新人教B版必修1高中数学变量与函数的概念学案

合集下载

人教新课标版数学高一人教B版必修1学案 变量与函数的概念

人教新课标版数学高一人教B版必修1学案  变量与函数的概念

函数(第一课时):变量与函数的概念学习目标:(1)理解函数的概念(2)会用集合与对应语言来刻画函数,(3)了解构成函数的要素。

重点:函数概念的理解难点:函数符号y=f(x)的理解知识梳理:自学课本P 29—P 31,填充以下空格。

1、设集合A 是一个非空的实数集,对于A 内 ,按照确定的对应法则f ,都有 与它对应,则这种对应关系叫做集合A 上的一个函数,记作 。

2、对函数A x x f y ∈=),(,其中x 叫做 ,x 的取值范围(数集A )叫做这个函数的 ,所有函数值的集合}),(|{A x x f y y ∈=叫做这个函数的 ,函数y=f(x) 也经常写为 。

3、因为函数的值域被 完全确定,所以确定一个函数只需要。

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:① ;② 。

5、设a, b 是两个实数,且a<b(1)满足不等式b x a ≤≤的实数x 的集合叫做闭区间,记作 。

(2)满足不等式a<x<b 的实数x 的集合叫做开区间,记作 。

(3)满足不等式b x a <≤或b x a ≤<的实数x 的集合叫做半开半闭区间,分别表示为 ;分别满足x ≥a,x>a,x ≤a,x<a 的全体实数的集合,都叫半开半闭区间,记作______________________________________________________________________________其中实数a, b 表示区间的两端点。

完成课本P 33,练习A 1、2;练习B 1、2、3。

例题解析题型一:函数的概念例1:下图中可表示函数y=f(x)的图像的只可能是( )练习:设M={x|02x ≤≤},N={y|12y ≤≤},给出下列四个图像,其中能表示从集合M 到A B C D集合N 的函数关系的有____个。

题型二:相同函数的判断问题例2:已知下列四组函数:①x y x=与y=1 ②2y x =与y=x ③11y x x =+⋅-与21y x =-④21y x =+与21y t =+其中表示同一函数的是( )A . ② ③ B. ② ④ C. ① ④ D. ④练习:已知下列四组函数,表示同一函数的是( ) A. 1y x =-和211x y x -=+ B. 0y x =和1y = C. 2y x =和2(1)y x =+ D. 2()x f x =和2()x g x x = 题型三:函数的定义域和值域问题例3:求函数f (x )=11+x 的定义域练习:课本P 33练习A 组 4.例4:求函数21()1f x x =+,()x R ∈,在0,1,2处的函数值和值域。

新人教B版高中数学必修1变量与函数的概念word学案

新人教B版高中数学必修1变量与函数的概念word学案

2014 年高中数学变量与函数的观点教案新人教B版必修1明确学习目标研究学习目标明确学习方向一、三维目标:1.理解函数的观点,明确函数的两因素,即定义域和对应法例;2.能正确使用区间表示数集;3.会求一些简单函数的定义域,复合函数的定义域;二、学习重、难点:要点:函数的观点,定义域的观点和求法;难点:抽象函数的定义域的求法;1、函课前自主预习自主学习教材独立思虑问题数的定义:设集合 A 是一个非空的实数集,关于 A 内,依据确立的对应法例 f ,都有______________与它对应,则这类对应关系叫做会合 A 上的一个函数,记作。

2、函数的定义域、值域:函数的定义域对函数 y f ( x), x A,此中x叫做,x 的取值范围(数集A)叫做这个函数的.3、函数的值域:假如自变量取值 a ,则由法例确立的值y 成为函数在a 处的__________,记做 _____, 全部函数值的会合叫做这个函数的.3、函数的两因素:_______________________ ;。

4、依函数定义,要查验两个给定的变量之间能否存在函数关系,只需查验:①;②;5、区间的观点:设 a, b是两个实数,且a<b(1)知足不等式x b 的实数x 的会合叫做闭区间,记作。

(2)知足不等式a<x<b 的实数x 的会合叫做开区间,记作。

(3)知足不等式x b 的实数x 的会合叫做半开半闭区间,分别表示为和;分别知足 x≥ a,x>a,x ≤ a,x<a 的全体实数的会合,都叫半开半闭区间,记作x≥ a: ______________x>a:________________x≤ a:_______________x<a:________________ 此中实数 a, b表示区间的两头点。

典型例题解析师生互动研究总结规律方法题型一 . 函数观点例 1.给出四个命题中正确的选项是 _________________ ;① 函数就是定义域到值域的对应关系。

人教B版高中数学必修一【学案8】函数的表示方法

人教B版高中数学必修一【学案8】函数的表示方法

学案八 函数的表示方法一、三维目标:知识与技能:进一步理解函数的概念;使学生掌握函数的三种表示方法;使学生掌握分段函数及其简单应用。

过程与方法:通过实例,使学生会根据具体问题选择合适的方法来表示两个变量之间的函数关系,并初步感知处理函数问题的方法。

情感态度与价值观:通过学习,让学生体会到生活离不开数学,激发学习兴趣,培养学生学数学用数学的意识。

二、学习重、难点:重点:函数的表示方法,根据具体问题选择合适的方法来表示两个变量之间的函数关系。

难点:函数三种表示方法的选择及分段函数的表达和性质。

学法指导:在回顾初中所学函数的有关知识的基础上,认真阅读教材P38--P43,通过对教材中的例题的研究,完成学习目标 。

学习过程:1、函数的三种表示方法(1)列表法:__________________________________________________。

举例: 如:人口普查表(见课本P38) 优点:___________________________________________________________________. (2)解析法:___________________________________________________________。

举例:___________________________________________________________。

优点: ⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(3)图象法:__________________________________________________________。

优点:___________________________________________________________。

说出函数y=f(x)与其图像间的关系:__________________________________________ ___________________________________________________________________________ ___________________________________________________________________________. 这是“数形结合”思想和方法的依据。

