)]cos h x f x A x A x ππ=+=-+= 因为()cos[()]cos ()h x A x A x h x ππ-=-==, 所以()()1h x f x =+是偶函数,故本选项说法正确;选项C :设()()2cos[(2)]cos m x f x A x A x ππ=+=-+=-,因为[]0,1x ∈,所以[]0,x ππ∈,又因为0A >,所以函数()()2m x f x =+在[]0,1上单调递增,故本选项说法正确;选项D :设()()3cos[(3)]cos n x f x A x A x ππ=+=-+=, 函数()n x 最小正周期为:22ππ=,所以本选项说法正确.19.(2020·山东省微山县第一中学高一月考)已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( )A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【解析】根据函数()6f x cos x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误; ()76f x cos x ππ⎛⎫+=+⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.20.(2020·山东省高一期中)将函数()2sin 2f x x x =+12π个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法中正确的是( )A .()f xB .()g x 是奇函数C .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称 D .()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 【答案】CD【解析】函数2()sin 2sin 22sin(2)3f x x x x x x π=++=+,把函数图象向左平移12π个单位,得到2sin[2()]2sin(2)2cos 21232y x x x πππ=++=+=, 再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到()2cos g x x =. ①故()f x 函数的最大值为2,故选项A 错误. ②函数()2cos g x x =为偶函数,故选项B 错误. ③当6x π=-时,2sin 20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故选项C 正确.④由于()2cos g x x =,在[]2,2k k πππ+,()k Z ∈上单调递减,故函数()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减.故选项D 正确.21.(2020·上海高一期中)函数()tan 6f x x π=的单调递增区间为________【答案】(63,63)k k -+,k ∈Z 【解析】由622x k k πππππ-+<<+,k Z ∈,解得6363k x k -<<+,k Z ∈,故函数的单调增区间为()63,63k k -+,k Z ∈,22.(2020·河北省故城县高级中学高一期中)已知函数()sin()f x x π=-,()cos()g x x π=+,有以下结论: ①函数()()y f x g x =的最小正周期为π; ②函数()()y f x g x =的最大值为2;③将函数()y f x =的图象向右平移2π个单位后得到函数()y g x =的图象; ④将函数()y f x =的图象向左平移2π个单位后得到函数()y g x =的图象.其中正确结论的序号是____________. 【答案】①④【解析】()sin()sin f x x x π=-=-,()cos()cos g x x x π=+=-. 因为1()()(sin )(cos )sin cos sin 22y f x g x x x x x x ==-⋅-=⋅=, 所以1()()sin 22y f x g x x ==的最小正周期为:22ππ=,故结论①正确; 因为1()()sin 22y f x g x x ==的最大值为12,所以结论②不正确;因为函数()y f x =的图象向右平移2π个单位后得到函数的解析式为: ()sin()cos 22y f x x x ππ=-=--=,所以结论③不正确;因为函数()y f x =的图象向左平移2π个单位后得到函数的解析式为: ()sin()cos ()22y f x x x g x ππ=+=-+=-=,所以结论④正确.23.(2020·宝鸡中学高一期中)函数()sin()f x A x B ωϕ=++的一部分图象如图所示,其中0A >,0>ω,π||2ϕ<.(1)求函数()y f x =解析式;(2)求[0,π]x ∈时,函数()y f x =的值域; (3)将函数()y f x =的图象向右平移π4个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递减区间.【解析】(1)根据函数()sin()f x A x B ωϕ=++的一部分图象,其中0A >,0>ω,π||2ϕ<, ∵40A B A B +=⎧⎨-+=⎩,∴22A B =⎧⎨=⎩;∵12π5ππ44126T ω=⋅=-,∴2ω=, 再根据π46f ⎛⎫= ⎪⎝⎭,可得ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z ,∵π||2ϕ<,∴π6ϕ=,∴函数()y f x =的解析式为π()2sin 226f x x ⎛⎫=++ ⎪⎝⎭; (2)∵[]0,πx ∈,∴ππ13π2,666x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭, ∴函数()y f x =的值域为[]0,4; (3)将函数()y f x =的图象向右平移π4个单位长度, 得到函数πππ()2sin 222sin 22463g x x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,对于函数π()2sin 223g x x ⎛⎫=-+ ⎪⎝⎭, 令ππ3π2π22π232k x k +≤-≤+,k ∈Z , 求得5π11πππ1212k x k +≤≤+,k ∈Z , 故函数()g x 的单调减区间为5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z .24.(2020·山西省平遥中学校高一月考)已知函数()4sin cos 3f x x x π⎛⎫=++ ⎪⎝⎭(1)求函数()f x 的最小正周期及单调增区间; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域和取得最大值时相应的x 的值.【解析】(1)()4sin cos cos sin sin 33f x x x x ππ⎛⎫=-+ ⎪⎝⎭22sin cos x x x =-)sin 21cos2x x =-+sin 22x x =+2sin 23x π⎛⎫=+ ⎪⎝⎭.∴22T ππ==. 由222232k x k πππππ-+≤+≤+,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈ ∴单调增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)∵46x ππ-≤≤,∴22633x πππ-≤+≤. ∴1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,即12sin 223x π⎛⎫-≤+≤ ⎪⎝⎭.∴函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,2- 且当232x ππ+=,即12x π=时,()max 2f x =.25.(2020·武功县普集高级中学高一月考)在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 【解析】(1)依题意,由最低点为2,23M π⎛⎫- ⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-.。

专题01 三角函数的图象与性质(解析版)

