建立一次函数模型解决预测类型的实际问题

合集下载

用一次函数解决问题压轴题四种模型全攻略(解析版)

用一次函数解决问题压轴题四种模型全攻略(解析版)

用一次函数解决问题压轴题四种模型全攻略【考点导航】目录【典型例题】 (1)【考点一一次函数的应用——分配方案问题】 (1)【考点二一次函数的应用——最大利润问题】 (5)【考点三一次函数的应用——行程问题】 (8)【考点四一次函数的应用——几何问题】 (12)【过关检测】 (16)【典型例题】【考点一一次函数的应用——分配方案问题】【答案】(1)() 504500010120y x x=+≤≤;(2)见解析【分析】(1)根据A市的120吨物资运往甲乡x吨,运往乙乡()120x−吨,B市的130吨物资运往甲乡()140x−吨,运往乙乡()110120x−+吨的费用求和,即可确定y与x的函数关系式;(2)根据一次函数的性质即可确定运费最低的运送方案和最低运费.【详解】(1)解:由题意可得,()()()3001501202001401001101205045000y x x x x x =+−+−+−+=+, 0x ≥,1200x −≥,1400x −≥,1101200x −+≥,x ∴的取值范围是10120x ≤≤,y ∴与x 的函数解析式为()504500010120y x x =+≤≤;(2)500>,y ∴随着x 增大而增大,当10x =时,y 取得最小值,最小值为50104500045500(⨯+=元),此时从A 市往甲乡运送10吨物资,从A 市往乙乡运送110吨物资,从B 市往甲乡运送130吨物资物资,从B 市往乙乡运送0吨物资,答:运费最低的运送方案是:从A 市往甲乡运送10吨物资,从A 市往乙乡运送110吨物资,从B 市往甲乡运送130吨物资物资,从B 市往乙乡运送0吨物资,最低运费为45500元.【点睛】本题考查了一次函数的应用,根据题意建立一次函数关系式是解题的关键.【变式训练】【答案】(1)小明用方案一购书更划算;计算见解析;(2)120.5,0.650y x y x ==+;(3)见解析.【分析】(1)当150x =时,根据方案一和方案二计算出实际花费,然后比较即可;(2)根据题意给出的等量关系即可求出答案;(3)根据y 关于x 的函数解析式,求出两种方案所需费用相同时的书本数量,从而可判断哪家书店省钱.【详解】(1)解:当150x =时,方案一:1500.8120⨯=(元),方案二:501500.80.755090140+⨯⨯=+=(元),∵120140<,∴小明用方案一购书更划算;(2)解:由题意得:方案一:10.8y x =;方案二:2500.80.750.650y x x =+⨯=+;∴1y 与x 的函数关系式为10.8y x =;2y 与x 的函数关系式为20.650y x =+;(3)解:当12y y >时,即0.80.650x x >+,解得250x >;当12y y <时,即0.80.650x x <+,解得250x <;当12y y =时,即0.80.650x x =+,解得250x =.∴当250x <时,方案一更划算,当250x >时,方案二更划算,当250x =时,方案一和方案二一样划算.【点睛】本题考查一次函数的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型. 2.(2023春·河南南阳·八年级统考阶段练习)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身7次,应选择哪种方案所需费用更少?请说明理由.【答案】(1)k1的实际意义是:打六折后的每次健身费用为15元.b 的实际意义是:每张学生暑期专享卡的价格为30元(2)打折前的每次健身费用为25(元),220k =(3)选择方案一所需费用更少.理由见解析【分析】(1)直接根据函数的图象结合实际意义进行解答;(2)根据方案一打折后每次健身费用是15元,因为是打六折,故可求打折前的费用;然后根据方案二再打八折即可求得k2 ;(3)根据(1)(2)即可得到1122y k x b y k x =+=,,当12y y =时,解得:6x =.即可得到答案. 【详解】(1)解:11y k x b =+的图象过点()030,和点()10180,,∴130,18010.b k b =⎧⎨=+⎩∴115,30.k b =⎧⎨=⎩.k1的实际意义是:打六折后的每次健身费用为15元.b 的实际意义是:每张学生暑期专享卡的价格为30元.(2)打折前的每次健身费用为150.625÷=(元)2250.820k =⨯=.(3)选择方案一所需费用更少.理由如下:由(1)知11530k b ==,, ∴11530y x =+.由(2)知220k =,∴2.当12y y =时,153020x x +=,解得:6x =.结合函数图象可知,小华暑期前往该俱乐部健身7次,选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,看懂图象,理解题意,理解两种优惠方案之间的关键是解题的关键.