高中数学第三章函数单调性的定义与证明学案新人教B版必修第一册

高中数学第三章函数单调性的定义与证明学案新人教B版必修第一册

3.1.2 函数的单调性第1课时 单调性的定义与证明课程标准借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.新知初探·自主学习——突出基础性教材要点知识点一 定义域为A 的函数f (x )的单调性状元随笔 定义中的x 1,x 2有以下3个特征(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2;(3)属于同一个单调区间.知识点二 单调性与单调区间如果函数y =f (x )在区间M 上是单调递增或单调递减,那么就说函数y =f (x )在这一区间上具有(严格的)________,区间M 叫做y =f (x )的________.状元随笔 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接. 如函数y =1x 在(-∞,0)和(0,+∞)上单调递减,却不能表述为:函数y =1x 在(-∞,0)∪(0,+∞)上单调递减.知识点三 函数的最值一般地,设函数f(x)的定义域为D,且x0∈D:如果对任意x∈D,都有f(x)≤f(x0),则称f(x)的最大值为f(x0)(记作f(x)max=f(x0)),而x0称为f(x)的最大值点;如果对任意x∈D,都有f(x)≥f(x0),则称f(x)的最小值为f(x0)(记作f(x)min=f(x0)),而x0称为f(x)的最小值点.最大值和最小值统称为最值,最大值点和最小值点统称为最值点.状元随笔 最大(小)值必须是一个函数值,是值域中的一个元素,如函数y=-x2(x∈R)的最大值是0,有f(0)=0. 基础自测1.函数y=(2m-1)x+b在R上是减函数,则( )A.m>12 B.m<12C.m>-12D.m<-122.函数f(x)=1x在[1,+∞)上( )A.有最大值无最小值B.有最小值无最大值C.有最大值也有最小值D.无最大值也无最小值3.若f(x)在R上是增函数,且f(x1)>f(x2),则x1,x2的大小关系为________.4.如图是函数y=f(x)的图象,则函数f(x)的单调递减区间是( )A.(-1,0)B.(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0),(1,+∞)课堂探究·素养提升——强化创新性题型1 利用函数图象求单调区间[经典例题]例1 (1)已知函数y=f(x)的图象如图所示,则该函数的减区间为( )A.(-3,1)∪(1,4)B.(-5,-3)∪(−1,1)C.(-3,-1),(1,4)D.(-5,-3),(-1,1)状元随笔 观察图象,若图象呈上升(下降)趋势时为增(减)函数,对应的区间是增(减)区间.(2)下列函数在区间(0,1)上是增函数的是( )A.y=1-2x B.y=1 xC.y=√x−1D.y=-x2+2x(3)函数y=|x-1|的单调增区间是________.跟踪训练1 (1)函数f(x)的图象如图所示,则( )A.函数f(x)在[-1,2]上是增函数B.函数f(x)在[-1,2]上是减函数C.函数f(x)在[-1,4]上是减函数D.函数f(x)在[2,4]上是增函数状元随笔 图象上升或下降趋势判断.(2)画出函数y=-x2+2|x|+3的图象,并指出函数的单调区间.题型2 函数的单调性判断与证明例2 证明函数f (x )=x +4x在(2,+∞)上是增函数.在(0,2)上是减函数.状元随笔 先根据单调性的定义任取x 1,x 2∈(2,+∞),且x 1<x 2,再判断f(x 1)-f(x 2)的符号.方法归纳利用定义证明函数单调性的步骤注:作差变形是解题关键.跟踪训练2 利用单调性的定义,证明函数y =x +2x +1在(-1,+∞)上是减函数.题型3 利用函数的单调性求最值[经典例题]例3 已知函数f(x)=2x−1x+1,x∈[3,5].(1)判断函数在区间[3,5]上的单调性,并给出证明;(2)求该函数的最大值和最小值.方法归纳1.利用单调性求函数的最大(小)值的一般步骤(1)判断函数的单调性.(2)利用单调性求出最大(小)值.2.函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.跟踪训练3 已知函数f(x)=32x−1,求函数f(x)在[1,5]上的最值.状元随笔 (1)判断函数的单调性.(2)利用单调性求出最大(小)值.题型4 由函数的单调性求参数的取值范围[经典例题]例4 (1)已知函数f(x)=-x2-2(a+1)x+3.①若函数f(x)在区间(-∞,3]上是增函数,则实数a的取值范围是________;②若函数f(x)的单调递增区间是(-∞,3],则实数a的值为________.(2)已知函数y=f(x)是(-∞,+∞)上的增函数,且f(2x-3)>f(5x-6),则实数x的取值范围为________.方法归纳“函数的单调区间为I”与“函数在区间I上单调”的区别单调区间是一个整体概念,说函数的单调递减区间是I,指的是函数递减的最大范围为区间I,而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.跟踪训练4 (1)已知函数f(x)=x2+2(a-1)x+2,在区间(-∞,4]上是减函数,求实数a的取值范围;函数的单调递减区间为(-∞,4],则a为何值?状元随笔 首先求出f(x)的单调减区间,(1)求出f(x)的对称轴为x=1-a,利用对称轴应在直线x=4的右侧或与其重合求解.(2)求出函数的减区间,用端点值相等求出a.(2)若f(x)在R上是单调递减的,且f(x-2)<f(3),则x的取值范围是________.3.1.2 函数的单调性第1课时 单调性的定义与证明新知初探·自主学习[教材要点]知识点一f(x1)<f(x2) f(x1)>f(x2) 增函数 减函数知识点二单调性 单调区间[基础自测]1.解析:使y=(2m-1)x+b在R上是减函数,则2m-1<0,即m<1 2.答案:B2.解析:函数f(x)=1x是反比例函数,当x∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f(x)为减函数,f(1)为f(x)在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.故选A.答案:A3.解析:∵f(x)在R上是增函数,且f(x1)>f(x2),∴x1>x2.答案:x1>x24.解析:若函数单调递减,则对应图象为下降的,由图象知,函数在(-1,0),(1,+∞)上分别下降,则对应的单调递减区间为(-1,0),(1,+∞).答案:D课堂探究·素养提升例1 【解析】 (1)在某个区间上,若函数y=f(x)的图象是上升的,则该区间为增区间,若是下降的,则该区间为减区间,故该函数的减区间为(-3,-1),(1,4).(2)由y=1-2x,y=1x的图象易知在(0,1)上为减函数,而y=√x−1的定义域为[1,+∞),不合题意.(3)作出函数的图象,如图所示,所以函数的单调递增区间为[1,+∞).【答案】 (1)C (2)D (3)[1,+∞)跟踪训练1 解析:(1)函数单调性反映在函数图象上就是图象上升对应增函数,图象下降对应减函数,故选A.(2)y=-x2+2|x|+3={−(x−1)2+4,x≥0,−(x+1)2+4,x<0.函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数,所以函数的单调递增区间是(-∞,-1]和[0,1],单调递减区间是[-1,0]和[1,+∞).答案:(1)A (2)见解析例2 【证明】 ∀x1,x2∈(2,+∞),且x1<x2,则f(x1)-f(x2)=x1+4x1-x2-4x2=(x1-x2)+4(x2−x1)x1x2=(x1−x2)(x1x2−4)x1x2.因为2<x1<x2,所以x1-x2<0,x1x2>4,x1x2-4>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)=x+4x在(2,+∞)上是增函数.证明:∀x1,x2∈(0,2),且x1<x2,则f(x1)-f(x2)=x1+4x1-x2-4x2=(x1-x2)+4(x2−x1) x1x2=(x1−x2)(x1x2−4)x1x2.因为0<x1<x2<2,所以x1-x2<0,0<x1x2<4,x1x2-4<0,所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以函数f(x)=x+4x在(0,2)上是减函数.跟踪训练2 证明:设x1,x2是区间(-1,+∞)上任意两个实数且x1<x2,则f(x1)-f(x2)=x1+2x1+1−x2+2x2+1=x2−x1(x1+1)(x2+1),∵-1<x1<x2,∴x2-x1>0,x1+1>0,x2+1>0.∴x2−x1(x1+1)(x2+1)>0.即f(x1)-f(x2)>0,f(x1)>f(x2).∴y=x+2x+1在(-1,+∞)上是减函数.例3 【解析】 (1)函数f(x)在[3,5]上是单调递增的,证明:设任意x1,x2,满足3≤x1<x2≤5.因为f(x1)-f(x2)=2x1−1x1+1−2x2−1x2+1=(2x1−1)(x2+1)−(2x2−1)(x1+1)(x1+1)(x2+1)=3(x1−x2) (x1+1)(x2+1),因为3≤x1<x2≤5,所以x1+1>0,x2+1>0,x1-x2<0.所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)=2x−1x+1在[3,5]上是单调递增的.(2)f(x)min=f(3)=2×3−13+1=54,f(x)max=f(5)=2×5−15+1=32.跟踪训练3 解析:先证明函数f(x)=32x−1的单调性,设x1,x2是区间(12,+∞)上的任意两个实数,且x2>x1>1 2,f(x1)-f(x2)=32x1−1−32x2−1=6(x2−x1)(2x1−1)(2x2−1).由于x2>x1>12,所以x2-x1>0,且(2x1-1)·(2x2-1)>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=32x−1在区间(12,+∞)上是单调递减的,所以函数f(x)在[1,5]上是单调递减的,因此,函数f(x)=32x−1在区间[1,5]的两个端点上分别取得最大值与最小值,即最大值为f(1)=3,最小值为f(5)=1 3.例4 【解析】 (1)f(x)=-x2-2(a+1)x+3=-(x+a+1)2+(a+1)2+3.因此函数的单调递增区间为(-∞,-a-1].①由f(x)在(-∞,3]上是增函数知3≤-a-1,即a≤-4.②由题意得-a-1=3,a=-4.(2)因为函数y=f(x)在(-∞,+∞)上是增函数,且f(2x-3)>f(5x-6),所以2x-3>5x-6,解得x<1,即实数x的取值范围为(-∞,1).【答案】 (1)①a≤-4 ②-4 (2)(-∞,1)跟踪训练4 解析:(1)∵f(x)=x2-2(1-a)x+2=[x-(1-a)]2+2-(1-a)2,∴f(x)的减区间是(-∞,1-a].∵f(x)在(-∞,4]上是减函数,∴对称轴x=1-a必须在直线x=4的右侧或与其重合.∴1-a≥4,解得a≤-3.故a的取值范围为(-∞,-3].由知函数f(x)的单调递减区间为(-∞,1-a],∴1-a=4,a=-3.(2)函数的定义域为R,由条件可知,x-2>3,解得x>5.答案:(1)见解析 (2)(5,+∞)11。