专题01 三角函数的图象与性质【要点提炼】1.常用的三种函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ――——————————→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――——————————→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ―————————————―→向左(φ>0)或向右(φ<0)平移|φω|个单位 y =sin(ωx +φ)————————————―→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).考点一 三角函数的图像与性质考向一 三角函数的定义与同角关系式【典例1】 (1)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵(2)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 (1)设点P 的坐标为(x ,y ),且tan α<cos α<sin α,∴yx <x <y ,解之得-1<x <0,且0<y <1.故点P (x ,y )所在的圆弧是EF ︵.(2)由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 (1)C (2)B探究提高 1.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.2.应用诱导公式与同角关系开方运算时,一定要注意三角函数值的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【拓展练习1】 (1)(2020·唐山模拟)若cos θ-2sin θ=1,则tan θ=( ) A.43B.34C.0或43D.0或34(2)(2020·济南模拟)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.解析 (1)由题意可得⎩⎨⎧cos θ-2sin θ=1,cos 2θ+sin 2θ=1,解得⎩⎨⎧sin θ=0,cos θ=1或⎩⎪⎨⎪⎧sin θ=-45,cos θ=-35,所以tan θ=0,或tan θ=43.故选C.(2)∵cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3sin ⎝ ⎛⎭⎪⎫π6-α=435,∴sin ⎝⎛⎭⎪⎫α-π6=-45, ∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+2π=sin ⎝ ⎛⎭⎪⎫α-π6=-45.答案 (1)C (2)-45考向二 三角函数的图象及图象变换【典例2】 (1)(多选题)(2020·新高考山东、海南卷)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A.sin ⎝ ⎛⎭⎪⎫x +π3B.sin ⎝ ⎛⎭⎪⎫π3-2xC.cos ⎝ ⎛⎭⎪⎫2x +π6D.cos ⎝ ⎛⎭⎪⎫5π6-2x(2)(2019·天津卷)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A.-2B.- 2C. 2D.2解析 (1)由图象知T 2=2π3-π6=π2,得T =π,所以ω=2πT =2.又图象过点⎝ ⎛⎭⎪⎫π6,0,由“五点法”,结合图象可得φ+π3=π,即φ=2π3,所以sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +2π3,故A 错误;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =sin ⎝ ⎛⎭⎪⎫π3-2x 知B 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π2+π6=cos ⎝ ⎛⎭⎪⎫2x +π6知C 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫2x -5π6=-cos ⎝ ⎛⎭⎪⎫5π6-2x 知D 错误.综上可知,正确的选项为BC. (2)由f (x )是奇函数可得φ=k π(k ∈Z ),又|φ|<π,所以φ=0. 所以g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx ,且g (x )最小正周期为2π,可得2π12ω=2π,故ω=2,所以g (x )=A sin x ,g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2. 所以f (x )=2sin 2x ,故f ⎝ ⎛⎭⎪⎫3π8=2sin 3π4= 2.答案 (1)BC (2)C探究提高 1.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.【拓展练习2】 (1)(多选题)(2020·济南历城区模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )的图象.若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的可能取值为( ) A.-59π12B.-35π6C.25π6D.49π12(2)(2020·长沙质检)函数g (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示,已知g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,函数y =f (x )的图象可由y =g (x )图象向右平移π3个单位长度而得到,则函数f (x )的解析式为( )A.f (x )=2sin 2xB.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C.f (x )=-2sin 2xD.f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π3 解析 (1)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1的图象.由g (x 1)g (x 2)=9,知g (x 1)=3,g (x 2)=3,所以2x +π3=π2+2k π,k ∈Z ,即x =π12+k π,k ∈Z .由x 1,x 2∈[-2π,2π],得x 1,x 2的取值集合为⎩⎨⎧⎭⎬⎫-23π12,-11π12,π12,13π12.当x 1=-23π12,x 2=13π12时,2x 1-x 2=-59π12;当x 1=13π12,x 2=-23π12时,2x 1-x 2=49π12.故选AD.(2)由函数g (x )的图象及g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,知直线x =5π12为函数g (x )的图象的一条对称轴,所以T 4=5π12-π6=π4,则T =π,所以ω=2πT =2,所以g (x )=A sin(2x +φ),由题图可知⎝ ⎛⎭⎪⎫π6,0为“五点法”作图中的第三点,则2×π6+φ=π,解得φ=2π3,由g (0)=3,得A sin 2π3=3,又A >0,所以A =2,则g (x )=2sin ⎝ ⎛⎭⎪⎫2x +2π3,所以g (x )的图象向右平移π3个单位长度后得到的图象对应的解析式为f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+2π3=2sin 2x ,故选A. 答案 (1)AD (2)A 考向三 三角函数的性质【典例3】 (1)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)(2020·天一大联考)已知f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=( ) A.83 B.143 C.8 D.4 (3)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 解析 (1)f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4.所以0<a ≤π4,所以a 的最大值是π4.(2)由于f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,∴f (x )在x =12⎝ ⎛⎭⎪⎫π6+π3=π4处取得最小值.因此π4ω-π6=2k π+π,即ω=8k +143,k ∈Z .①又函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π3无最大值,且ω>0,∴T =2πω≥π3-π6=π6,∴0<ω≤12.②由①②知ω=143.(3)f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2. 答案 (1)A (2)B (3)π2探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间).【拓展练习3】 (1)(多选题)(2020·济南质检)已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π6个单位长度后,得到图象关于y 轴对称,则下列结论中正确的是( ) A.φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心 C.f (φ)=-2D.x =-π6是f (x )图象的一条对称轴(2)(多选题)关于函数f (x )=|cos x |+cos|2x |,则下列结论正确的是( ) A.f (x )是偶函数 B.π是f (x )的最小正周期C.f (x )在⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增D.当x ∈⎣⎢⎡⎦⎥⎤34π,54π时,f (x )的最大值为2解析 (1)将函数f (x )的图象向右平移π6个单位长度后,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=2sin ⎝ ⎛⎭⎪⎫2x +φ-π3的图象,∵其关于y 轴对称,∴φ-π3=k π+π2,k ∈Z ,∴φ=k π+5π6,k ∈Z .又0<φ<π,∴当k =0时,φ=5π6,故A 正确;f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6,f ⎝ ⎛⎭⎪⎫π12=0,则⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心,故B 正确;因为f (φ)=f ⎝ ⎛⎭⎪⎫5π6=2,故C错误;f ⎝ ⎛⎭⎪⎫-π6=2,则x =-π6是f (x )图象的一条对称轴,故D 正确.故选ABD.(2)f (x )=|cos x |+cos|2x |=|cos x |+cos 2x =|cos x |+2cos 2x -1=2|cos x |2+|cos x |-1,由f (-x )=2|cos(-x )|2+|cos(-x )|-1=f (x ),且函数f (x )的定义域为R ,得f (x )为偶函数,故A 正确.由于y =|cos x |的最小正周期为π,可得f (x )的最小正周期为π,故B 正确. 令t =|cos x |,得函数f (x )可转化为g (t )=2t 2+t -1,t ∈[0,1], 易知t =|cos x |在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,由t ∈[0,1],g (t )=2⎝ ⎛⎭⎪⎫t +142-98,可得g (t )在[0,1]上单调递增,所以f (x )在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,故C 错误.根据f (x )在⎣⎢⎡⎦⎥⎤34π,π上递增,在⎣⎢⎡⎦⎥⎤π,54π上递减,∴f (x )在x =π时取到最大值f (π)=2,则D 正确. 答案 (1)ABD (2)ABD考向四 三角函数性质与图象的综合应用【典例4】 (2020·临沂一预)在①f (x )的图象关于直线x =5π6ω对称,②f (x )=cos ωx -3sin ωx ,③f (x )≤f (0)恒成立这三个条件中任选一个,补充在下面横线处.若问题中的ω存在,求出ω的值;若ω不存在,请说明理由.设函数f (x )=2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2,_____________________________.是否存在正整数ω,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的?(注:如果选择多个条件分别解答,按第一个解答计分)解 若选①,则存在满足条件的正整数ω.求解过程如下: 令ωx +φ=k π,k ∈Z ,代入x =5π6ω, 解得φ=k π-5π6,k ∈Z .因为0≤φ≤π2,所以φ=π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π6∈⎣⎢⎡⎦⎥⎤π6,ωπ2+π6.若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π6≤π,解得0<ω≤53.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选②,则存在满足条件的正整数ω.求解过程如下: f (x )=cos ωx -3sin ωx =2cos ⎝ ⎛⎭⎪⎫ωx +π3=2cos(ωx +φ),且0≤φ≤π2,所以φ=π3.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ2+π3. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π3≤π,解得0<ω≤43.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选③,则存在满足条件的正整数ω.求解过程如下: 因为f (x )≤f (0)恒成立,即f (x )max =f (0)=2cos φ=2, 所以cos φ=1.因为0≤φ≤π2,所以φ=0,所以f (x )=2cos ωx .当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx ∈⎣⎢⎡⎦⎥⎤0,ωπ2. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2≤π,解得0<ω≤2.所以存在正整数ω=1或ω=2,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【拓展练习4】 (2020·威海三校一联)已知函数f (x )=2cos 2ω1x +sin ω2x . (1)求f (0)的值;(2)从①ω1=1,ω2=2,②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值,并直接写出函数f (x )的一个周期.