【考点二 一次函数的应用——最大利润问题】【答案】(1)5500y x =+(2)当购进甲种商品20件,乙种商品70件时,可使得甲、乙商品全部销售完后获得的利润最大为600元【分析】(1)设购进甲商品x 件,则购进乙商品()100x −件,根据题意即可列出y 与x 之间的函数关系式;(2)根据购进乙商品的件数不少于甲商品件数的4倍,可得当20x =时,y 取得最大值,即可求解.【详解】(1)解:由题意可得:()()()504015*********y x x x =+−−=+-,∴y 与x 之间的函数关系式为5500y x =+;(2)解:由题意,得1004x x −≥,解得20x ≤.∵5500y x =+,∴,∴y 随x 增大而增大,∴当20x =时,y 的值最大,520500600y =⨯+=,此时1002070−=,答:当购进甲种商品20件,乙种商品70件时,可使得甲、乙商品全部销售完后获得的利润最大为600元.【点睛】本题主要考查了一次函数的实际应用,明确题意,准确列出函数关系式是解题的关键.【变式训练】(1)第一次小冬用550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个;(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共45个,应如何设计进货方案才能获得最大利润,最大利润是多少?【答案】(1)A 款玩偶购进20个,B 10个(2)按照A 款玩偶购进15个、B 款玩偶购进30个的方案进货才能获得最大利润,最大利润是270元【分析】(1)根据题意和表格中的数据,可以列出相应的方程,然后求解即可;(2)根据题意,可以写出利润与购进A 款玩偶数量的函数关系式,再根据网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半,可以得到A 款玩偶数量的取值范围,然后根据一次函数的增减性分析,即可得到答案.【详解】(1)解:设A 款玩偶购进x 个,B 款玩偶购进()30x −个, 由题意得:()201530550x x +−=,解得:20x =,30x ∴−=302010−=(个),答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进()45a −个,获利y 元, 由题意得:()()()28202015453225y a a a =−+−−=+, A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.()1452a a ∴≤−,解得15a ≤,3225y a =+,由30k =>,可知y 随a 的增大而增大,∴当15a =时,315225270y =⨯+=最大(元),B ∴款玩偶为:451530−=(个),答:按照A 款玩偶购进15个、B 款玩偶购进30个的方案进货才能获得最大利润,最大利润是270元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,写出相应的函数关系式,利用一次函数的性质求最值.【答案】(1)A 、B 两种模型每件分别需要25元,150元(2)800090w b =−,购进A 模型226件,B 模型29件利润最大为5390元【分析】(1)设购进A ,B 两种模型每件分别需要x 元,y 元,列方程组求解即可.(2)设购买A 种模型a 件,购买B 种模型b 件,由题意列出方程组,求出b 的范围,再列出W 与b 的函数关系式,求最值即可.【详解】(1)设购进A 、B 两种模型每件分别需要x 元,y 元,由题意得:105100043550x y x y +=⎧⎨+=⎩,解得25150x y =⎧⎨=⎩答:A 、B 两种模型每件分别需要25元,150元.(2)设购买A 种模型a 件,B 种模型b 件,25150100008a b a b +=⎧⎨≤⎩, 解得2007b ≥则购买A 种模型为1000015025b−件,即(4006)b −件,则20(4006)30w b b −+⨯=,即800090w b =−∵900−<,∴当b 取最小值时总利润最大,由(2)得2007b ≥,b 为整数,∴当29b =时,800090295390w =−⨯=,∴购进A 模型226件,B 模型29件利润最大为5390元【点睛】本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,找准数量关系,正确列出方程组,函数关系式,不等式组是解题的关键.【考点三 一次函数的应用——行程问题】 (1)求线段CD 对应的函数解析式.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?(3)轿车到达乙地后,货车距乙地多少千米.【答案】(1)线段CD 对应的函数解析式为110195y x =−(2)货车从甲地出发后3.9小时被轿车追上,此时离甲地的距离是234千米(3)轿车到达乙地后,货车距乙地30千米【分析】(1)设线段CD 对应的函数解析式为y kx b =+,由待定系数法求出其解即可;(2)设OA 的解析式为1y k x =货,由待定系数法求出解析式,由一次函数与一元一次方程的关系建立方程求出其解即可.