高中数学 第二章《函数》学案 新人教B版必修1

高中数学 第二章《函数》学案 新人教B版必修1

必修1函数复习 学案知识点解读:1、函数的定义、表示法:2、单调性:会用定义判断或证明函数的单调性 3、奇偶性:(1)奇函数在x=0时有定义,则必有f (0)=0 (2)偶函数f (x )必有f (-x )=f (x )= f (︱x ︱) (3)会用定义证明、判断函数的奇偶性4、反函数:基础达标:1、设集合A 和集合B 都是自然数集合N ,映射B A f →:把集合A 中的元素n 映射到集合B 中的元素n n+2,则在映射f 下,象20的原象是 (A )2(B )3(C )4(D )52、函数xx x f -+=11)(的定义域为A ,函数)]([x f f y =的定义域为B ,则(A )B B A = (B )B A ⊆ (C )B B A =(D )B A =3、若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(-(B))4,1(--(C))1,4(--(D))4,1(-4、已知函数)(x f y =的反函数)(1x f-的定义域为]1,0[,那么函数))((R m m x f y ∈+=的值域是(A )]1,[m m -- (B )]0,1[- (C )]1,0[ (D )R5、已知函数1)()(32+-+=x a a ax x f 在]1,(--∞上递增,则a 的取值范围是 (A )3≤a (B )33≤≤-a (C )30≤<a (D )03<≤-a6、已知二次函数c x b a ax x f +++=)()(22的图像开口向上,且1)0(=f ,0)1(=f ,则实数b 取值范围是 (A) ]43,(--∞ (B) )0,43[-(C) ),0[+∞ (D) )1,(--∞参考答案1.C2.B3.B4.C5.D6.D能力提高:1.设()124+-=x x x f ,则()=-01f________2.函数),(1R x mx y ∈+=与)(2R n n x y ∈-=互为反函数的充要条件是___________3.若点)41,2(既在函数bax y +=2的图象上,又在它的反函数的图象上,则a =__________________,b =_________________。