(注:如果选择多个条件分别解答,按第一个解答计分) 解 (1)f (0)=2cos 20+sin 0=2. (2)选择条件①.f (x )的一个周期为π.当ω1=1,ω2=2时,f (x )=2cos 2x +sin 2x =(cos 2x +1)+sin 2x =2⎝ ⎛⎭⎪⎫22sin 2x +22cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,7π12.所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,则1-2≤f (x )≤1+ 2. 当2x +π4=-π2,即x =-3π8时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值1- 2.选择条件②.f (x )的一个周期为2π.当ω1=1,ω2=1时,f (x )=2cos 2x +sin x =2(1-sin 2x )+sin x =-2⎝ ⎛⎭⎪⎫sin x -142+178.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以sin x ∈⎣⎢⎡⎦⎥⎤-1,12.所以当sin x =-1,即x =-π2时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值-1.【专题拓展练习】一、选择题(1~10题为单项选择题,11~15题为多项选择题) 1.函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π【答案】D 【详解】因为22cos 211213()cos cos 232232x f x x x πππ⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭=+==++ ⎪ ⎪⎝⎭⎝⎭,所以最小正周期为π.2.把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( ) A .sin y x = B .cos y x =C .sin()4y x π=+D .sin y x =-【答案】B 【详解】把函数sin 2y x =的图象向左平移4π个单位长度, 得到sin 2sin(2)cos 242y x x x ππ⎛⎫=+=+= ⎪⎝⎭,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为cos y x =. 3.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【详解】 解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B4.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,则函数()g x 的单调递增区间是( ) A .(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .()44k ,k k Z ππ⎡⎤-+π+π∈⎢⎥⎣⎦D .()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【答案】D 【详解】将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,所以()2sin 22sin 2663g x x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, 由()222232k x k k Z πππππ-+≤+≤+∈可得()51212k x k k Z ππππ-+≤≤+∈, 即函数()g x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.5.函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像最近两对称轴之间的距离为2π,若该函数图像关于点()0m ,成中心对称,当0,2m π⎡⎤∈⎢⎥⎣⎦时m 的值为( ) A .6πB .4π C .3π D .512π 【答案】D 【详解】()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期2π2ω2T ππ==⨯=,2ω∴=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,6x k k Z ππ+=∈,则212k x ππ=-, ∴函数f (x )的对称轴心为,0212k ππ⎛⎫-⎪⎝⎭,k Z ∈, 所以212k m ππ=-, 当0,2122k m πππ⎡⎤=-∈⎢⎥⎣⎦时,解得:17,66k ⎡⎤∈⎢⎥⎣⎦, 又5π,1,12k Z k m ∈∴=∴=, 6.已知函数()22sin 23sin cos cos f x x x x x =+-,x ∈R ,则( )A .()f x 的最大值为1B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2π D .()f x 在区间()0,π上只有1个零点【答案】B 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错. 7.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,则ω的取值共有( )A .6个B .5个C .4个D .3个【答案】B 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫= ⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个.8.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z【答案】D 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确;9.设函数()sin 2cos 2f x a x b x =+,其中,,0a b R ab ∈≠,若()6f x f π⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,则以下结论:①函数()f x 的图象关于11,012π⎛⎫⎪⎝⎭对称;②函数()f x 的单调递增区间是2,()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;③函数()f x 既不是奇函数也不是偶函数;④函数()f x 的图象关于()26k x k Z ππ=+∈对称.其中正确的说法是( ) A .①②③ B .②④C .③④D .①③④【答案】D 【详解】解:由辅助角公式得:())f x x ϕ=+, 由()6f x f π⎛⎫≤⎪⎝⎭恒成立,得22()62k k Z ππϕπ⨯+=+∈, 所以2()6k k Z πϕπ=+∈,取6π=ϕ,从而()26f x x π⎛⎫=+ ⎪⎝⎭,由11012f π⎛⎫= ⎪⎝⎭得①正确, 由222()262k x k k Z πππππ-≤+≤+∈得()36k x k k Z ππππ-≤≤+∈,所以函数的增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,②不正确, 根据正弦函数的奇偶性易得③显然正确, 由2()62x k k Z πππ+=+∈,得对称轴为()26k x k Z ππ=+∈,④正确, 10.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (AB BC =)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④【答案】A 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(5135254CG =-=,所以()()254522n GI ππ==⨯=,所以(())3525451222m n l πππ⨯+⨯=⨯==+,故①正确;(2222735354m π-⨯==,))273551522l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))35551522l n ππ-⨯++==,((2235352m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯211m l n≠+,故④不正确;所以①②正确,11.已知函数()3sin sin3f x x x=+,则()A.()f x是奇函数B.()f x是周期函数且最小正周期为2πC.()f x的值域是[4,4]-D.当(0,)xπ∈时()0f x>【答案】ABD【详解】A.()3sin()sin(3)3sin sin3()f x x x x x f x-=-+-=--=-,故()f x是奇函数,故A正确;B.因为siny x=的最小正周期是2π,sin3y x=的最小正周期为23π,二者的“最小公倍数”是2π,故2π是()f x的最小正周期,故B正确;C.分析()f x的最大值,因为3sin3x≤,sin31x≤,所以()4f x≤,等号成立的条件是sin1x=和sin31x=同时成立,而当sin1x=即2()2x k kππ=+∈Z时,336()2x k kππ=+∈Z,sin31x=-故C错误;D.展开整理可得()2()3sin sin cos2cos sin2sin4cos2f x x x x x x x x=++=+,易知当(0,)xπ∈时,()0f x>,故D正确.12.设函数cos2()2sin cosxf xx x=+,则()A.()()f x f xπ=+B.()f x的最大值为12C.()f x在,04π⎛⎫-⎪⎝⎭单调递增D.()f x在0,4π⎛⎫⎪⎝⎭单调递减【答案】AD【详解】()f x的定义域为R,且cos2()2sin cosxf xx x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当15y =时,有1cos ,sin 44ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin 20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 13.若将函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度,得到函数g (x )的图象,则下列说法正确的是( ) A .g (x )的最小正周期为πB .g (x )在区间[0,2π]上单调递减C .x =12π是函数g (x )的对称轴 D .g (x )在[﹣6π,6π]上的最小值为﹣12【答案】AD 【详解】 函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得()cos 2812g x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦cos 23x π⎛⎫=+ ⎪⎝⎭,最小正周期为π,A 正确;222()3k x k k Z ππππ≤+≤+∈()63k x k k Z ππππ∴-≤≤+∈为g (x )的所有减区间,其中一个减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故B 错; 令23x k ππ+=,得6,2kx k Z ππ=-+∈,故C 错; x ∈[﹣6π,6π],220,33x ππ⎡⎤∴+∈⎢⎥⎣⎦,1cos(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦,故 D 对 14.下列说法正确的是( ) A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x x π⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t =【答案】ACD 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛⎫=--=-++=--+ ⎪ ⎪⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos 2x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-, ()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D选项,()2222 22sin cos222costx t x x xf xx x⎛⎫+++⎪⎝⎭=+()()2222cos sin sin2cos2cost x x t x x t x xtx x x x++⋅+⋅+==+++,所以,()()()()22sin sin2cos2cost x x t x xf x t tx xx x--+-=+=-+⋅-+-,()()2f x f x t∴+-=,所以,函数()f x的图象关于点()0,t对称,所以,22a b t+==,可得1t=,D对. 15.如图是函数()sin()(0,0,||)f x A x Aωϕωϕπ=+>><的部分图象,则下列说法正确的是()A.2ω=B.π,06⎛⎫- ⎪⎝⎭是函数,()f x的一个对称中心C.2π3ϕ=D.函数()f x在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【详解】由题知,2A=,函数()f x的最小正周期11π5π2π1212T⎛⎫=⨯-=⎪⎝⎭,所以2π2Tω==,故A正确;因为11π11π11π2sin22sin212126fϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11ππ2π62kϕ+=+,k Z∈,解得4π2π3kϕ=-,k Z∈,又||ϕπ<,所以2π3ϕ=,故C正确;函数()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,因为ππ2ππ2sin 22sin 06633f ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫-⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误; 令π2π3π2π22π232m x m +≤+≤+,m Z ∈,得π5ππ1212m x mx -≤≤+,m Z ∈,当1m =-时,13π7π1212x -≤≤-,因为4π13π7ππ,,51212⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确.。

