八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案
八年级数学下册 第十九章 一次函数 19.1 变量与函数 1

综合能力提升练
9.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没 有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水, 请写出y与x之间的函数关系式是( B ) A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100 10.已知点A( -1,1 ),B( 1,1 ),C( 2,4 )在同一个函数图象上,这个函数图象可能是( B )
综合能力提升练
8.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数 据:
支撑物的高度 h( cm )
10
20
30
40
50
60
70
80
小车下滑的时间
t( s )
4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50
下列说法错误的是( C ) A.当h=50 cm时,t=1.89 s B.随着h逐渐升高,t逐渐变小 C.h每增加10 cm,t减小1.23 s D.随着h逐渐升高,小车下滑的平均速度逐渐加快
综合能力提升练
11.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所 用水为 20 m3.
月用水量
不超过 12 m3 部分 超过 12 m3 不超过 18 m3 部分 超过 18 m3 部分
收费标准( /m3 )
元 2
2.5
3
12.同一温度的华氏度数y(
℉
)与摄氏度数x(
B.y=10x
C.y=110+x D.y=1������0
4.如图所示,△ABC中,已知BC=16,高AD=10,动点Q由C点沿CQ的面积为S,则S与x之间的函数关系式为( B )
2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

第十九章一次函数19.1函数19.1.1变量与函数【教学目标】知识与技能:1.掌握常量和变量、自变量和函数的基本概念.2.了解函数值的概念,能用解析式表示函数关系.会确定函数自变量的取值范围.过程与方法:结合实例,了解常量、变量的意义,体会“变化与对应”的思想.通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【重点难点】重点:了解常量与变量的含义.理解函数的有关概念,能用解析式表示函数关系.确定自变量的取值范围.难点:理解函数的有关概念,能用解析式表示函数关系.会确定自变量的取值范围.【教学过程】一、创设情境,导入新课:1.在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?2.五一假期,李想和朋友从学校门口出发,骑自行车去沙河游玩,假设他们匀速行驶,每分钟骑200米,骑车的总路程为s米,骑车的时间为t分钟.填一填:问题:(1)在这个行程问题中,我们所研究的对象有几个量?(2)几个所研究的对象中,哪些是变化的量,哪些是固定不变的量?它们之间存在什么样的关系?这一节我们就来探究这一问题.二、探究归纳活动1:变量与常量1.出示问题,师生探究有如下几个变化过程,请找出各变化过程中的量,并填表:(教材P71四个问题)(师生活动:教师引导学生填表,并分析问题中出现的量,发现其中有些量的数值是变化的,分析问题中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.并根据发现自己试着下定义.)2.形成概念(1)(2)定义:在一个变化过程中,数值发生变化的量,称为变量,数值始终不变的量称为常量.活动2:函数的概念1.问题:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有唯一确定的值.2.思考:分组讨论教科书“思考”中的两个问题.注:使学生加深对各种表示函数关系的表达方式的印象.3.归纳:一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口数统计表中,年份x是自变量,人口数y 是x的函数.当x=1999时,函数值y=12.52.活动3:例题讲解【例1】读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500 m赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20 m/min的速度跑了10 min时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10 m/min的速度匀速爬向终点.40 min后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30 m/min的速度跑向终点时,它比乌龟足足晚了10 min.分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.解:500 m、乌龟的速度10 m/min等在整个变化过程中是常量,兔子的速度是变量.总结:“常量”与“变量”:“常量”是数值始终不变的量,一般是用具体数表示的量;“变量”是数值发生变化的量,变量是可以变化的:(1)可以取不同的数值,(2)一般用字母表示.【例2】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x km 处的温度为y℃.(1)写出y与x之间的函数解析式.