19.1变量与函数(1)导学案
《19.1.1 变量与函数》教案1

《变量与函数》(第一课时)设计单位:黑松驿初级中学八年级数学第十九章《一次函数》19.1《函数》19.1.1变量与函数第一课时(变量与常量)知识目标:理解变量与常量的概念。
重点:变量与常量的概念,变量之间的关系难点:对变量的判断教学设计:一.创设情景,引入新课(1)同学们,你们用过电话吗?假如每分钟的电话费为0.20元,那么我们在打电话的过程中,电话总费用M与通话时长t具有怎样的关系.提问:上述问题中,哪个量是固定不变的,哪些量又是可以变化的?二.讲授新课出示定义:在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量为常量.(2)每张电影票的售价为10元,如果第一场售出票150张,第二场售出票205张,第三场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?(3)当圆的半径为r分别为10厘米,20厘米,30厘米时,圆的面积S分别是多少?S与r有怎样的关系?S的值随r的值得变化而变化吗?提问:请同学们指出上述问题中的变量和常量.学生活动:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?1. 小明到商店买练习本,每本单价2元,购买的总数x (本)与总金额y(元)有怎样的关系2. 盛满10千克水的水箱,每小时流出0.5千克水,则水箱中的余水量y(千克)与时间t(小时)之间的关系如何表示呢?3.一只蜡烛全长20厘米,点燃后每分钟燃烧0.2厘米。
燃烧时间t,蜡烛剩余部分L。
用含t的式子表示L4、小明的哥哥是一名大学生,他利用暑假去一家公司打工,报酬16元/时计算,设小明的哥哥这个月工作的时间为t 时,应得报酬为m 元,则m与t有怎样的关系?你能找出其中的变量与常量吗?5.长方形的面积为10平方米,那么它的长X与宽y具有怎样的关系。
你能找出其中的变量与常量吗?6.大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系.三、巩固练习1、学生叙述生活中的情景,并找出常量和变量2、投影变量与常量的练习题(试情况而定)四、课堂小结变量:在一个变化过程中数值发生变化的量常量:在一个变化过程中数值始终保持不变的量五、作业1.现有笔记本500本,学生x人,若每人5本,则余下y本笔记本,用含x的式子表示y为:y=________,其中常量是_____,y和x都是_____量.2.小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月末存12元.设x个月后小张的存款数为y,试写出小张的存款数y与从现在开始的月份数x之间的函数关系式,其中常量是,变量是.六、课后反思。
19.1.1变量与函数--新人教版初中数学导学案八年级上册《一次函数》【一流精品】

课题:19.1.1变量与函数【学习目标】1、理解变量、常量,函数、自变量和函数值,函数解析式、自变量的取值范围等概念;2、会根据定义判断一个变量是否为另一个变量的函数;3、会根据相等关系列出函数关系式,并会据实际意义求出自变量的取值范围; 【学习重点】据相等关系列函数关系式,求自变量的取值范围。
【学习难点】判断一个变量是否为另一个变量的函数。
【课前预习案】1、时间t 、速度v 和路程s 三者之间的关系是:2、半径为r 的圆的面积s=3、当x 是怎样的实数时,下列各式在实数范围内有意义? (1)2-x (2)32-x (3)0)2(+x【课堂探究案】探究一:变量与函数问题1.一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s 千米.行驶时间为t 小时.t/时1 2 3 4 5s/千米(1)填表:(2)在这个变化过程中,变化的量是_____,不变的量是_____。
变量____的值随变量____的值变化而变化。
问题2.票房收入问题:每张电影票的售价为10元,一场售出x 张电影票,票房收入为 y 元。
(1)若一场售出150张电影票,则该场票房收入是______,若一场售出205张,则该场票房收入是______; (2)在这个变化过程中,变化的量是_____,不变的量是_____。
变量____的值随变量____的值变化而变化。
问题3.在一根弹簧的下端悬挂重物,如果弹簧原长10cm ,每1kg 重物使弹簧伸长0.5cm ,设重物质量为xkg,受力后的弹簧长度为Lcm 。
物体的重量m(kg) 0 1 2 3 4 5 ... 弹簧的长度L(cm)(1)填表:(2)在这个变化过程中,变化的量是_____,不变的量是_____。
变量____的值随变量____的值变化而变化。
问题4.你见过水中涟漪吗? 在圆形水波慢慢的扩大过程中,圆的半径为r ,圆的面积S 。
半径r(cm)10 20 30圆的面积s(cm 2)(1)填表:(2)在这个变化过程中,变化的量是_____,不变的量是_____。
人教版八年级下册数学19.1.1 第1课时 常量与变量导学案