高考复习:三角函数的图像与性质(含参考答案与解析方法)

4.3三角函数的图像与性质一 正弦、余弦、正切函数的图像与性质 (下表中k ∈Z ).1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 考点一 三角函数的定义域与值域例1、(1)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为________.(2)函数y =lg(sin x )+ cos x -12的定义域为________.(3)①函数y =2cos 2x +5sin x -4的值域为________.②当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.考点二 三角函数的单调性例2、函数y =2sin ⎝⎛⎭⎫x -π4的单调递减区间为 _____________.变式训练1 (1)函数y =2⎪⎪⎪⎪sin ⎝⎛⎭⎫x -π4的单调递减区间为_____________; (2)函数y =sin ⎝⎛⎭⎫-2x +π3的单调递减区间为_______________.考点三 三角函数的对称性与奇偶性例3、(2013·扬州期末)已知函数f (x )=-2sin 2x +23sin x · cos x +1.(1)求f (x )的最小正周期及对称中心;(2)当x ∈⎣⎡⎦⎤-π6,π3时,求f (x )的最大值和最小值.例4 (1)若函数y =3sin(2x +φ)(0<φ<π)的图像关于点⎝⎛⎭⎫π3,0中心对称,则φ=________.(2) 已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π3的一条对称轴为x =π3,一个对称中心为点⎝⎛⎭⎫π12,0,则ω的最小值为______.(3)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图像如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝⎛⎭⎫16的值为______.冲刺高考:1、已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是________.2、已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为________.3、(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 课堂练习1、 函数y =lg sin 2x +9-x 2的定义域为________________.2、 函数y =sin x -cos x 的定义域是________.3、 函数f (x )=2sin ⎝⎛⎭⎫x -π4,x ∈[-π,0]的单调增区间为________.4、若函数f (x )=2sin ωx (ω>0)在⎣⎡⎤-2π3,2π3上单调递增,则ω的最大值为______.5、将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是________.4.3三角函数的图像与性质(作业)1、已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的单调递减区间是________.2、将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是________.3、给出下列四个命题,其中不正确的命题为______.(填序号) ①若cos α=cos β,则α-β=2k π,k ∈Z ;②函数y =2cos ⎝⎛⎭⎫2x +π3的图象关于x =π12中心对称;③函数y =cos(sin x )(x ∈R )为偶函数;④若α、β均为第一象限角,且α>β,则sin α>sin β ⑤函数y =sin|x |是周期函数,且周期为2π.4、 函数y =cos 2x +sin 2x ,x ∈R 的值域是________.5、 函数y =cos(π4-2x )的单调减区间为________.6、设函数f (x )=3sin(π2x +π4),若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.7、已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图,则f (π24)=________.8、已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.9、设函数f (x )=sin(πx 4-π6)-2cos 2πx8+1.(1)求f (x )的最小正周期.(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时,y =g (x )的最大值.4.3三角函数的图像与性质一 正弦、余弦、正切函数的图像与性质(下表中k ∈Z ).1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 考点一 三角函数的定义域与值域例1 (1)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为________. 解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. (2) (2014·湛江调研)函数y =lg(sin x )+ cos x -12的定义域为________.解析:要使函数有意义必须有⎩⎪⎨⎪⎧ sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12, 解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z .(3)①函数y =2cos 2x +5sin x -4的值域为________.②当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________. 解析:①y =2cos 2x +5sin x -4=2(1-sin 2x )+5sin x -4=-2sin 2x +5sin x -2 =-2(sin x -54)2+98. 故当sin x =1时,y max =1,当sin x =-1时,y min =-9,故y =2cos 2x +5sin x -4的值域为[-9,1]. ②∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )= 2⎝⎛⎭⎫sin x -142+78. ∴当sin x =14时,y min =78, 当sin x =-12或sin x =1时,y max =2.答案:(1)[-9,1] (2)78 2[类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.2.三角函数值域的不同求法 (1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 考点二 三角函数的单调性例2、求函数y =2sin ⎝⎛⎭⎫x -π4的单调递减区间 [解] 由2k π+π2≤x -π4≤2k π+3π2,k ∈Z ,得2k π+3π4≤x ≤2k π+7π4,k ∈Z .故函数y =2sin ⎝⎛⎭⎫x -π4的单调减区间为 ⎣⎡⎦⎤2k π+3π4,2k π+7π4(k ∈Z ). 变式训练1 (1)求函数y =2⎪⎪⎪⎪sin ⎝⎛⎭⎫x -π4的单调递减区间;(2)求函数y =sin ⎝⎛⎭⎫-2x +π3的单调递减区间 解 (1)画出函数y =2⎪⎪⎪⎪sin ⎝⎛⎭⎫x -π4的图像,易知其单调递减区间为⎣⎡⎦⎤k π+3π4,k π+5π4(k ∈Z ). (2) y =-sin ⎝⎛⎭⎫2x -π3, 它的减区间是y =sin ⎝⎛⎭⎫2x -π3的增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ; 例3、求函数y =sin ⎝⎛⎭⎫π3+4x +cos ⎝⎛⎭⎫4x -π6的周期、单调区间及最大、最小值. 解 ∵⎝⎛⎭⎫π3+4x +⎝⎛⎭⎫π6-4x =π2, ∴cos ⎝⎛⎭⎫4x -π6=cos ⎝⎛⎭⎫π6-4x =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3+4x =sin ⎝⎛⎭⎫π3+4x . ∴y =2sin ⎝⎛⎭⎫4x +π3,周期T =2π4=π2. 当-π2+2k π≤4x +π3≤π2+2k π (k ∈Z )时,函数单调递增,∴函数的递增区间为⎣⎡⎤-5π24+k π2,π24+k π2 (k ∈Z ). 当π2+2k π≤4x +π3≤3π2+2k π (k ∈Z )时,函数单调递减, ∴函数的递减区间为⎣⎡⎦⎤π24+k π2,7π24+k π2(k ∈Z ).当x =π24+k π2 (k ∈Z )时,y max =2; 当x =-5π24+k π2 (k ∈Z )时,y min =-2.考点三 三角函数的对称性与奇偶性例4、(2013·扬州期末)已知函数f (x )=-2sin 2x +23sin x · cos x +1.(1)求f (x )的最小正周期及对称中心;(2)当x ∈⎣⎡⎦⎤-π6,π3时,求f (x )的最大值和最小值. 解:(1)f (x )= 3 sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最小正周期为T =2π2=π.令 sin ⎝⎛⎭⎫2x +π6=0,得x =k π2-π12(k ∈Z ), 所以f (x )的对称中心为⎝⎛⎭⎫k π2-π12,0(k ∈Z ). (2)因为x ∈⎣⎡⎦⎤-π6,π3,所以-π6≤2x +π6≤5π6, 所以-12≤sin ⎝⎛⎭⎫2x +π6≤1,所以-1≤f (x )≤2. 所以当x =-π6时,f (x )的最小值为-1;当x =π6时,f (x )的最大值为2.例5 (1)若函数y =3sin(2x +φ)(0<φ<π)的图像关于点⎝⎛⎭⎫π3,0中心对称,则φ=________.解析:由题意得3sin ⎝⎛⎭⎫23π+φ=0,所以23π+φ=k π(k ∈Z ).又因为0<φ<π,所以φ=π3. (2) 已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π3的一条对称轴为x =π3,一个对称中心为点⎝⎛⎭⎫π12,0,则ω的最小值为______.解析:由题意知π3-π12≥T 4,T =2πω≤π,ω≥2.(3)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图像如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝⎛⎭⎫16的值为______.解析:由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝⎛⎭⎫16=12cos π6=34. [类题通法]1.若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.2.对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.三角函数的单调性、对称性、周期性例6、(1)已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是________.(2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b的值为________.(3)(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 思维点拨 (1)(π2,π)为函数f (x )某个单调减区间的子集;(2)由f (x +π4)=f (-x )可得函数的对称轴,应用函数在对称轴处的性质求解即可;(3)利用正弦型函数图象的对称性求周期. 解析 (1)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知(π2ω+π4,πω+π4)⊆[π2,3π2], ∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54. (2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3.(3)∵f (x )在⎣⎡⎦⎤π6,π2上具有单调性, ∴T 2≥π2-π6, ∴T ≥2π3. ∵f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3, ∴f (x )的一条对称轴为x =π2+2π32=7π12. 又∵f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6, ∴f (x )的一个对称中心的横坐标为π2+π62=π3. ∴14T =7π12-π3=π4, ∴T =π. 答案 (1)[12,54] (2)-1或3 (3)π温馨提醒 (1)对于已知函数的单调区间的某一部分确定参数ω的范围的问题:首先,明确已知的单调区间应为函数的单调区间的子集;其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解.(2)函数y =A sin(ωx +φ)+b 的图象与其对称轴的交点是最值点. 课堂练习1、函数y =lg sin 2x +9-x 2的定义域为________________.解析 由⎩⎪⎨⎪⎧ sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧2k π<2x <2k π+π,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2. ∴函数y =lg sin 2x +9-x 2的定义域为 {x |-3≤x <-π2或0<x <π2}.2、函数y =sin x -cos x 的定义域是________. 解析 要使函数有意义,必须有sin x -cos x ≥0,即sin x ≥cos x ,同一坐标系中作出y =sin x ,y =cos x ,x ∈[0,2π]的图象如图所示.结合图象及正、余弦函数的周期是2π知, 函数的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }.3、函数f (x )=2sin ⎝⎛⎭⎫x -π4,x ∈[-π,0]的单调增区间为________. 解析:当x -π4∈⎣⎡⎦⎤2k π-π2,2k π+π2,k ∈Z 时,是f (x )的单调增区间. 又因为x ∈[-π,0],故取k =0得x ∈⎣⎡⎦⎤-π4,0 4、若函数f (x )=2sin ωx (ω>0)在⎣⎡⎦⎤-2π3,2π3上单调递增,则ω的最大值为______. 解析:依题意可知12×T ≥2×2π3,即12×2πω≥2×2π3,解得ω≤34,从而ω的最大值为34.5、将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是________.解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得 sin(π3+m )=±1, ∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z , ∵m >0,∴m 的最小值为π6.4.3三角函数的图像与性质(作业)1、已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的单调递减区间是________.解析 由f (π8)=-2得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2,所以sin(π4+φ)=1.因为|φ|<π, 所以φ=π4. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得 k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递减区间为[k π-3π8,k π+π8](k ∈Z ).2、将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是________.解析 根据题意平移后函数的解析式为 y =sin ω⎝⎛⎭⎫x -π4, 将⎝⎛⎭⎫3π4,0代入得sin ωπ2=0,则ω=2k ,k ∈Z ,且ω>0, 故ω的最小值为2. 3、给出下列四个命题,其中不正确的命题为______.(填序号) ①若cos α=cos β,则α-β=2k π,k ∈Z ;②函数y =2cos ⎝⎛⎭⎫2x +π3的图象关于x =π12中心对称; ③函数y =cos(sin x )(x ∈R )为偶函数;④若α、β均为第一象限角,且α>β,则sin α>sin β⑤函数y =sin|x |是周期函数,且周期为2π. 答案 ①④⑤解析 命题①:若α=-β,则cos α=cos β,假命题;命题②:x =π12,cos ⎝⎛⎭⎫2x +π3=cos π2=0,故x =π12是y =2cos ⎝⎛⎭⎫2x +π3的对称中心;命题⑤:函数y =sin|x |不是周期函数. 4、函数y =cos 2x +sin 2x ,x ∈R 的值域是________. 解析 y =cos 2x +sin 2x =cos 2x +1-cos 2x 2=1+cos 2x2.∵cos 2x ∈[-1,1],∴y ∈[0,1].5、函数y =cos(π4-2x )的单调减区间为________.解析 由y =cos(π4-2x )=cos(2x -π4)得2k π≤2x -π4≤2k π+π(k ∈Z ),故k π+π8≤x ≤k π+5π8(k ∈Z ). 所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).6、设函数f (x )=3sin(π2x +π4),若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________. 解析 f (x )=3sin(π2x +π4)的周期T =2π×2π=4,f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值, 故|x 1-x 2|的最小值为T2=2.7、已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图,则f (π24)=________.解析 由题中图象可知,此正切函数的半周期等于3π8-π8=π4,即最小正周期为π2, 所以ω=2.由题意可知,图象过定点(3π8,0),所以0=A tan(2×3π8+φ), 即3π4+φ=k π(k ∈Z ), 所以φ=k π-3π4(k ∈Z ),又|φ|<π2,所以φ=π4. 又图象过定点(0,1),所以A =1.综上可知,f (x )=tan(2x +π4), 故有f (π24)=tan(2×π24+π4)=tan π3= 3.8、已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6. ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .9、设函数f (x )=sin(πx 4-π6)-2cos 2πx8+1.(1)求f (x )的最小正周期.(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时,y =g (x )的最大值.解 (1)f (x )=sin πx 4cos π6-cos πx 4sin π6-cos πx 4=32sin πx 4-32cos πx 4=3sin(πx 4-π3), 故f (x )的最小正周期为T =2ππ4=8.(2)方法一 在y =g (x )的图象上任取一点(x ,g (x )), 它关于x =1的对称点(2-x ,g (x )).由题设条件,知点(2-x ,g (x ))在y =f (x )的图象上,从而g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin[π2-πx 4-π3]=3cos(πx 4+π3).当0≤x ≤43时,π3≤πx 4+π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.方法二 区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于直线x =1对称, 故y =g (x )在[0,43]上的最大值为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(πx 4-π3),当23≤x ≤2时,-π6≤πx 4-π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。