2011高一数学学案:2.1.1《变量与函数的概念》(新人教B版必修一)

2011高一数学学案:2.1.1《变量与函数的概念》(新人教B版必修一)

2.1.1函数(第一课时)【知识梳理】自学课本P 29—P 31,填充以下空格。

1、设集合A 是一个非空的实数集,对于A 内 ,按照确定的对应法则f ,都有 与它对应,则这种对应关系叫做集合A 上的一个函数,记作 。

2、对函数A x x f y ∈=),(,其中x 叫做 ,x 的取值范围(数集A )叫做这个函数的 ,所有函数值的集合}),(|{A x x f y y ∈=叫做这个函数的 ,函数y=f(x) 也经常写为 。

3、因为函数的值域被 完全确定,所以确定一个函数只需要 。

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ;② 。

【例题解析】题型一:函数的概念例1:下图中可表示函数y=f (x)的图像的只可能是( )题型二:相同函数的判断问题 例2:已知下列四组函数:①x y x=与y=1②y =y=x ③y =y =④21y x =+与21y t =+其中表示同一函数的是( ) A . ② ③ B. ② ④ C. ① ④ D. ④题型三:函数的定义域和函数值问题例3:求下列函数的定义域1、 (1)1()1f x x =+ (2)、0()f x x =+ (3)、()f x =2、例4:求函数21()1f x x =+,()x R ∈,求(0)f ,(1)f ,(2)f ,(1)f -,(2)f - 【当堂检测】1、下列图形哪些是函数的图象,哪些不是,为什么?2、已知下列四组函数,表示同一函数的是( )A. ()1f x x =-和21()1x f x x -=+ B. 0()f x x =和()1f x =C. 2()f x x =和2()(1)f x x =+ D. ()f x =和()g x =3、求下列函数的定义域 (1)、1()2f x x =- (2)()f x =(3)、0(x)(1)f x =+ (4)1()2f x x=+-4、已知21()1f x x =+,21()1x g x x +=+ (1)求(2),g(2)f 的值(2)求(g(2))f 的值A B CD。