第十九章 函数青海一中 李清19.1 函数19.1.1 变量与函数 第1课时 常量与变量学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量. 难点:用式子表示变量间的关系.一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: . 二、新知预习1.小明去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 .3.自主归纳:变量:在一个变化过程中,数值________的量为变量. 常量:在一个变化过程中,数值________的量为常量. 三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S 与宽x 之间的关系S=2x ;(2)一批香蕉每千克6元,则总金额y (元)与销售量x (千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s (米)与时间t (秒)之间的关系式,并指出其中的变量和常量.____________________________________________________________ ____________________________________________________________探究点1:常量与变量问题1:一辆汽车以60千米/时的速度匀速行驶,行驶里程为s 千米.行驶时间为t 小时.(1)请同学们根据题意填写下表:(2)试用含t 的式子表示s,则s= ;(3)在以上这个过程中,变化的量有 ,不变化的量有__________. 问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出31张,三场电影的票房收入各多少元?设一场电影售票x 张,t/小时 1 2 3 4 5 S/千米课堂探究教学备注配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片7-16)票房收入y元.(1)请同学们根据题意填写:早场电影的票房收入为元;日场电影的票房收入为元;晚场电影的票房收入为元;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.(3)试用含x的式子表示y,则y= ;这个问题反映了票房收入____随售票张数_____的变化过程.问题3:你见过水中涟漪吗?如图所示,形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10cm,20cm,30cm时,圆的面积S分别为多少?(1)填空:当圆的半径为10cm时,圆的面积为 cm2;当圆的半径为20cm时,圆的面积为 cm2;当圆的半径为30c时,圆的面积为 cm2;当圆的半径为r时,圆的面积S= ;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.要点归纳:在一个变化过程中,数值发生变化的量为,数值始终不变的量为 .例1 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5/千克,买a千橘子的总价为m元,其中常量是________,变量是________;(2)周长C与圆的半径r之间的关系式是C=r2π,其中常量是________,变量是________;(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式52 y h =中,其中常量是________,变量是________. 变式题阅读并完成下面一段叙述:(1)某人持续以a 米/分的速度用t 分钟时间跑了s 米,其中常量是________,变量是________.(2)s 米的路程不同的人以不同的速度a 米/分各需跑的时间为t 分,其中常量是________,变量是________.(3)根据上面的叙述,写出一句关于常量与变量的结论:_________________________.方法总结:区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.探究点2:确定两个变量之间的关系例2.弹簧的长度与所挂重物有关.如果弹簧原长为10cm ,每1kg 重物使弹簧伸长0.5cm ,试填下表: 怎样用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)?变式题:如果弹簧原长为12cm ,每1kg 重物使弹簧压缩0.5cm ,则用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)为________. . 写出下列问题中的关系式,并指出变量和常量:(1)某市的自来水价为4元/吨.现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元.(2)某地手机通话费为0.2元/分.李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分钟,话费卡中的余额为w 元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,圆周长为C ,圆周率(圆周长与直径的比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本.二、课堂小结 常量与变量的概念常量 在一个变化过程中,数值________的量为变量变量在一个变化过程中,数值________的量为变量 易错提醒 在不同的条件下,常量与变量是相对的1.若球体体积为V ,半径为R ,则343V R π=,其中变量是________、________,常量是________.2.计划购买50元的乒乓球,所能购买的总数n(个)与单价 a (元)的关系式是________,其中变量是________,常量是________.3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行使时间t (小时)的关系是________,其中的常量是________,变量是________.4.表格列出了一项实验的统计数据,表示小球从高度x (单位:m )落下时弹跳高度y (单位:m )与下落高的关系,据表可以写出的一个关系式是 .50 80 100 15025405075当堂检测教学备注 配套PPT 讲授5.当堂检测 (见幻灯片19-21)5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式.完成上表,并写出瓶子总数y 与层数x 之间的关系式.1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。