高一秋季讲义-第十讲-三角函数图像与性质(含答案)

第十讲 三角函数图像与性质1.正弦、余弦、正切函数的图象与性质(1)正弦函数x y sin =,余弦函数x y cos =,正切函数x y tan =的图象与性质函数x y sin =x y cos = x y tan =图象定义域RR}2|{ππk x x +≠值域]1,1[-]1,1[-R最值当)(22Z k k x∈+=ππ时,1max =y ;当)(22Z k k x∈-=ππ时,1min -=y .当)(2Z k k x∈=π时,1max =y ;当)(2Z k k x ∈+=ππ时,1min -=y .既无最大值,也无最小值周期性 π2π2π奇偶性x x sin )sin(-=-,奇函数 x x cos )cos(=-,偶函数x x tan )tan(-=-,奇函数单调性)](22,22[Z k k k ∈+-ππππ单调递增;)](232,22[Z k k k ∈++ππππ单调递减.)](2,2[Z k k k ∈-πππ单调递增;)](2,2[Z k k k ∈+πππ单调递减. )](2,2[Z k k k ∈+-ππππ单调递增.对称性对称中心))(0,(Z k k ∈π对称轴)(2Z k k x∈+=ππ既是中心对称又是轴对称图形. 对称中心))(0,2(Z k k ∈+ππ对称轴)(Z k k x∈=π既是中心对称又是轴对称图形.对称中心))(0,2(Z k k ∈π无对称轴是中心对称但不是轴对称图形.(2)(五点法),先列表,令ππππ2,23,,2,0=x ,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到x y sin =,x y cos =在一个周期的图像,最后把这个周期的图像以周期为单位,向左右两边平移,则得到函数x y sin =,x y cos =的图像.考点一 正弦、余弦函数的图像例1.1 用五点法作出下列函数的图象(1)]2,0[,sin 2π∈-=x x y ; (2)]611,6[),6cos(πππ-∈+=x x y【解析】(1)找出五点,列表如下: x0 2π π 23π π2 x u sin =1 01- 0u y -=22 12 32描点作图(2)找出五点,列表如下:6π+=x u 02π π23π π2x6π-3π 65π 34π 611πu y cos =1 01- 0 1描点作图例1.2 (1)求xx 1sin =在区间],[ππ-内解的个数.(2)若20π<<x ,则x 2与x sin 3的大小关系为( ) A .x x sin 32> B .x x sin 32< C .x x sin 32= D .与x 的取值有关【答案】(1)4; (2)D 【解析】(1)函数x y sin =与xy 1=的图象交点个数等于方程解的个数.在同一坐标系内作出两个函数x y sin =,xy 1=在],[ππ-内的图象,如图所示.由图象不难看出,它们有4个交点. 所以方程xx 1sin =在],[ππ-内有4个解. (2)作图,观察函数x y 21=,x y sin 32=在)2,0(π内的图象可知x 2与x sin 3的大小关系与x 的取值有关.例1.3 函数)32sin(π-=x y 在区间],2[ππ-的简图是( )【答案】A【举一反三】 变式1.1 已知函数x x y cos 21cos 21+=,画出函数的简图.【解析】⎪⎩⎪⎨⎧∈++∈∈+-∈=+=)](232,22[,0)](22,22[,cos cos 21cos 21Z k k k x Z k k k x x x x y ππππππππ作出简图如下:变式1.2(1)方程x x sin lg =的解的个数为( )A .0B .1C .2D .3(2)已知函数]2,0[,sin 2sin )(π∈-=x x x x f ,作出函数)(x f 的图象;讨论直线k y =与函数)(x f 的交点个数,并求此时的k 的取值范围. 【解析】(1)作出x y lg =与x y sin =的图象,当25π=x 时,125lg <=πy ,125sin==πy ;当29π=x 时,129lg >=πy ,x y lg =与x y sin =再无交点.如图所示,由图知有三个交点,∴方程有三个解.(2)⎩⎨⎧∈∈-=]2,[,sin 3],0[,sin )(πππx x x x x f 的图像如图所示,由图象可知:当k >0或k <―3时,直线k y =与函数)(x f 有0个交点; 当k =―3时,直线k y =与函数)(x f 有1个交点; 当―3<k <―1时,直线k y =与函数)(x f 有2个交点; 当k =0或k =―1时,直线k y =与函数)(x f 有3个交点;当―1<k <0时,直线k y =与函数)(x f 有4个交点.变式1.3 在)2,0(π内,使x x cos sin >成立的x 取值范围为( ) A .)45,()2,4(ππππY B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππY 【答案】C【解析】在同一坐标系中分别作出函数12sin ,cos ,(0,2)y x y x x π==∈的图象,观察:刚刚开始即(0,)4x π∈时,cos sin x x >;到了中间即5(,)44x ππ∈时,x x cos sin >;最后阶段即5(,2)4x ππ∈时,cos sin x x >考点二 正弦、余弦函数的定义域、值域例2.1 求函数1cos sin 22-+=x x y 的定义域; 【答案】 },322322|{Z k k x k x ∈+≤≤-ππππ 【解析】 为使函数有意义,需满足01cos sin 22≥-+x x ,即01cos cos 22≤--x x 解得1cos 21≤≤-x ,画出余弦函数的图象或单位圆,如下图所示.∴定义域为},322322|{Z k k x k x ∈+≤≤-ππππ.例2.2 求下列函数的值域: (1) x y sin 23-= (2) )32(2π+=x in y ,]6,6[ππ-∈x ; (3) 1cos 2cos --=x x y .【答案】(1)]5,1[ (2)]2,0[ (3)),23[+∞ 【解析】(1)∵1sin 1≤≤-x ,∴2sin 22≤-≤-x ,∴5sin 231≤-≤x ,∴函数的值域为]5,1[. (2)∵66ππ≤≤-x ,∴32320ππ≤+≤x . ∴1)32sin(0≤+≤πx .∴2)32sin(20≤+≤πx , ∴20≤≤y .∴函数的值域为]2,0[.(3)∵xx x x x y cos 1111cos 11cos 1cos 2cos -+=---=--= 当1cos -=x 时,23min =y ,∴函数的值域为),23[+∞.例2.3 函数x y sin =的定义域为],[b a ,值域为]21,1[-,则a b -的最大值与最小值之和等于( ) A.34π B.38π C .π2 D .π4 【答案】 C【解析】 作出x y sin =的一个简图,如图所示, ∵函数的值域为]21,1[-, 且2165sin6sin==ππ,123sin -=π, ∴定义域],[b a 中,a b -的最小值为326523πππ=-, 定义域],[b a 中,a b -的最大值为346562ππππ=-+, 故可得,最大值与最小值之和为π2.【举一反三】 变式2.1(1)求函数)sin(cos lg x y =的定义域.(2)已知)(x f 的定义域为)1,0[,求)(cos x f 的定义域. 【解析】(1)由)(2cos 20)sin(cos Z k k x k x ∈+<<⇒>πππ又∵1cos 1≤≤-x ,∴1cos 0≤<x ,故所求定义域为)22,22(ππππ+-k k . (2))(222cos 221cos 0Z k k x k x k x ∈≠+≤≤-⇒<≤πππππ且.故所求函数的定义域为)](22,2()2,22[Z k k k k k ∈+-ππππππY .变式2.2 已知]32,3[ππ-∈x .(1) 求函数x y cos =的值域;(2) 求函数4cos 4sin 32+--=x x y 的最大值和最小值. 【答案】(1)]1,21[-; (2)最小值31-,最大值415. 