(2)已知益阳碧云峰高出地面约500 m,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?分析:(1)根据题意,按照等量关系:高出地面x km处的温度=地面温度-6 ℃×高出地面的距离;列出函数解析式.(2)把给出的自变量高出地面的距离0.5 km代入函数解析式求得.(3)把给出的函数值高出地面x km处的温度-34 ℃代入函数解析式求得x.解:(1)由题意得,y与x之间的函数解析式y=20-6x(x≥0).(2)由题意得x=0.5 km, y=20-6×0.5=17(℃)答:这时山顶的温度大约是17 ℃.(3)由题意得y=-34 ℃时,-34=20-6x,解得x=9 km.答:飞机离地面的高度为9 km.总结:求函数值的方法:就是将自变量x的值代入解析式,求代数式的值.【例3】函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3分析:求自变量取值范围时,要考虑两个方面:一是被开方数非负;二是分式的分母不为零,通过建立不等式组解决问题.解:选A.根据题意可知:x-1≥0且x-3≠0,解得x≥1且x≠3.总结:确定自变量取值范围的方法(1)整式:其自变量的取值范围是全体实数.(2)分式:其自变量的取值范围是使得分母不为0的实数.(3)二次根式:其自变量的取值范围是使得被开方数为非负的实数.(4)实际问题:其自变量的取值必须使实际问题有意义.三、交流反思这节课我们学习了变量与常量、函数的概念,函数自变量的取值范围的确定方法.四、检测反馈1.在三角形面积公式S=ah,a=2 cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠13.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数4.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R2是自变量C.R是自变量D.πR2是自变量5.函数y=中的自变量x的取值范围是()A.x≥0B.x≠-1C.x>0D.x≥0且x≠-16.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.一支演唱队第一排有20人,后面每排比前排多1人,则第n排的人数s与n的函数解析式为________.8.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离s(m)与时间t(s)的数据如下表:(1)这一变化过程中的自变量是________.(2)写出用t表示s的关系是________.(3)求第6秒时,小球滚动的距离为________m.(4)小球滚动200 m用的时间为________.五、布置作业教科书第81页习题19.1第1,2,3,4,5题六、板书设计七、教学反思本节课学习了常量与变量,函数的概念及函数自变量的取值范围的确定,关于变量与常量概念:要通过实例引导学生分析运动变化过程中出现的数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,值得注意的是出现了一些数值会发生变化的量,有些是数值始终不变的量,总结得出并通过实例练习巩固.关于函数概念的教学,通过实例引导学生分析总结得出,并明确表示函数关系的方法通常有三种:①解析法.②列表法.③图象法.关于函数自变量的取值范围的教学,通过实例引导学生分析得出:求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.。
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
19-1-1第二课时变量与函数-八年级数学下册同步精品课件(人教版)

y,并且对于x的每一个确定的值,y都有唯一确定的
值与之对应.我们就说x是自变量, y是x的函数.如
果当x=a时y=b,那么b叫做当自变量为a时的函
数值.
课堂总结
判断函数
x 取一个确定的值, y 有唯一确定的值和
它对应.
课堂总结
解析式
像y=50-0.1x这样,用关于自变量的数
学式子表示函数与自变量之间的关系,
的变化而变化.
自变量 x,y是 x 的函数,y=0.1x
课堂练习
6.下列问题中哪些量是自变量,哪些量是自变量的函数?试写出函数的解析
式.
(3)秀水村的耕地面积是106 m3,这个村人均占有耕地面积y(单位:m2)随这个
村人数n的变化而变化.
自变量 n,y 是 n
106
的函数,y=
(4)水池中有水10L,此后每小时漏水0.05L,水池中的水量V(单位:L)随时
−1
x 为任意实数
x≠-1
x≥-3
x≥-4且x≠1
课堂练习
1.一个正方形的边长为5cm,它的各边边长减少xcm后,得到
的新正方形的周长为ycm,y与x的函数关系式为( A
A.Y=20-4x
B.Y=4x-20
C.Y=20-x D.以上都不对
2.在圆周长计算公式C=2πr中,对半径不同的圆,变量(
A.C,r
当x=200时,y=50-0.1×200=30
归纳小结
像y=50-0.1x这样,用关于自变量的数
学式子表示函数与自变量之间的关系,
是描述函数的常用方法.这种式子叫做函
数的解析式.
巩固练习
1.某中学的校办工厂现在年产值是15万元,计划今后每年增加
人教初中数学八下 19.1.1 变量与函数课件4 【经典初中数学课件汇编】

汽车行驶里程随行驶时间而变化
问题一
汽车以60千米/时的速度匀速行驶,行驶里程 为 s 千米,行驶时间为 t 小时,填下面的表:
60 120 180 240 300 说说你是如何得到的:路程 = 速度×时间
S = 60t 试用含t的 式子表示 s
问题二
每张电影票的售价为10元,如果早场售出票150张, 日场售出205张,晚场售出310张,三场电影票的票房 收入各多少元?