人教版数学八年级下册19.1.1《变量与函数》教学设计

-利用生活实例或数学问题,激发学生的好奇心,引导他们观察变量之间的变化规律。
-设计系列问题,逐步引导学生深入探讨函数的定义和性质。
2.运用合作学习、讨论交流的方法,提高学生的思维品质和解决问题的能力。
-组织学生进行小组合作,鼓励他们发表自己的观点,倾听他人的意见,共同解决问题。
-在下次课堂上,每个小组分享自己的解题过程和心得体会,促进同学之间的交流和学习。
5.思考与拓展:
-思考函数在生活中的应用,如天气预报、股票市场分析等,并简述函数在这些领域中的作用。
-探索函数的其他性质,如周期性、对称性等,并尝试举出相应的实际例子。
接着,我会引导学生思考:“如果我们想要预测未来某个时间点的气温,该怎么做呢?”从而引出变量和函数的概念。学生会发现,通过观察已经收集到的数据,可以尝试寻找气温与时间之间的关系,进而预测未来气温。这样,学生便对函数的概念有了初步的认识,为接下来的学习打下基础。
(二)讲授新知
在讲授新知环节,我会从以下几个方面展开:
-对于基础薄弱的学生,通过个别辅导和小组互助,帮助他们克服学习难点。
3.探究式学习,培养学生的思维能力
-采用问题驱动的教学方法,引导学生通过观察、实验、推理等过程,自主探究函数的定义和性质。
-设计开放性问题,鼓励学生多角度思考,培养他们的创新意识和解决问题的能力。
4.信息技术辅助,提高教学效果
-利用数学软件和多媒体工具,直观演示函数图象和变化过程,帮助学生形象地理解函数概念。
-通过网络资源,拓展学生的学习视野,使他们能够接触到更多与函数相关的实际应用。
5.实践活动,增强学生的应用能力
-安排课后实践活动,让学生在实际操作中运用函数知识,解决现实问题。
八年级数学下册 19.1.1 变量与函数学案 (新版)新人教版

19.1 函数19.1.1 变量与函数01 课前预习要点感知1 在一个变化过程中,数值发生变化的量叫做变量,数值始终不变的量叫做常量. 预习练习1-1 直角三角形两锐角的度数分别为x 、y ,其关系式为y =90-x ,其中变量为x ,y ,常量为90.要点感知2 在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.如果当x =a 时,y =b ,那么b 叫做当自变量的值为a 时的函数值.预习练习2-1 若球的体积为V ,半径为R ,则V =43πR 3.其中自变量是R ,V 是R 的函数. 要点感知3 函数自变量的取值范围既要满足函数关系式有意义,又要满足实际问题有意义. 预习练习3-1 甲乙两地相距100 km ,一辆汽车以每小时40 km 的速度从甲地开往乙地,t 小时与乙地相距s km ,s 与t 的函数解析式是s =100-40t ;自变量t 的取值范围是0≤t≤2.5. 02 当堂训练知识点1 变量与常量1.圆周长公式C =2πR 中,下列说法正确的是(D )A .π、R 是变量,2为常量B .R 是变量,2、π、C 为常量C .C 是变量,2、π、R 为常量D .C 、R 是变量,2、π为常量2.写出下列各问题中的数量关系,并指出各个关系式中,哪些是常量?哪些是变量?(1)购买单价为5元的钢笔n 支,共花去y 元;(2)全班50名同学,有a 名男同学,b 名女同学;(3)汽车以60 km /h 的速度行驶了t h ,所走过的路程为s km .解:(1)y =5n ,y 、n 是变量,5是常量.(2)a +b =50,a 、b 是变量,50是常量.(3)s =60t ,s 、t 是变量,60是常量.知识点2 函数的有关概念3.下列关系式中,一定能称y 是x 的函数的是(B )A .2x =y 2B .y =3x -1C .||y =23xD .y 2=3x -54.若93号汽油售价7.85元/升,则付款金额y(元)与购买数量x(升)之间的函数关系式为y =7.85x ,其中x 是自变量,y 是x 的函数.5.当x =2和x =-3时,分别求下列函数的函数值.(1)y =(x +1)(x -2);(2)y =2x 2-3x +2.解:(1)当x =2时,y =(x +1)(x -2)=(2+1)×(2-2)=0;当x =-3时,y =(x +1)(x -2)=(-3+1)×(-3-2)=10.(2)当x =2时,y =2x 2-3x +2=2×22-3×2+2=4;当x =-3时,y =2x 2-3x +2=2×(-3)2-3×(-3)+2=29.知识点3 函数的解析式及自变量的取值范围6.(云南中考)函数y =1x -2的自变量x 的取值范围为(D ) A .x >2 B .x <2C .x ≤2D .x ≠27.正方形的边长为a ,面积为S ,若a 是自变量,则S 与a 之间的函数解析式可表示为(D )A .S =a 4B .S =4aC .a =S 2D .S =a 28.(眉山中考)在函数y =x +1中,自变量x 的取值范围是全体实数.9.(曲靖中考)如果整数x >-3,那么使函数y =π-2x 有意义的x 的值是1(只需填一个).10.某商店进了一批货,每件进价为4元,售价为每件6元,如果售出x 件,售出x 件的总利润为y 元,那么y 与x 的函数关系式为y =2x.03 课后作业11.在△ABC 中,它的底边是a ,底边上的高是h ,则三角形面积S =12ah ,当a 为定长时,在此函数关系式中(A )A .S ,h 是变量,12,a 是常量B .S ,h ,a 是变量,12是常量C .a ,h 是变量,12,S 是常量D .S 是变量,12,a ,h 是常量12.