【解析】(1)∵]32,3[ππ-∈x .∴当32π=x 时,函数x y cos =取最小值2132cos -=π, 当0=x 时,函数x y cos =取最大值10cos =, ∴函数x y cos =的值域为]1,21[-;(2)化简可得4cos 4)cos 1(34cos 4sin 322+---=+--=x x x x y 令t x =cos ,由(1)知]1,21[-∈t ,代入可得1432+-=t t y 由二次函数的性质可知,当32=t 时,y 取得最小值31-, 当21-=t 时,y 取最大值415.变式2.3 已知函数b x a x f +=sin 2)(的定义域为]32,3[ππ-,函数的最大值为1,最小值为-5,求a 和b 的值.【解析】 ∵-π3≤x ≤2π3,∴-32≤sin x ≤1.若a =0,不满足题意.若a >0,则⎩⎨⎧2a +b =1,-3a +b =-5,解得⎩⎨⎧a =12-63,b =-23+12 3.若a <0,则⎩⎨⎧2a +b =-5,-3a +b =1, 解得⎩⎨⎧a =-12+63,b =19-12 3.故a =12-63,b =-23+123或a =-12+63,b =19-12 3.考点三 正弦、余弦函数的单调区间与单调性 例3.1 求函数)4sin(2x y -=π的单调递增区间.【解析】 )4sin(2)4sin(2ππ--=-=x x y ,令4π-=x z ,则z y sin 2-=. 因为z 是x 的一次函数,所以要求z y sin 2-=的单调递增区间 即求z sin 的单调递减区间,即)(23222Z k k z k ∈+≤≤+ππππ. ∴)(232422Z k k x k ∈+≤-≤+πππππ,即)(472432Z k k z k ∈+≤≤+ππππ, ∴函数)4sin(2x y -=π的单调递增区间为)](472,432[Z k k k ∈++ππππ.例3.2 下列不等式中成立的是( ) A .)10sin()8sin(ππ->- B .2sin 3sin > C .)52sin(57sinππ-> D .1cos 2sin >【答案】 D【解析】 ∵)22cos()22cos(2sin ππ-=-=,且ππ<<-<1220∴1cos )22cos(>-π,即1cos 2sin >,故选D.例3.3 函数x y cos =在区间],[a π-上为增函数,则a 的取值范围是________. 【答案】 ]0,(π-【解析】 因为x y cos =在]0,(π-上是增函数,在],0[π上是减函数 所以只有0≤<-a π时满足条件,故]0,(π-∈a .【举一反三】变式3.1 求函数)62cos(2)(π-=x x f 的单调递增区间.【解析】 令Z k k x k ∈≤-≤+-,2622ππππ,解得Z k k x k ∈+≤≤+-,212125ππππ, 所以函数)(x f 的单调递增区间是)](212,125[Z k k k ∈++-ππππ.变式3.2 cos 1,cos 2,cos 3的大小关系是________.(用“>”连接) 【答案】 cos 1>cos 2>cos 3【解析】 由于0<1<2<3<π,而y =cos x 在[0,π)上单调递减,所以cos 1>cos 2>cos 3.变式 3.3 已知ω>0,函数)4sin()(πω+=x x f 在),2(ππ上单调递减,则ω的取值范围是( ) A.]45,21[ B.]43,21[ C.]21,0( D .]2,0(【答案】 A 【解析】 取45=ω,)445sin()(π+=x x f ,其减区间为)](58,558[Z k k k ∈++ππππ, 显然)](58,558[),2(Z k k k ∈++⊆ππππππ,排除B ,C. 取2=ω,)42sin()(π+=x x f ,其减区间为)](85,8[Z k k k ∈++ππππ, 显然)](85,8[),2(Z k k k ∈++⊄ππππππ,排除D.考点四 正弦、余弦函数的奇偶性、周期性与对称性 例4.1 下列函数是以π为周期的函数是( ) A .y =sin x B .y =sin x +2 C .y =|cos x|+2 D .y =cos 3x -1【答案】 C【解析】 x y sin =及2sin +=x y 的周期为π2,2cos +=x y 的周期为π,13cos -=x y 的周期为32π.例4.2 若函数y =cos(ωx +φ)是奇函数,则( ) A .ω=0 B .φ=k π(k ∈Z ) C .ω=k π(k ∈Z ) D .φ=k π+π2(k ∈Z )【答案】 D【解析】 由函数y =cos(ωx +φ)是奇函数,可知y =cos(ωx +φ)=sin ωx 或y =cos(ωx +φ)=-sin ωx , 由诱导公式,得φ=k π+π2(k ∈Z ).例4.3 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 018)=________.【答案】3【解析】 ∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 015)+f (2 016)+f (2 017)+f (2 018) =336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018) =336⎝⎛⎭⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (336×6+1)+f (336×6+2) =336×0+f (1)+f (2) =sin π3+sin 23π= 3.【举一反三】变式4.1 已知函数f (x )=ax +b sin x +1,若f (2 018)=7,则f (-2 018)=________. 【答案】 -5【解析】 由f (2 018)=2 018a +b sin 2 018+1=7, 得2 018a +b sin 2 018=6,∴f (-2 018)=-2 018a -b sin 2 018+1 =-(2 018a +b sin 2 018)+1=-6+1=-5.变式4.2 若函数f (x )的定义域为R ,最小正周期为3π2,且满足f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x <0,sin x ,0≤x <π,则=-)415(πf ________. 【答案】22 【解析】 2243sin )43()32343()415(===⨯-=-πππππf f f .变式 4.3 已知f (x )是以π为周期的偶函数,且当]2,0[π∈x 时,f (x )=1-sin x ,求当]3,25[ππ∈x 时,f (x )的解析式. 【解析】 当]3,25[ππ∈x 时,]2,0[3ππ∈-x , ∵当]2,0[π∈x 时,f (x )=1-sin x ,∴f (3π-x )=1-sin(3π-x )=1-sin x . 又∵f (x )是以π为周期的偶函数, ∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,]3,25[ππ∈x .考点五 正切函数的图像例5.1 y =tan(2x +θ)图象的一个对称中心为(π3,0),若-π2<θ<π2,则θ=____________.【答案】 -π6或π3【解析】函数y =tan x 的对称中心是(k π2,0),其中k ∈Z ,故令2x +θ=k π2,其中x =π3,即θ=k π2-2π3,k ∈Z .又-π2<θ<π2,所以当k =1时,θ=-π6.当k =2时,θ=π3,所以θ=-π6或π3.例5.2 函数y =tan x +sin x -|tan x -sin x |在区间)23,2(ππ内的图象是( )【答案】 D【解析】 当π2<x <π时,tan x <sin x ,y =2tan x <0;当x =π时,y =0;当π<x <3π2时,tan x >sin x ,y =2sin x <0.故选D.【举一反三】 变式5.1 函数1tan 23y x π⎛⎫=- ⎪⎝⎭在一个周期内的图象是下图中的( )【答案】A【解析】该题目借助于函数的图象考查了函数1tan 23y x π⎛⎫=-⎪⎝⎭的周期、单调性、图象分布的规律等知识,可从函数的周期与坐标轴的交点两个方面确定答案. 