A HE B
O DF
C
说一说
•这节课我的收获是……
1、用一个变量表示另一个变量。 2、变量、常量和函数的概念。 3、自变量的取值范围和函数值。
教学反思:
• 用一个变量表示另一个变量。 自变量的取值范围和函数值。
19.1.1 变量与函数
人教实验版
行星在宇宙中的位置随时间而变化
气温随海拔而变化
例如x和y,对于x的每一个值,y都有惟一的值与 之对应,我们就说x是自变量,y是因变量,此时 也称y是x的函数.
300000
(1) 解析法 如问题3中的f = ,
问题4中的S=πr2,这些表达式称为函数的
关系式.
(2) 列表法
波长l(m) 300 500 600 1000 1500
频率 1000 600 500 300 200 f(khz)
时,重叠部分的面积是多少?
解 :设重叠部分面积为
y cm2,MA长为x cm
y与x之间的函数关系式为
当x=y1=时12,yx=21 12 1
2
2
1 答:MA=1cm时,重叠部分的面积是2 cm2
1.分别写出下列各问题中的函数关系式及自变量的取 值范围: (1).某市民用电费标准为每度0.50元,求电费
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册

当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
人教版八年级下册数学教案-第19章 一次函数-19.1.1 变量与函数
19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .份数/份 1 2 3 4 5 6 7 100 价钱/元0.40.81.21.62.02.42.840x 与y 之间的关系是y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时 函 数教学目标一、基本目标 【知识与技能】1.认识变量中的自变量与函数. 2.进一步掌握确定函数关系式的方法. 3.会确定自变量的取值范围. 【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯. 二、重难点目标 【教学重点】1.进一步掌握确定函数关系的方法. 2.确定自变量的取值范围. 【教学难点】认识函数、领会函数的意义.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P74的内容,完成下面练习. 【3 min 反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式. 3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x =a 时,y =b ,函数有唯一的值b 与之对应,则这个对应值b 叫做x =a 时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表: 时间 (秒) 012345678910速度 (米/秒)0.31.32.84.97.611.014.118.424.228.9(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大? (4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是v 随着t 的增大而增大.(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加量最大. (4)120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3 拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围; (2)7:55时,水箱内还有多少水? (3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水, ∴y =200-2t .∵y ≥0,∴200-2t ≥0, 解得t ≤100, ∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100). (2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升), ∴7:55时,水箱内还有水150升. (3)令y =0,即200-2t =0,解得t =100. 100分=1时40分,7时30分+1时40分=9时10分, 故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x 的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x 的值,实际上就是解方程.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!。
人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)
在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …
人教版八年级数学下册 第19章 19.1.1 变量与函数(第1课时)说课稿
变量与函数(第1课时)说课尊敬的各位领导和同仁们:大家好,今天我说课的内容是《变量与函数》第二课时。
下面我从教材分析、教法学法、学情分析、教学流程、板书设计、课后反思六个方面进行设计说明。
第一部分:教材分析(一)说教材地位和作用本节课是义务教育课程标准人教版数学八年级下册第十九章一次函数《变量与函数》中第二节课的内容。
变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一次飞跃。
遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则这一部分对于初中生来说是一块新的领域,但涉及的内容又与生活的实际联系非常密切,可以补充大量的实例来充实本课,进而吸引学生的学习兴趣,让学生感受数学在生活中可以广泛的应用到。
所举的实例也都能在认识函数的时候用到,有助于教师帮助学生在现实情境中,感受函数作为刻画现实世界的模型的意义,为下一节课奠定重要基础。
(二)说教学目标综上分析,本课时教学目标制定如下:教学目标:1.了解函数的概念。
2.能结合具体实例概括函数概念。
3.在函数概念形成的过程中体会运动变化与对应的思想。
(三)教学重点和难点【学习重点】概括并理解函数概念中的单值对应关系。
【学习难点】用含有一个变量的式子表示另一个变量.以及结合实际问题表示自变量的取值范围。
第二部分:教法与学法分析:1.说教法方法与手段:本节课从学生熟悉的实际问题开始,将实际问题“数学化”,有利于学生体会与实验,思考与探索。
在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
采用教师引导,学生自主探索、合作交流的教学方式,让学生充分发挥聪明才智,去发现问题,提出问题,进而分析、解决问题,充分调动学生的积极性,培养学生的应用意识。
2.说学法根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考问题、发现问题,充分发挥学生的主体作用,让学生成为学习的主人。
洛阳市第九中学八年级数学下册 第十九章 一次函数19.1 函数19.1.1 变量与函数教案 新人教版
19.1 函数变量与函数【知识与技能】运用丰富的实例,使学生了解常量与变量的含义,理解函数的概念,能根据所给条件写出简单的函数关系式.【过程与方法】通过丰富的实例,分析变化过程中的常量与变量,经历从实际问题中得到函数关系式的过程,发展学生的数学应用能力.【情感态度】引导学生探索实际问题中的数量关系,培养学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【教学重点】理解常量、变量和函数的概念,并能根据具体问题得出相应的函数关系式.【教学难点】确定函数关系式及自变量的取值范围.一、情境导入,初步认识【教学说明】选取学生熟悉的生活情境,让学生感受其中的变化,从这些感受中逐渐领悟知识.情境1 汽车以60km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h.填写下列表格,再试着用含t的式子表示s.情境2 已知每张电影票的售价为10元,如果早场售出150张,午场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收入y元,怎样用含x的式子表示y?情境3 要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?二、思考探究,获取新知问题1 在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?问题2 用10cm长的绳子围成长方形.试改变长方形的长度,观察长方形的面积怎样变化.记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律(用表格表示).设长方形的长为xcm,面积为Scm2,怎样用含x的式子表示S?将学生分成若干小组,分别探究两个问题,再汇总交流.【教学说明】在小组实践探究时,教师应参与小组活动,然后再作出总结.上面的问题和探究都反映了不同事物的变化过程,其中有些量(时间t,里程s;出售票数x,票房收入y;……)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称为变量.也有些量是始终不变的,如上面问题中的速度60(km/h),票价10(元)等,即为常量.一般来说,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.提出自变量取值范围的概念,总结求自变量取值范围的规律:(1)自变量以整式形式出现,取值范围是全体实数.(2)自变量以分式形式出现,取值范围是使分母不为0的数.(3)自变量以偶次方根形式出现,取值范围为使被开方数为非负数的实数;自变量以立方根形式出现,取值为全体实数.(4)自变量以零次幂形式出现,取值范围为使底数不为0的数.(5)自变量取值范围还应考虑实际意义.三、典例精析,掌握新知例1 根据下列题意写出适当的关系式,并指出其中的变量和常量.(1)多边形的内角和W 与边数n 的关系.(2)甲、乙两地相距y km,一自行车以10km/h 的速度从甲地驶向乙地,试用行驶时间t(h)表示自行车离乙地的距离 s(km).【分析】弄清题意,找准其中的等量关系,并注意字母表示的量不一定是变量,如(2)中的y. 解:根据题意列表为:例2 求下列函数中自变量的取值范围.(1)y=x 2-2x-1; (2)24y x =-; (3)24y x =- (4)3y x =+; (5)1362y x x =--; (6)y=(x-1)0. 【教学说明】观察含自变量的式子,进行归类,再依各自特征求范围.【答案】(1)一切实数; (2)x≠4; (3)x≥2; (4)x>-3; (5)1≤x≤3; (6)x≠1.【归纳总结】含自变量的式子有时包含多种特征(如有分母,有被开方数等),这时要综合考虑各种要求,准确界定范围.例3 小强在劳动技术课中要制作一个周长为80cm 的等腰三角形,请你写出底边长y(cm)与一腰长x(cm)的函数关系式,并求出自变量x 的取值范围.【分析】(1)周长等于三边的长度和,由此求得函数关系式;(2)自变量x 要使腰、底为正数,即x>0,y>0.