高中数学第二章函数 函数概念学案含解析北师大版必修1

高中数学第二章函数 函数概念学案含解析北师大版必修1

§2对函数的进一步认识2.1函数概念知识点一函数的有关概念[填一填]1.定义2.相关名称(1)自变量是x.(2)函数的定义域是集合A.(3)函数的值域是集合B.3.函数的记法集合A上的函数可记作:f:A→B或y=f(x),x∈A.[答一答]1.任何两个集合之间都可以建立函数关系吗?提示:不是.首先这两个集合必须为数集,其次满足对一个集合中的任意一个数x,在另一个集合中都有唯一确定的数与之对应.2.对于一个函数y=f(x),在定义域内任取一个x值,有几个函数值与其对应?提示:有唯一确定的一个函数值与其对应.3.f(x)与f(a)的区别与联系是什么?提示:当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f(a)是f(x)的一个特殊值.4.如何理解函数的对应法则?提示:对应法则指的是自变量与因变量之间的存在关系.知识点二区间及有关概念[填一填]1.区间的定义条件:a<b(a,b为实数).结论:区间闭区间开区间左闭右开区间左开右闭区间符号[a,b](a,b)[a,b)(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)5.数集都能用区间表示吗?提示:不能.连续不间断数集可以用区间表示.不连续数集不能用区间表示.6.“∞”是一个数吗?提示:“∞”不是一个数,它指的是“无穷大”.7.区间之间可以像集合之间那样进行“交、并、补”运算吗?若A=(1,+∞),B=(-∞,2],A∩B如何表示?提示:可以运算.A∩B=(1,2].1.对函数概念的三点说明(1)函数必须是建立在非空数集上的一个概念.若自变量的取值为空集,则这时函数是不存在的.(2)根据函数的概念,两个变量之间是否具有函数关系需要检验:定义域和对应法则是否给出;在对应法则之下每一个x是否只与唯一的y对应.(3)由于函数的值域被函数的定义域和对应法则完全确定,这样确定一个函数就只需要函数的定义域和对应法则,从而判定两个函数是否为同一个函数只需看其定义域和对应法则是否相同即可.2.对函数符号y=f(x)的理解在这个函数符号y=f(x)中,x是自变量,f表示的是对应法则,它可以看作是对x施行的某种运算法则,可以是一个代数式、也可以是一个表格,还可以是一个图像.3.f(x)与f(a)的区别与联系当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量.而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f (a )是f (x )的一个特殊值. 4.对区间的四点说明(1)区间表示的就是一个集合,只是一个特殊的集合——非空数集. (2)区间的左端点对应的值一定比右端点对应的值小.(3)区间的端点在区间内则写成闭的,如果不在区间内则写成开的.(4)在数轴上表示区间时,用实心的点表示闭区间的端点,用空心点表示开区间的端点.类型一 相同函数的判断【例1】 下列各组函数是否表示同一个函数? (1)f (x )=2x +1与g (x )=4x 2+4x +1; (2)f (x )=x 2-xx与g (x )=x -1;(3)f (x )=|x -1|与g (x )=⎩⎪⎨⎪⎧x -1 (x ≥1),1-x (x <1);(4)f (n )=2n -1与g (n )=2n +1(n ∈Z ); (5)f (x )=x 2-2x 与g (t )=t 2-2t .【思路探究】 根据解析式判断两个函数f (x )和g (x )是否是同一个函数的步骤是:①先求函数f (x )和g (x )的定义域,如果定义域不同,那么它们不相同,如果定义域相同,再执行下一步;②化简函数的解析式,如果化简后的函数解析式相同,那么它们相同,否则它们不相同.【解】 (1)g (x )=|2x +1|,f (x )与g (x )的对应关系不同,因此是不同的函数. (2)f (x )=x -1(x ≠0),f (x )与g (x )的定义域不同,因此是不同的函数.(3)f (x )=⎩⎪⎨⎪⎧x -1 (x ≥1)1-x (x <1),f (x )与g (x )的定义域相同,对应关系相同,因此是相同的函数.(4)f (n )与g (n )的对应关系不同,因此是不同的函数.(5)f (x )与g (t )的定义域相同,对应关系相同,自变量用不同字母表示,仍为同一函数. 规律方法 函数概念含有三个要素,即定义域A ,值域C 和对应关系f ,其中核心是对应关系f ,它是函数关系的本质特征.只有当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一函数.换言之就是:(1)定义域不同,两个函数也就不同. (2)对应关系不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应关系.(1)下列每组函数是同一函数的是( B ) A .f (x )=x -1,g (x )=(x -1)2B .f (x )=|x -3|,g (x )=(x -3)2C .f (x )=x 2-4x -2,g (x )=x +2D .f (x )=(x -1)(x -3),g (x )=x -1·x -3 (2)下列每组中两个函数是同一函数的组数为3. ①f (x )=x 2+1和f (v )=v 2+1 ②y =1-x 2|x +2|和y =1-x 2x +2③y =x 和y =x 3+x x 2+1解析:①中对应法则相同,定义域相同,只是表示自变量的字母不同,所以是同一函数. ②中定义域相同,化简后对应法则相同,所以是同一函数. ③化简后对应法则相同,定义域也都是R ,所以是同一函数. 类型二 求函数的定义域 【例2】 求下列函数的定义域. (1)f (x )=4-xx +1; (2)y =-x2x 2-3x -2;(3)f (x )=2x +3-12-x +1x; (4)y =31-1-x.【思路探究】 若一个函数是由两个或两个以上的数学式子的和、差、积、商构成的,则定义域是使各部分有意义的自变量的取值集合的交集.【解】 (1)由已知得⎩⎪⎨⎪⎧4-x ≥0,x +1≠0,解得x ≤4且x ≠-1.所求定义域为{x |x ≤4且x ≠-1}.(2)由已知得⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12.所求定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0且x ≠-12. (3)由已知得⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2且x ≠0.所求定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2且x ≠0.(4)由已知得⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.规律方法 函数y =f (x )以解析式的形式给出时,函数的定义域就是使这个解析式有意义的自变量的取值范围,具体来说,常有以下几种情况:(1)f (x )为整式型函数时,定义域为R ;(2)f (x )为分式型函数时,定义域为使分母不为零的实数的集合; (3)f (x )为偶次根式型函数时,定义域为使被开方数非负的实数的集合; (4)函数y =x 0中的x 不为0;(5)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合,即列出不等式组求各不等式解集的交集.