由函数周期ππ221==T ,排除选项B 、D .将23x π=代入函数式中, 12tan tan 00233ππ⎛⎫⨯-== ⎪⎝⎭.故函数图象与x 轴的一个交点为2,03π⎛⎫⎪⎝⎭.故选A .变式5.2 如图所示,函数3cos |tan |(02y x x x π=≤≤且)2x π≠的图象是( )【答案】C【解析】∵sin , 02cos |tan |sin , 23sin , 2x x y x x x x x x πππππ⎧≤<⎪⎪⎪==-<≤⎨⎪⎪<<⎪⎩,∴函数3cos |tan |(02y x x x π=≤≤且)2x π≠的图象是C . 故选C .考点六 正切函数的性质 例6.1(1)函数)46tan(3xy -=π的定义域为________. (2)求函数1)33tan()33(tan 2++++=ππx x y 的定义域和值域. 【答案】(1)},434|{Z k k x x ∈--≠ππ; (2)},183|{Z k k x x ∈+≠ππ,),43[+∞ 【解析】(1)由π6-x 4≠π2+k π,k ∈Z ,得x ≠-4π3-4k π,k ∈Z ,即函数的定义域为},434|{Z k k x x ∈--≠ππ. (2)由3x +π3≠k π+π2,k ∈Z ,得x ≠k π3+π18,k ∈Z ,所以函数的定义域为},183|{Z k k x x ∈+≠ππ. 设)33tan(π+=x t ,则t ∈R ,4343)21(122≥++=++=t t t y , 所以原函数的值域是),43[+∞.例6.2 求函数)24tan(3x y -=π的单调区间.【解析】)42tan(3)24tan(3ππ--=-=x x y , 由-π2+k π<2x -π4<π2+k π,k ∈Z ,得-π8+k π2<x <3π8+k π2(k ∈Z ), 所以y =3tan ⎝⎛⎭⎫π4-2x 的单调递减区间为⎝⎛⎭⎫-π8+k π2,3π8+k π2(k ∈Z ).例6.3 比较大小:(1)tan 32°________tan 215°; (2)tan 18π5________tan ⎝⎛⎭⎫-28π9. 【答案】 (1)< (2)<【解析】 (1)tan 215°=tan(180°+35°)=tan 35°, ∵y =tan x 在(0°,90°)上单调递增,32°<35°, ∴tan 32°<tan 35°=tan 215°.(2)tan 18π5=tan ⎝⎛⎭⎫4π-2π5=tan ⎝⎛⎭⎫-2π5, tan ⎝⎛⎭⎫-28π9=tan ⎝⎛⎭⎫-3π-π9=tan ⎝⎛⎭⎫-π9, ∵y =tan x 在⎝⎛⎭⎫-π2,π2上单调递增,且-2π5<-π9, ∴tan ⎝⎛⎭⎫-2π5<tan ⎝⎛⎭⎫-π9,即tan 18π5<tan ⎝⎛⎭⎫-28π9.【举一反三】变式6.1 求函数y =tan x +1+lg(1-tan x )的定义域.【解析】 由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x >0,即-1≤tan x <1.在)2,2(ππ-内,满足上述不等式的x 的取值范围是)4,4[ππ-.又y =tan x 的周期为π, 所以函数的定义域是))(4,4[Z k k k ∈+-ππππ.变式6.2 求函数)421tan(π+-=x y 的单调区间及最小正周期. 【解析】 )421tan()421tan(ππ--=+-=x x y , 由k π-π2<12x -π4<k π+π2(k ∈Z ),得2k π-π2<x <2k π+32π(k ∈Z ),所以函数)421tan(π+-=x y 的单调递减区间是)232,22(ππππ+-k k ,Z k ∈,周期ππ221=-=T变式6.3 设函数)32tan()(π-=x x f . (1)求函数f (x )的最小正周期,对称中心; (2)作出函数f (x )在一个周期内的简图.【解析】 (1)∵ω=12,∴最小正周期T =πω=π12=2π.令x 2-π3=k π2(k ∈Z ),得x =k π+2π3(k ∈Z ), ∴f (x )的对称中心是⎝⎛⎭⎫k π+2π3,0(k ∈Z ). (2)令x 2-π3=0,则x =2π3;令x 2-π3=π4,则x =7π6;令x 2-π3=-π4,则x =π6;令x 2-π3=π2,则x =5π3; 令x 2-π3=-π2,则x =-π3. ∴函数y =tan ⎝⎛⎭⎫x 2-π3的图象与x 轴的一个交点坐标是⎝⎛⎭⎫2π3,0,在这个交点左,右两侧相邻的两条渐近线方程分别是x =-π3,x =5π3,从而得到函数y =f (x )在一个周期⎝⎛⎭⎫-π3,5π3内的简图(如图).1 函数y =|sin x |的一个单调递增区间是( ) A.)4,4(ππ-B.)43,4(ππ C.)23,(ππ D.)2,23(ππ【答案】 C【解析】 由y =|sin x |的图象,可得函数y =|sin x |的单调递增区间为⎝⎛⎭⎫k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,3π2为函数y =|sin x |的一个单调递增区间.2 若)4tan()(π+=x x f ,则( )A .f (0)>f (-1)>f (1)B .f (0)>f (1)>f (-1)C .f (1)>f (0)>f (-1)D .f (-1)>f (0)>f (1) 【答案】 A【解析】当k π-π2<x +π4<k π+π2,k ∈Z ,即k π-3π4<x <k π+π4,k ∈Z 时,f (x )是增函数,而f (0)=tan π4.f (1)=tan ⎝⎛⎭⎫1+π4=tan ⎝⎛⎭⎫1+π4-π=tan ⎝⎛⎭⎫1-3π4, f (-1)=tan ⎝⎛⎭⎫π4-1. 所以f (0)>f (-1)>f (1).3 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ等于( )A.π2B.2π3C.3π2D.5π3 【解析】 因为函数是偶函数,所以函数关于x =0对称; 由x +φ3=π2+k π可得函数的对称轴方程是x =3π2+3k π-φ,k ∈Z ,令3π2+3k π-φ=0,解得φ=3π2+3k π,k ∈Z , 又φ∈[0,2π),故φ=3π2.4 函数f (x )=3cos x -sin 2x )36(ππ≤≤x 的最大值是________.【解析】 47)23(cos 1cos 3cos sin cos 3)(222-+=-+=-=x x x x x x f , 设cos x =t ,因为π6≤x ≤π3,所以由余弦函数的单调性可知,12≤cos x ≤32,即12≤t ≤32,又函数47)23()(2-+=t t f 在]23,21[上单调递增, 故45)23()(max ==f t f ,所以f (x )的最大值为54.5 函数2)42sin(++=πx y 的最小正周期是________.【答案】 π2【解析】∵函数y =sin 2x 的最小正周期T =π, ∴函数2)42sin(++=πx y 的最小正周期是π2.6 已知函数f (x ),任意))(2,2(,2121x x x x ≠-∈ππ,给出下列结论: ①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1;④f (x 1)-f (x 2)x 1-x 2>0;⑤f ⎝⎛⎭⎫x 1+x 22>f (x 1)+f (x 2)2.当f (x )=tan x 时,正确结论的序号为________. 【答案】 ①④【解析】 由于f (x )=tan x 的周期为π,故①正确;函数f (x )=tan x 为奇函数,故②不正确;f (0)=tan 0=0,故③不正确;④表明函数为增函数,而f (x )=tan x 为区间⎝⎛⎭⎫-π2,π2上的增函数,故④正确;⑤由函数f (x )=tan x 的图象可知,函数在区间⎝⎛⎭⎫-π2,0上有f ⎝⎛⎭⎫x 1+x 22>f (x 1)+f (x 2)2,在区间⎝⎛⎭⎫0,π2上有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2,故⑤不正确.。