(百色中考)已知函数y =⎩⎪⎨⎪⎧2x +1(x≥0),4x (x<0),当x =2时,函数值y 为(A ) A .5 B .6 C .7 D .813.(黔南中考)函数y =2x -2的自变量x 的取值范围在数轴上表示正确的是(B )14.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是(D )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x <30)15.圆的面积S =πr 2中,自变量r 的取值范围是r>0.16.(安顺中考)在函数1-x x +2中,自变量x 的取值范围是x ≤1且x≠-2. 17.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t 的取值范围;(3)10小时后,池中还有多少水?解:(1)剩余水的体积Q =800立方米-抽掉的水的体积,即Q =800-50t.(2)抽完水所需时间为:0=800-50t,得t=16,所以0<t≤16.(3)当t=10时,即Q=800-50t=800-50×10=300(立方米).18.圆柱的底面半径是2 cm,当圆柱的高h(cm)由大到小变化时,圆柱的体积V(cm3)随之发生变化.(1)在这个变化过程中,自变量和自变量的函数各是什么?(2)在这个变化过程中,写出圆柱的体积V与高h之间的关系式?(3)当h由5 cm变化到10 cm时,V是怎样变化的?(4)当h=7 cm时,V的值等于多少?解:(1)自变量是圆柱的高,自变量的函数是圆柱的体积.(2)体积V与高h之间的关系式V=π·22h=4πh.(3)当h=5 cm时,V=20π (cm3);当h=10 cm时,V=40π (cm3).当h越来越大时,V也越来越大.(4)当h=7 cm时,V=4π×7=28π (cm3).挑战自我19.如图,长方形ABCD中,当点P在边AD(不包括A,D两点)上从A向D移动时,有些线段的长度和三角形的面积始终保持不变,而有些则发生了变化.(1)试分别写出长度变和不变的线段,面积变和不变的三角形;(2)假设长方形的长AD为10 cm,宽AB为4 cm,线段AP的长为x cm,分别写出你所列出的变化的线段PD的长度(y)、△PCD的面积(S)与x之间的函数解析式,并指出自变量的取值范围.解:(1)长度变化的线段有:AP,PD,BP,PC;面积变化的三角形有:△APB,△DCP ; 长度不变的线段有:AB ,BC ,CD ,AD ;面积不变的三角形有:△BPC.(2)根据题意可知:PD =AD -AP ,AD =10 cm ,AP =x cm , ∴y =10-x ,其中0<x <10.根据题意可知:△PCD 的面积为12·DC·PD,∴S =12×4×(10-x)=20-2x.其中0<x <10.。
八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
人教版数学八年级下册19.1《变量与函数(1)》导学案2

19.1.1 变量与函数〔1〕【学习目标】知识与技能:理解变量、常量的概念以及相互之间的关系;能指出一个变化过程中的变量与常量。
过程与方法:能找出变量之间的简单关系,列出简单关系式。
情感态度与价值观:学生通过对实际问题的讨论和分析,感受事物变化过程的普遍性,体会事物之间的相互联系与制约。
【学习重点】1.认识变量、常量.2.变量、常量必须存在于一个变化过程中【学习难点】常量与变量之间的关系,准确判断变量。
【课时安排】:1课时一、新课导入问题一:我到超市购置了假设干瓶矿泉水,这种矿泉水的单价是每瓶1.2元,花费的总金额为y元,购置的瓶数为x瓶,先填写下表,再用含x的式子表示y.1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y. y=_________________.这个问题反映了购置矿泉水需要的钱____随购置的数量___的变化过程.问题二:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:请说明你的道理:路程=__________________2..在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t 的式子表示s .s=_________________这个问题反映了匀速行驶的汽车所行驶的路程___随行驶时间___的变化过程. 二、预习导学【活动一】以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的〔如______________〕,有些量的数值是始终不变的〔如______________ 〕 结论: 在一个变化过程中,我们称数值发生变化....的量为________; 在一个变化过程中,我们称数值始终不变....的量为________; 【活动二】例题讲解指出以下关系式中的变量与常量:(1) y = 5x -6 (2) y=(3) y= 4x 2+5x -7 (4) S = Лr 2解:〔1〕5和-6是常量,x 和y 是变量。
人教版八年级下第19章一次函数19.1.1变量与函数教案

3.培养学生合作交流、自主探究的学习习惯,提高数学建模和数学运算的核心素养。
4.激发学生学习兴趣,培养勇于挑战、善于思考的学习态度,提升学生的数学素养和综合素质。
在教学过程中,重点关注学生在以下方面的表现:
1.能否运用所学知识,分析并解决实际问题,体现数学的应用价值。
3.重点难点解析:在讲授过程中,我会特别强调变量与常量的区别以及函数的三要素。对于难点部分,我会通过举例和图示来帮助大家理解一次函数的定义和图像特点。