求下列函数的定义域: (1)f (x )=1x -2; (2)f (x )=2x +6; (3)f (x )=1-x +15+x ;(4)f (x )=4-x 22+x.解:(1)因为使式子1x -2有意义的实数的集合为{x |x ≠2},所以函数f (x )=1x -2的定义域为{x |x ≠2}.(2)因为使式子2x +6有意义的实数的集合为{x |x ≥-3},所以函数f (x )=2x +6的定义域为{x |x ≥-3}.(3)因为使式子1-x 有意义的实数的集合为{x |x ≤1},使式子15+x有意义的实数的集合为{x |x ≠-5},所以函数f (x )=1-x +15+x的定义域为{x |x ≤1,且x ≠-5}.(4)因为使式子4-x 22+x 有意义的实数的集合为{x |x ≠-2},所以函数f (x )=4-x 22+x 的定义域为{x |x ≠-2}.类型三 求函数的值域 【例3】 求下列函数的值域: (1)y =12x 2-1,x ∈{-1,0,1,2,3,4};(2)y =3+x 4-x ;(3)y =2x 2-4x +3; (4)y =1-x 21+x 2.【思路探究】 求函数的值域就是通过函数定义域中x 的取值,根据对应关系确定y 的取值.【解】 (1)(观察法)将x =-1,0,1,2,3,4分别代入y =12x 2-1,得y =-12,-1,-12,1,72,7.∴此函数的值域为⎩⎨⎧⎭⎬⎫-1,-12,1,72,7.(2)方法1(分离常数法):y =3+x 4-x =-(4-x )+74-x =-1+74-x. ∵74-x≠0,∴y ≠-1,∴此函数的值域为{y |y ≠-1}. 方法2(反解法):∵y =3+x4-x ,∴4y -xy =x +3,∴x =4y -3y +1,y ≠-1,∴此函数的值域为{y |y ≠-1}.(3)(配方法)∵2x 2-4x +3=2(x -1)2+1≥1, ∴y =2x 2-4x +3≥1=1, ∴此函数的值域为[1,+∞).(4)(分离常数法)∵y =1-x 21+x 2=-1+21+x 2,而该函数的定义域为R , ∴1+x 2≥1,∴0<21+x 2≤2,∴-1<-1+21+x 2≤1,∴此函数的值域为(-1,1].规律方法 求函数的值域时,一定要将最终的结果表示成集合或者区间的形式.在用列举法表示函数的值域时,如(1),要注意相同的元素归入一个集合时,只能算作一个.(1)如果f (x )=x 2-x -6,则f (5)=14. (2)函数y =8x 2(1≤x ≤2)的值域为[2,8].(3)函数y =2x 3x -4的值域是(-∞,23)∪(23,+∞).解析:(1)由f (x )=x 2-x -6得f (5)=25-5-6=14. (2)因为1≤x ≤2,所以1≤x 2≤4,14≤1x 2≤1,故2≤8x2≤8.(3)y =2x 3x -4=23(3x -4)+833x -4=23+83(3x -4),因为83(3x -4)恒不为零,而且可以取到其他的所有实数,所以y ≠23.——易错误区—— 忽视函数的定义域导致的错误【例4】 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图像可能是( )【错解】 选A 或选D.【正解】 B 选项A 中,在集合M 中,当x >0时的元素在N 中没有数与之对应①,不符合函数的定义; 选项C 中,一个变量x 可能对应着两个y 的值,也不符合函数的定义; 选项D 中,一个x 对应着一个y ,但N 为值域②,所以集合N 中的每一个数在M 中也必须有数与之对应,但是N 中存在数在M 中没有数与之对应.故选B.【错因分析】 1.忽视①处即函数定义域中的每一个元素都要有元素与之对应; 2.忽视题目给出的条件即②处N 是函数的值域,而导致错选D. 【防范措施】 1.深刻理解函数定义中的条件对于定义域中的每一个数在对应法则之下都要有唯一一个数与之对应,只要在定义域中存在一个数找不到与之对应的元素,或者是一个数对应着两个或以上的数时均不能称为函数.如本例中的A 项在x >0时,没有数与之对应,故不是函数y =f (x )的图像.2.认真审题解题时,除了掌握常规的知识外,还要认真审题,如本例中的集合N 为值域,故也要保证N 中的每个数在M 中也要有数与之对应.设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如图所示的四个图形,其中能表示从集合M 到集合N 的函数关系的有( B )A .0个B .1个C .2个D .3个解析:由函数的定义知,M 中任一元素在N 中都有唯一的元素与之对应,即在x 轴上的区间[0,2]内任取一点作y 轴的平行线,与图像只有一个交点即可.由函数定义知①不是,因为集合M 中1<x ≤2时,在N 中无元素与之对应;③中的x =2对应元素y =3∉N ,所以③不是;④中x =1时,在N 中有两个元素与之对应,所以④不是.一、选择题1.下列关于函数与区间的说法正确的是( D ) A .函数定义域必不是空集,但值域可以是空集 B .函数定义域和值域确定后,其对应法则也就确定了 C .数集都能用区间表示D .函数中一个函数值可以有多个自变量值与之对应解析:函数的定义域和值域都是非空的数值,故A 错;函数的定义域和对应法则确定后,函数的值域也就确定了,故B 错;数集不一定能用区间表示,故C 错,选D.2.符号y =f (x )表示( B ) A .y 等于f 与x 的积 B .y 是x 的函数C .对于同一个x ,y 的取值可能不同D .f (1)表示当x =1时,y =1解析:符号y =f (x )是一个整体符号,表示y 是x 的函数,则A 错,B 正确;由函数的定义知,对于同一个自变量x 的取值,变量y 有唯一确定的值,则C 错; f (1)表示x =1对应的函数值,则D 错.故选B.3.与y =x 是同一个函数的是( D ) A .y =|x | B .y =x 2 C .y =x 2xD .y =t解析:对于函数y =x 定义域和值域均为R ,而选项A 与B 的值域为[0,+∞),故A 与B 错;对选项C,定义域为{x |x ∈R 且x ≠0},只有D 正确.二、填空题4.函数y =x +1x的定义域为{x |x ≥-1,且x ≠0}. 解析:本题考查函数定义域,要使y =x +1x 有意义,则⎩⎪⎨⎪⎧x +1≥0x ≠0,所以解得x ≥-1且x ≠0,即函数定义域为{x |x ≥-1,且x ≠0},求函数定义域和值域的结果都应写成“解集”形式.本题结果还可表示为[-1,0)∪(0,+∞)等.5.下列函数是同一函数的序号为(3).(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0,-1 x <0;(2)f (x )=x 2与g (x )=3x 3; (3)f (x )=x 2-2x +1与g (t )=(t -1)2.解析:对于(1)来说,f (x )的定义域中不含有0,而g (x )的定义域为R ,定义域不同. 对于(2)来说,两个函数的定义域都为R ,但f (x )=|x |,而g (x )=x ,解析式不同. 故(1)(2)都不是同一函数.而对于(3)来说,尽管两个函数的自变量一个用x 表示,另一个用t 表示,但它们定义域相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者是同一函数.三、解答题6.已知函数f (x )=x 2+x -1,求 (1)f (2); (2)f (1x+1);(3)若f (x )=5,求x 的值. 解:(1)f (2)=4+2-1=5.(2)f (1x +1)=(1x +1)2+(1x +1)-1=1x 2+3x +1.(3)f (x )=5,即x 2+x -1=5. 由x 2+x -6=0得x =2或x =-3.。