同时还要满足任意两边的和大于第三边,得到不等式组求解.解:由题意,得2x+y=80,所以y=80-2x.由解析式本身有意义,得x 为全体实数.又由使实际问题有意义,则要考虑到边长为正数,且要满足三边关系定理,故有0,0,2.x y x y >⎧⎪>⎨⎪>⎩.即0,2800,2280.x x x x >-⎧+>>-+⎪⎨⎪⎩解得20<x<40.故y=80-2x(20<x<40).四、运用新知,深化理解1.分别指出下列关系式中的变量与常量:(1)一个物体从高处自由落下,该物体下落的距离h(m)与它下落的时间t(s)的关系式为212h gt (其中g≈9.8m/s 2); (2)等腰三角形的顶角y 与底角x 存在关系y=180°-2x ;(3)长方体的体积V(cm 3)与长a (cm ),宽b(cm),高h(cm)之间的关系式为V=abh.2.人心跳速度通常和人的年龄有关,如果a 表示一个人的年龄,b 表示正常情况下每分钟心跳的最高次数.经过大量试验,有如下的关系:b=0.8(220-a).(1)上述关系中的常量和变量各是什么?(2)一个15岁的学生正常情况下每分钟心跳的最高次数是多少?3.(1)齿轮每分钟转120转,如果用n 表示总转数,t(分)表示时间,那么n 关于t 的函数关系式是_____________.(2)火车离开A 站10km 后,以55km/h 的平均速度前进了t(h)小时,那么火车离开A 站的距离s(km)与时间t(h)之间的函数关系式是_____________________.4.某水果店卖苹果,其售出质量x(kg)与售价y(元)之间的关系如表:(1)试写出售价y(元)与售出质量x(kg)之间的函数关系式;(2)计算当x=6时,y 的值;(3)求售价为19.4元时,售出苹果的质量.【教学说明】用字母表示的量不一定是变量,如π、g 等表示的是常量,要从变与不变的实质出发来分辨变量和常量.【答案】1.(1)时间t 可以取不同值,随t 的变化,h 值也改变,因此时间t 、距离h 是变量,12、g 的值始终不变,是常量.(2)底角x 可以取不同值,y 随x 的改变而改变,因此x 、y 是变量,而180°与2是常量.(3)长a ,宽b ,高h 都可以取不同的值,V 的对应值也是变化的,故a 、b 、h 、V 都是变量.2.(1)变量是b 、a ,常量是0.8、220.(2)把a=15代入b=0.8(220-a),得b=0.8×(220-15)=164.3.(1)n=120t;(2)s=10+55t.4.(1)根据信息:售出质量每增加1千克,售价则增加2.4元,售价中另一部分0.2元不变,可求出y与x之间的函数关系式.(2)把x=6代入函数关系式可求出y值;(3)实际上是求当y=19.4时,它所对应的x的值.解:(1)从表中提供的信息看,质量每增加1千克,售价增加2.4元,所以y=2.4x+0.2.(2)当x=6时,y=2.4×6+0.2=14.6.五、师生互动,课堂小结由学生谈本节课的收获及仍存在的疑问等.教师根据学生的发言,予以点评总结.1.布置作业:从教材“习题19.1”中选取.2.完成练习册中本课时练习.本课时内容是学生的认识,由常量到变量的一个飞跃,教学时应根据学生的认知基础,创设丰富的现实情境,使学生感知变量存在的意义,体会变量间的相互依存关系和变化规律,掌握函数的知识.教学重在引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,提高研究与应用能力.《分式》说课稿尊敬的各位评委老师:大家好!我是____号考生,今天我说课的内容是《分式》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
③归纳变量与常量的概念,并让学生在教材上画出概念。
【设计意图】先明确函数产生的背景—-运动变化的问题,再从数量的变与不变的角度引入变量和常量的概念,为接下来的提问与回答做铺垫。
2、每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
【设计意图】1、从学生已有的知识——二元方程,引入新的概念——函数,符合学生认知规律。
2、函数起始课,章前概述先让学生对函数部分有一个大致的了解。
解读
学习目标
本课是函数的起始课,通过分析运动变化问题中数值是否变化引入变量与常量的概念,再通过列表计算分析出变量之间的单值对应关系,为便于描述它们关系,引入函数概念。
④问题4中,x是自变量,y是x的函数。
【设计意图】在理解单值对应含义的基础上,引入自变量和函数的概念。
(3)归纳函数的定义,并解释定义中每句话的含义。
①一般地,在一个变化过程中,如果有两个变量 x 与y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.
4、用10 米长的绳子围一个矩形,矩形的一边长为x 米 ,它的邻边长为y 米.
根据概念,提问学生,识别问题2、3、4中的变量与常量。强调问题3中的π虽然是字母,但由它是具体的数而表示常量.
【设计意图】通过实例,帮助学生理解并会识别问题中变量与常量。为接下来的核对修改预习作业做铺垫.
(2)核对课后练习1,修正预习作业,巩固变量与常量概念.
布置作业
课堂10分钟小卷
板书设计
19.1变量与函数(1)
一、变量与常量
二、函数:定义、问题、前提、作用、描述方法
教学反思
回顾目标
课堂小结
1、在运动变化的问题中,数值不断变化的量叫______,数值固定不变的量叫_______。
2、函数的定义:
一般地,在一个变化过程中,如果有两个变量 x 与y,并且对于 x 的每一个确定的值,y 都有________的值与其对应,那么我们就说 x 是______,y 是 x ______.
圆
50
……
圆的面积S
①找一名学生填表,并让它分析S与r是不是单值对应关系;
②找描述S与r的单值对应关系.