(三)实践活动(用时10ቤተ መጻሕፍቲ ባይዱ钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如公交车票价与乘车距离的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和直尺绘制一次函数的图像,观察斜率和截距的变化。
五、教学反思
在上完这节课之后,我对自己的一些教学设计和学生的反应进行了思考。我发现,通过生活中的实例引入变量和函数的概念,学生们能够更直观地理解这些抽象的数学概念。他们对于一次函数的应用表现出浓厚的兴趣,尤其是当我将函数与他们的日常生活联系起来时,比如购物打折、手机话费等问题。
我注意到,在教学过程中,有些学生对一次函数的图像绘制感到困惑。我意识到,这里可能需要更多的直观演示和实际操作,让学生亲手尝试,从而更好地理解图像的生成过程。在接下来的课程中,我打算增加一些互动环节,比如让学生分组在教室里用道具来模拟一次函数的图像,这样既能增强他们的动手能力,也能加深对一次函数图像特征的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是随着某些条件变化而变化的量,而函数则是描述两个变量之间依赖关系的数学模型。它们在数学和生活中都有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1.1变量与函数导学案(1)
学习目标:
1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义.
2、学会用含一个变量的代数式表示另一个变量.
学习重点:
教学重点:了解常量与变量的意义;
学习难点:较复杂问题中常量与变量的识别
学习过程:
活动一:情境创设,引出新知(5分钟)
根据题意填写下表,并回答问题
汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.
1、在以上这个过程中,变化的量是_____________.不变化的量是__________.
2、试用含t的式子表示s=________,t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.
通过本节课的学习,相信大家一定能够解决这些问题.
活动二:观察分析,探究新知
问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•
1、在以上这个过程中,变化的量是_____________.不变化的量是__________.
2、试用含x的式子表示y,y=______ ,x的取值范围是 .
这个问题反映了票房收入_________随售票张数_________的变化过程.
问题三:当圆的半径r分别是10cm,20cm,30cm时,圆的面积S分别是多少?
1.在以上这个过程中,变化的量是_____________.不变化的量是__________.
2.试用含S的式子表示r,S=___ ,r的取值范围是 .这个问题反映了____随____的变化过程.
问题四:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。
设矩形的长为xm,面积为Sm2 .
1、在以上这个过程中,变化的量是_____________.不变化的量是__________.
2、试用含x的式子表示s. S=__________________,x的取值范围是 . 这个问题反映了矩形的___ _ 随_ __的变化过程.
师生小结:
在一个变化过程中,我们称数值发生变化
....的量为________;在一个变化过程中,我
们称数值始终不变
....的量为________;
活动三:师生互动,运用新知
1、一支圆珠笔的单价为2元,设圆珠笔的数量为x支,总价为y元。
则y= ;在这个式子中,变量是,常量是。
2、某种报纸的价格是每份0.4元,买x份报纸的总价为y元。
用含x的式子表示y,y=,常量是,变量是。
3、一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.
活动四:达标测评,深化新知
1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()
A.Q=8x B.Q=8x-50 C.Q=50-8x D.Q=8x+50 2.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/
时)满足S=vt,在这个变化过程中,下列判断中错误的是()
A.S是变量 B.t是变量 C.v是变量 D.S是常量
3.长方形相邻两边长分别为x、•y•,面积为100•,•则用含x•的式子表示y•,则y=_______,在这个问题中,常量;是变量.
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.
x与y之间的关系是y= ,在这个变化过程中,常量是 ,变量是.
5.一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨),y=,t的取值范围是 . 活动五:课堂小结,巩固新知
1、你获得了哪些新知识,在哪些方面有进步
2、你还有哪些困惑的地方?
活动六:作业布置,加固新知
指出其中的变量和常量.
(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.
(2)直角三角形中一个锐角α与另一个锐角β之间的关系.
(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨).。