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

3.1 函数的概念与性质 3.1.1 函数及其表示方法第1课时 函数的概念课程标准在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域.新知初探·自主学习——突出基础性教材要点知识点一 函数的概念1.函数的概念一般地,给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数集A)称为这个函数的定义域,所有函数值组成的集合{y|y=f(x),x∈A}称为函数的值域.状元随笔 对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f ”表示对应关系,在不同的函数中f的具体含义不一样.知识点二 同一函数一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.知识点三 常见函数的定义域和值域函数一次函数反比例函数二次函数a<0基础自测1.下列从集合A到集合B的对应关系f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积2.函数f(x)=√x−1x−2的定义域为( )A.(1,+∞) B.[1,+∞)C.[1,2) D.[1,2)∪(2,+∞) 3.下列各组函数表示同一函数的是( )A.y=x2−9x−3与y=x+3B.y=√x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=x+1,x∈Z与y=x-1,x∈Z4.若函数f(x)=√x+6x−1,求f(4)=________.课堂探究·素养提升——强化创新性题型1 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;状元随笔 从本题可以看出函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,也可以是集合B的子集.(2)A={1,2,3},B={4,5,6},对应关系如图所示;状元随笔 判断从集合A到集合B的对应是否为函数,一定要以函数的概念为准则,另外也要看A中的元素是否有意义,同时,一定要注意对特殊值的分析.(3)A=R,B={y|y>0},f:x→y=|x|;(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.方法归纳(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:①A,B必须都是非空数集;②A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个(1)①x∈[0,1]取不到[1,2].③y∈[0,3]超出了N∈[0,2]范围.④可取一个x值,y有2个对应,不符合题意.(2)关键是否符合函数定义.①x→3x,x≠0,x∈R;②x→y,其中y2=x,x∈R,y∈R.(2)下列对应是否是函数?题型2 求函数的定义域[教材P87例题1]例2 求下列函数的定义域:(1)f(x)=1√(2)g(x)=1x+1x+2.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域:(1)f(x)=6x2−3x+2;(2)f(x)=0√||(3)f(x)=√2x+3-√1 x .(1)分母不为0(2){偶次根式被开方数≥0(x+1)0底数不为0分母不为0 (3){偶次根式被开方数≥0分母不为0题型3 同一函数例3 下面各组函数中为相同函数的是( )A .f (x )=√(x −1)2,g (x )=x -1B .f (x )=√x 2−1,g (x )=√x +1·√x−1C .f (x )=x ,g (x )=x 2xD .f (x )=x 0与g (x )=1x 0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形;②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2−xx ,g (x )=x -1;(2)f(x)=√xx,g(x)√(3)f(x)=x2,g(x)=(x+1)2;(4)f(x)=|x|,g(x)=√x2.状元随笔 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型4 求函数的值域[经典例题]状元随笔 求函数值域的注意事项①数形结合求值域一定要注意函数的定义域;②值域一定要用集合或区间来表示.例4 求下列函数的值域.(1)y=3-4x,x∈(-1,3];(2)f(x)=1x,x∈[3,5];(3)y=2xx+1;(4)y=x2-4x+5,x∈{1,2,3};(5)y=x2-2x+3,x∈[0,3);(6)y=2x-√x−1;(7)f(x)=1x2+2.状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x的取值范围,再求3-4x的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域.(3)将自变量x=1,2,3代入解析式求值,即可得值域.(4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”观察函数的值域.如函数y=11+x2的值域为{y|0<y≤1}.(2)配方法:求形如F(x)=a[f(x)]2+bf(x)+c的函数的值域可用配方法,但要注意f(x)的取值范围.如求函数y=x-2√x+3的值域,因为y=(√x-1)2+2≥2,故所求值域为{y|y≥2}.对于形如y=ax2+bx+c(a≠0)的函数,尤其要注意在给定区间上二次函数最值的求法.(3)分离常数法:此方法主要是针对分子分母同次的分式,即将分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:形如y=ax+b+√cx+d的函数常用换元法求值域,即先令t=√cx+d,求出x,并注明t的取值范围,再代入上式表示成关于t的二次函数,最后用配方法求值域.注意:分离常数法的目的是将分式函数变为反比例函数类,换元法的目的是将函数变为二次函数类.即将函数解析式变为已经熟悉的简单函数类型求值域.(5)反表示法:根据函数解析式反解出x,根据x的取值范围转化为关于y的不等式求解.(6)中间变量法:根据函数解析式确定一个已知范围的中间变量(如x2),用y表示出该中间变量,根据中间变量的取值范围转化为关于y的不等式求解.跟踪训练4 求下列函数的值域:(1)y=2x+1,x∈{1,2,3,4,5};(2)y=√x+1;(3)y=1−x21+x2;先分离再求值域(4)y=-x2-2x+3(-5≤x≤-2);配方法求值域(5)f(x)=5x+4 x−1.第三章 函数3.1 函数的概念与性质3.1.1 函数及其表示方法第1课时 函数的概念新知初探·自主学习[教材要点]知识点三{x|x≠0} R {y|y≤4ac−b24a}[基础自测]1.解析:对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.答案:A2.解析:使函数f(x)=√x−1x−2有意义,则{x−1≥0,x−2≠0,即x≥1,且x≠2.所以函数的定义域为{x|x≥1且x≠2}.故选D.答案:D3.解析:A中两函数定义域不同;B中两函数值域不同;D中两函数对应法则不同.答案:C4.解析:f(4)=√4+64−1=2+2=4.答案:4课堂探究·素养提升例1 【解析】 (1)(4)对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.跟踪训练1 解析:(1)图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性②√同时满足任意性与唯一性③×x=2时,对应元素y=3∉N,不满足任意性④×x=1时,在N中有两个元素与之对应,不满足唯一性解析:(2)①是函数.因为任取一个非零实数x,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x=1时,y=±1,即一个非零自然数x,对应两个y的值,不符合函数的概念.答案:(1)B (2)①是函数②不是函数例2 【解析】 (1)因为函数有意义当且仅当{x+1≥0,√x+1≠0,解得x>-1,所以函数的定义域为(-1,+∞).(2)因为函数有意义当且仅当{x≠0,x+2≠0,解得x≠0且x≠-2,因此函数的定义域为(-∞,-2)∪(−2,0)∪(0,+∞).跟踪训练2 解析:(1)要使函数有意义,只需x2-3x+2≠0,即x≠1且x≠2,故函数的定义域为{x|x≠1且x≠2}.(2)要使函数有意义,则{x+1≠0,|x|−x>0,解得x<0且x≠-1.所以定义域为(-∞,-1)∪(−1,0).(3)要使函数有意义,则{2x +3≥0,2−x >0,x≠0,解得-32≤x <2,且x ≠0.故定义域为[−32,0)∪(0,2).例3 【解析】 函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.【答案】 D跟踪训练3 解析:所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7).(2)因为f (x )=1x 在[3,5]上单调递减,所以其值域为[15,13].(3)因为y =2x x +1=2(x +1)−2x +1=2-2x +1≠2,所以函数y =2x x +1的值域为{y |y ∈R 且y ≠2}. (4)函数的定义域为{1,2,3},当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2,所以这个函数的值域为{1,2},(5)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(6)设t =√x −1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t =2(t -14)2+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为[158,+∞).【解析】(7)方法一 因为x 2+2≥2,所以0<1x 2+2≤12,所以f (x )的值域为(0,12].方法二 设t 是所求值域中的元素,则关于x 的方程1x 2+2=t 应该有解,即x 2=1t -2应该有解,所以1t -2≥0,即1−2t t ≥0,解得0<t ≤12,所以所求值域为(0,12].跟踪训练4 解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}.(2)因为√x ≥0,所以√x +1≥1,即所求函数的值域为[1,+∞).(3)因为y =1−x 21+x 2=-1+21+x 2,所以函数的定义域为R ,因为x 2+1≥1,所以0<21+x2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1].(4)y =-x 2-2x +3=-(x +1)2+4.因为-5≤x≤-2,所以-4≤x+1≤-1.所以1≤(x+1)2≤16.所以-12≤4-(x+1)2≤3.所以所求函数的值域为[-12,3].解析:(5)函数f(x)=5x+4x−1=5(x−1)+9x−1=5+9x−1,因为x≠1,所以9x−1≠0,所以f(x)≠5,所以函数f(x)=5x+4x−1的值域为(-∞,5)∪(5,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2高中数学 变量与函数的概念学案 新人教B 版必修1
一、三维目标:
1.理解函数的概念,明确函数的两要素,即定义域和对应法则;
2.能正确使用区间表示数集;
3.会求一些简单函数的定义域,复合函数的定义域; 二、学习重、难点:
重点:函数的概念,定义域的概念和求法;
难点:抽象函数的定义域的求法;
1、函数的定义: 设集合A 是一
个非空的实数集,对于A 内 ,按照确定的对应法则f ,都有 ______________与它对应,则这种对应关系叫做集合A 上的一个函数,记作 。