【设计意图】再次通过模仿训练,进一步理解单值对应的含义.
4、用10 米长的绳子围一个矩形,矩形的一边长为x 米 ,它的邻边长为y 米。
矩形的长x
3
3.5
4
4。5
……
矩形的宽y
4、把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.
【设计意图】通过核对练习,反复练习,帮助学生进一步掌握变量与常量的概念,突出重点。
(3)从四个练习题中分析出,我们研究的每个运动变化的问题中,常量的个数可以有一个或两个,但是变量的个数却都有两个,虽然它们的数值是变化的,但是可以随便变化吗?比如问题1中,当时间为1小时时,路程得几?能得70吗?说明两个变量存在什么关系呢?引入本课第二个大问题——函数。
【设计意图】强调我们研究的运动变化的问题都有两个变量,并且两个变量似乎存在某种关系,由第一个大问题——变量与常量自然过渡到第二个大问题—-函数。
二、函数
(1)仍以上述四个实际问题为背景,通过填表的方式,根据一个变量的值,计算另一个变量的值.分析每个问题中两变量间的关系。
1、汽车以60 千米/时的速度匀速行驶,行驶时间为t 小时,行驶路程为 s千米 .
教学难点
1在运动变化的问题中识别变量和与常量;
2判断问题中的变量是否属于函数关系.
课时
1
教具
课件
教学过程
教学环节
教学内容
二次备课
小竞赛
创设情景导入新课
从二元方程的角度展示出三个等式,再从表达形式上置疑它们在数学中还叫做什么,引出函数概念,同时说出三个函数分别是一次函数、二次函数和反比例函数,进行第十九章概述,引入本节课题.
19。1变量与函数
教学目标
知识和能力目标:
1.了解变量与常量的意义;
2.了解函数的概念.
过程和方法目标:
在含有未知数的问题中,从数值是否变化的角度归纳变量与常量的概念,并通过列表计算理解函数的单值对应关系。
情感态度价值观目标:
在经历函数概念的生成过程中,体会函数的作用和价值。
教学重点
1了解变量与常量的概念;2理解函数的概念
②函数的产生:运动变化的问题;
函数的前提:有两个变量,并且是单值对应的关系;
函数的作用:描述两个变量的单值对应关系;
描述方法:一个变量是自变量,另一个变量是它的函数。
【设计意图】将定义内容拆解成函数产生、前提、作用和描述方法,逐句解释函数的定义,使抽象的概念具体化,帮助学生理解函数的本质。其中函数的前提也为接下来判断两个变量是否属于函数关系提供了依据。
【设计意图】明确学习目标
新课讲授
一、变量与常量
(1)依次展示教材四个实际问题:
1、汽车以60 千米/时的速度匀速行驶,行驶时间为t 小时,行驶路程为 s千米 .
思考:
①时间与路程两个量是变化的还是不变的?归纳运动变化的问题.
②速度60也变化吗?归纳运动变化的问题中包含两种数量,一种是数值不断变化的量,一种是数值始终不变的量。
(5)核对课后练习2,修订预习作业,根据函数的定义,判断函数关系.
练习2 函数的判断
1、改变正方形的边长 x,正方形的面积 S 随之变化,正方形的面积S 是边长 x的函数吗?为什么?
2、向一水池每分钟注水0.1 m3,注水量 y(单位:m3)是注水时间 x(单位:min)的函数吗?为什么?
3、秀水村的耕地面积是106 m2,这个村人均占有耕地面积 y (单位:m2)是这个村人数 n 的函数吗?为什么?
①找一名学生填表,并让它分析y与x是不是单值对应关系;
②找描述y与x的单值对应关系。
【设计意图】通过模仿训练,理解单值对应的含义。
(2)回顾四个例题,为了方便地描述这种单值对应关系,引入自变量和函数的概念。
①问题1中,t是自变量,s是t的函数;
②问题2中,x是自变量,y是x的函数;
③问题3中,r是自变量,S是r的函数;
行驶时间t
1
3
3.4
4
9
……
行驶路程S
①找一名学生填表;
②根据此例表格中的数值,归纳出单值对应的关系,即对于 t 的每一个确定的值,S都有唯一确定的值与其对应。
【设计意图】通过表格中一对对具体的数值,直观展示S与t的单值对应关系,便于教师描述,也有助于学生理解“对于t的每一个确定的值,S都有唯一确定的值与其对应”,为总结函数的概念做铺垫。