数学三角函数的图象与性质试题答案及解析

数学三角函数的图象与性质试题答案及解析1.(本题满分14分)已知函数的周期(Ⅰ)若直线与函数的图象在是两个公共点,其横坐标分别为求的值;(Ⅱ)已知三角形的内角的对边分别为且若向量共线,求的值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)且周期为.的图像关于对称,所以当时,与函数图像的交点关于对称,.(Ⅱ)由(Ⅰ)知,.又.,.2.(本题满分12分)已知,.(I)求函数的单调递增区间;(II)函数的图象可以由函数的图象经过怎样的变换得到?【答案】(I),(II)见解析【解析】(Ⅰ)由已知,4分当,,即,时,函数单调递增,所以函数的单调递增区间为,. 7分(II)函数图象向左平移个单位长度,得到函数的图象;然后使曲线上各点的横坐标缩为原来的倍得到函数的图象;再将曲线上各点的纵坐标伸长为原来的倍得到函数的图象. 12分另法:函数图象上各点的横坐标缩为原来的倍,得到函数的图象;然后使图象向左平移个单位长度,得到函数的图象;再将曲线上各点的纵坐标伸长为原来的倍得到函数的图象. 12分【考点】本题考查平面向量的坐标运算、三角恒等变换、三角函数图象得到变换等基础知识,意在考查考生的数学运算能力、作图视图的能力及应用数学知识解决问题的能力.3.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A.B.C.D.【答案】B【解析】得到的偶函数解析式为,显然【考点】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.4.已知函数,下列结论中错误的是()A.的图像关于点中心对称B.的图像关于直线对称C.的最大值为D.既是奇函数,又是周期函数【答案】C【解析】由题意知.令,则.令,得.当时,函数值为0;当时,函数值为;当时,函数值为.∴,即f(x)的最大值为.故选C.【考点】三角函数的性质5.已知,函数在上单调递减.则的取值范围是()A.B.C.D.【答案】A【解析】函数的导数为,要使函数在上单调递减,则有恒成立,则,即,所以,当时,,又,所以有,解得,即,选6.在同一平面直角坐标系中,函数y=cos(+)(x∈[0,2π])的图象和直线y=的交点个数是()A.0B.1C.2D.4【答案】C.【解析】因为y=cos(+)(x∈[0,2π]),即(x∈[0,2π])的图像是半个周期的图像,所以它与直线y=的交点有两个.【考点】三角函数的诱导公式及正弦函数的图像.点评:本小题关键是利用诱导公式把y=cos(+)(x∈[0,2π])转化为(x∈[0,2π])然后画出它的图像从图像上观察它与直线y=的交点个数.7.函数的图象为C,:①图象关于直线对称;②函数在区间内是增函数;③由的图象向右平移个单位长度可以得到图象.以上三个论断中正确论断的个数为A.0B.1C.2D.3【答案】C【解析】函数的图象为C①图象关于直线对称,当k=1时,图象C关于对称;①正确;②x∈时,∈(-,),∴函数在区间内是增函数;②正确;③由的图象向右平移个单位长度可以得到,得不到图象,③错误;∴正确的结论有2个,选C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图像及其性质复习题
1.将函数x y 2sin =的图象向右平移4
π
个单位,再向上平移1个单位,所得函数图象对应的解析式为 A.1)4
2sin(+-

x y B.x y 2cos 2=
C.x y 2
sin 2= D.x y 2cos -=
【答案】C
2.函数()()sin 0,2f x x πωϕωϕ⎛⎫
=+><
⎪⎝

的最小正周期是π,若其图像向右平移
3
π
个单位后得到的函数为奇函数,则函数()f x 的图像
A.关于点,012π⎛⎫
⎪⎝⎭
对称
B.关于直线12
x π
=
对称
C.关于点5,012π⎛⎫
⎪⎝⎭
对称
D.关于直线512
x π
=
对称 【答案】D 3
函数
()()b x A x f ++=ϕωsin 的图象如下,则
()()()201110f f f S +⋅⋅⋅++=等于
A.0
B.503
C.1006
D.2012
【答案】D
4关于函数()x x x f 2cos 2sin -=有下列命题:①函数()x f y =的周期为π;②直线4
π=x 是()x f y =的一条对称轴;③点⎪⎭

⎝⎛0,8π是()x f y =的图象的一个对称中心;④将()x f y =的图象向左平移4
π
个单位,可得到x y 2sin 2=的图象.其中真命题的序号是______. 【答案】①③
5函数()sin(2)3
f x x π
=-
(x ∈R)的图象为C,以下结论中:
①图象C 关于直线1112x π=
对称;②图象C 关于点2(
,0)3
π
对称;③函数f(x)在区间5(,)1212ππ-内是增函数;④由3sin 2y x =的图象向右平移3
π
个单位长度可以得到图象C. 则正确的是 .(写出所有正确结论的编号)
【答案】①②③
6设函数)(|,3sin |3sin )(x f x x x f 则+=最小正周期为
23
π 7函数⎪⎭

⎝⎛-⎪⎭⎫

⎛+
=x x y 4cos 4sin 2ππ图象的一条对称轴是 4π=x 8函数f (x )=sin(x +
3π)-3cos(x +3π
),x ∈[0,2π]的单调递减区间是 3[,]22
ππ 4.【山东省师大附中2013届高三上学期期中考试数学理】(本题满分12分)已知函数
()23sin cos cos .f x x x x =-
(I )求()f x 的最小正周期和单调递增区间; (II )当0,2x π⎡⎤
∈⎢⎥⎣⎦
时,求函数()f x 的最大值和最小值及相应的x 的值. 【答案】
1.(2010年高考(湖北理))已知函数
.4
1
2sin 21)(),3cos()3cos()(-=-+=x x g x x x f ππ
(I)求函数)(x f 的最小正周期;
(II)求函数)()()(x g x f x h -=的最大值,并求使)(x h 取得最大值的x 的集合.
【答案】本小题主要考查三角函数的基本公式,周期和最值等基础知识,同时考查基本运

能力.
解:(I))sin 2
3
cos 21)(sin 23cos 21()3cos()3cos(
)(x x x x x x f +-=-+=ππ
,4
12cos 2182cos 3382cos 1sin 43cos 4122-=--+=-=
x x x x x )(x f 的最小正周期为.2
2ππ
=
(II))4
2cos(222sin 212cos 21)()()(π+=-=
-=x x x x g x f x h 当)(24
2Z k k x ∈=+
ππ
时,)(x h 取得最大值
.2
2
)(x h 取得最大值时,对应的x 的集合为}.,8
|{Z k k x x ∈-

π
2.(湖北省八校2013届高三第二次联考数学(理)试题)已知锐角△ABC 中的内角A 、B 、
C 的对边分别为,,a b c ,定义向量2(2sin (2cos
1,cos 2),2
B m B n B ==-u r r 且.m n ⊥u r r (1)求()sin 2cos cos2sin f x x B x B =-的单调减区间; (2)如果4,b =求AB
C ∆面积的最大值. 【答案】
3.(湖北省浠水一中2013届高三理科数学模拟测试 )(本小题满分12分)函数
1)sin()(-+=ϕwx A x f ,00>>w A ,(ϕ)2
π
<
的最大值为2,其图像相邻两个对
称中心之间的距离为

,且经过点
)12
1,12π-(. (1)求函数)(x f 的单调递增区间;
(2)若57)(=
αf ,且∈α⎥⎦

⎢⎣⎡412ππ,,求)62(πα+f 的值
【答案】解:(1)由已知:3,2,,()3sin(2)133A f x x ππ
ω
ϕ===
=+- 令222232
k x k πππ
ππ-≤+≤+ 得5()1212k x k k Z ππππ-≤≤+∈
所以()f x 单调递增区间是5[,]()1212
k k k Z π
πππ-+∈;
(2)由7()5f α=,得4sin(2)35πα+=,Q [,]124ππα∈ 所以3
cos(2)35
πα+=-
2()3sin()13cos()12636
f απππαα+=+-=+-
=1
1-
19.【山东省聊城市东阿一中2013届高三上学期期初考试 】(本小题满分12分)已知函数
,都有()f x c ≤,求实数c 的取值范围.
【答案】解:(1
………………4分 (2
………8分
因为 所以当时,()f x 取得最大值
………………10分 所以,()f x c ≤ 等价于 故当,()f x c ≤时,c 的取值范围是 ………………12分
8.【山东省青岛市2013届高三上学期期中考试理】(本小题满分12分)
已知向量22
(cos sin ,sin )a x x x ωωω=-r ,(3,2cos )b x ω=r ,
设函数()(R)f x a b x =⋅∈r r 的图象关于直线2
x π
=对称,其中ω为常数,且(0,1)ω∈.
(Ⅰ)求函数()f x 的表达式;
(Ⅱ)若将()y f x =图象上各点的横坐标变为原来的
16,再将所得图象向右平移3
π
个单位,纵坐标不变,得到()y h x =的图象, 若关于x 的方程()0h x k +=在区间[0,]2
π
上有且只
有一个实数解,求实数k 的取值范围. 【答案】
由直线2
x π
=是()y f x =图象的一条对称轴,可得2sin()23
π
πω+
=±,
所以()3
2
k k z π
π
πωπ+
=+
∈,即1
()6k k z ω=+∈.
又(0,1)ω∈,k z ∈,所以0k =,故16
ω=
.。

相关文档
最新文档