2、函数的定义域、值域:
函数的定义域对函数A x x f y ∈=),(,其中x 叫做 ,x 的取值范围(数集A )叫做这个函数的 . 3、函数的值域:
如果自变量取值a ,则由法则f 确定的值y 成为函数在a 处的__________,记做_____,所有函数值的集合}),(|{A x x f y y ∈=叫做这个函数的 . 3、函数的两要素:_______________________; 。

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ; ② ;
5、区间的概念:
设a, b 是两个实数,且a<b
(1)满足不等式b x a ≤≤的实数x 的集合叫做闭区间,记作 。

(2)满足不等式a<x<b 的实数x 的集合叫做开区间,记作 。

(3)满足不等式b x a <≤或b x a ≤<的实数x 的集合叫做半开半闭区间,分别表示为
和 ;
分别满足x ≥a,x>a,x ≤a,x<a 的全体实数的集合,都叫半开半闭区间,记作 x ≥a :______________ x>a:________________ x ≤a:_______________
x<a:________________其中实数a, b 表示区间的两端点。

题型一.函数概念
例1.给出四个命题中正确的是_________________; ① 函数就是定义域到值域的对应关系。

② 若函数的定义域只含有一个元素,则值域也只含有一个元素。

③ 因5)(=x f 这个函数值不随的变化而变化,所以5)0(=f 也成立。

④定义域和对应关系确定后,函数的值域也就确定了。

跟踪练习:
1、如图所示,能表示“y是x的函数”的是.

2、函数()
y f x
=的图象与直线1
x=的公共点数目是()A.1 B.0 C.0或1 D.1或2
3、判断以下是否是函数:
⑴2
45
y x
=-;⑵y x
=±;⑶y229
x y
+=
规律总结:如何判断两个变量具有函数关系?
题型二.函数的定义域
例2、求下列函数的定义域:
1.
2
3
6
)
(
2+
-
=
x
x
x
f 2. x
x
x
f2
1
1
3
)
(-
+
-
=
3.
1
4
)
(
2
-
-
=
x
x
x
f 4.
x
x
x
x
f
-
+
=
)1
(
)
(
5
y =
例3、 已知[],,的定义域为41)(x f y =求)2(+=x f y 的定义域。

跟踪练习:1、若(2)y f x =+的定义域是(1,3],求()y f x =的定义域
2、已知函数(1)y f x =
+定义域是[2,3]-,则(21)y f x =-的定义域是( )
A .5
[0]2
, B .[14]-,
C .[55]-,
D .[37]-,
题型三、 判断函数是否是同一个函数 例4、 判断下列函数是否为同一个函数
(1)f (x )
,g (x )
(2)f (x )
g (x )
(3)1)(=x f , 0)(x x g =;
(4) 2)(+=x x f , 2
4
)(2--=x x x g ;
(5)x x f =)(, 33)(x x g =; (6) 43)(+=x x f , 43)(+=t t f ;
规律总结:如何判断两个函数是否为同一个函数?
题型四、 求函数值
例5、已知函数2()352f x x x =-+,求(1)f ,)2(f 1f a ⎛⎫
⎪⎝⎭
,(1)f x +;
跟踪练习:1.求函数2
1
()1f x x =+,()x R ∈,在0,1,a+1处的函数值。

1、下列四组函数中表示同一函数的是( )
A 、2
)(x x f =, 2
)()(x x g = B 、x x f =)(, x
x x g 2
)(=
C 、x x x f -⋅+=11)(, 21)(x x g -=
D 、x x f =)(, n n x x g =)( 2、函数2
4
++=
x x y 的定义域为______________ 3、已知函数q px x x f ++=2)(满足f(1)=f(2)=0,则f(-1)的值是( )
A 、5
B 、-5
C 、6
D 、-6
4、在下列四个图形中,不能表示函数的图象的是 ( )
(A )
(B )
(C )
(D )。

相关文档
最新文档