(3)先由函数图象求出货车在轿车到达乙地是时需要的时间,由路程=速度⨯时间就可以求出结论.【详解】(1)解:设线段CD 对应的函数解析式为y kx b =+,由题意,得 80 2.5300 4.5k b k b =+⎧⎨=+⎩,解得:110195k b =⎧⎨=−⎩.则110195y x =−.答:线段CD 对应的函数解析式为110195y x =−;(2)设OA 的解析式为1y k x =货,由题意,得 13005k =,解得:160k =,60y x ∴=货.∴当y y =货时,11019560x x −=,解得: 3.9x =.离甲地的距离是:3.960234⨯=千米.答:货车从甲地出发后3.9小时被轿车追上,此时离甲地的距离是234千米;(3)由题意,得()605 4.530⨯−=千米.答:轿车到达乙地后,货车距乙地30千米.【点睛】本题考查了一次函数的图象的性质的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.【变式训练】 1.(2023·河北沧州·校考模拟预测)航模兴趣小组在操场上进行航模试验,甲型航模从距离地面20米处出发,以a 米/分的速度匀速上升,乙型航模从距离地面50米处同时出发,以15米/分的速度匀速上升,经过6分钟,两架航模距离地面高度都是b 米,两架航模距离地面的高度y 米与时间x 分钟的关系如图.两架航模都飞行了20分钟.(1)直接写出a 、b 的值;(2)求出两架航模距离地面高度y 甲、y 乙(米)与飞行时间x (分钟)的函数关系式;(3)直接写出飞行多长时间,两架航模飞行高度相差25米?【答案】(1)20a =,140b =;(2)2020y x =+甲,1550y x =+乙;(3)飞行1分钟或者11分钟时,两架航模飞行高度相差25米【分析】(1(2)根据一次函数中一次项系数和常数项的实际意义直接列函数关系式即可.(3)令25y y −=乙甲,解方程得到x 的值,即可得到答案.【详解】(1)6分钟时,乙型航模距离地面高度为:50156140+⨯=(米),140b ∴=.14020206a −∴==.20a ∴=,140b =.(2)由题意可得:1550y x =+乙,设20y kx =+甲,把(6,140)代入得,620140k +=,解得20k =,2020y x ∴=+甲.(3)()20201550530y y x x x −=+−+=−乙甲, 令25y y −=乙甲,则53025x −=,或53025x −=−,解得11x =,或1x =.答:飞行1分钟或者11分钟时,两架航模飞行高度相差25米.【点睛】本题考查一次函数的实际应用,理解函数图象表示的意义是解题的关键.【答案】(1)80,6(2)120600y x =−+(3)甲车出发经过1.7h ,2.3h ,3.5h ,两车相距60千米.【分析】(1)结合题意,利用速度=路程÷时间,可得乙的速度、行驶时间;(2)找到甲车到达C 地和返回A 地时x 与y 的对应值,利用待定系数法可求出函数解析式;(3)分三种情况,甲和乙相距前,甲和乙相距后,甲返回A 地时,根据甲、乙两车相距60千米分情况讨论即可求解.【详解】(1)∵乙车比甲车先出发1小时,由图象可知乙行驶了80千米,∴乙车速度为:80千米/时,乙车行驶全程的时间480806t =÷=(小时);故答案为:80,6;(2)根据题意可知甲从出发到返回A地需5小时,∵甲车到达C地后因立即按原路原速返回A地,∴结合函数图象可知,当52x=时,300y=;当5x=时,=0y;设甲车从C地按原路原速返回A地时,即552≤≤x,甲车距它出发地的路程y与它出发的时间x的函数关系式为:y kx b=+,将5(,300),(5,0)2函数关系式得:5+=30025+=0k bk b⎧⎪⎨⎪⎩,解得:120600kb=−⎧⎨=⎩,故甲车从C地按原路原速返回A地时,甲车距它出发地的路程y与它出发的时间x的函数关系式为:120600y x=−+;(3)由题意可知甲车的速度为:6001205=(千米/时),设甲出发经过m小时两车相距60千米,有以下三种情况:①()12080160480m m+++=,解得 1.7m=②()12080148060m m++=+,解得 2.3m=③()()120 2.560 2.5100m m−+=−+,解得 3.5m=综上,甲车出发经过1.7h,2.3h,3.5h,两车相距60千米,【点睛】本题主要考查了一次函数的应用问题,解答此题的关键是要理解分段函数图象所表示的实际意义,准确找到等量关系.【考点四一次函数的应用——几何问题】例题:(2023春·河南南阳·八年级校考阶段练习)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是D C B A→→→,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A .B .C .D .【答案】B【分析】根据动点从点D 出发,首先向点C 运动,此时y 随x 的增加而增大,当点P 在DC 上运动时,y 不变,当点P 在AB 上运动时,y 随着x 的增大而减小,据此作出选择即可.【详解】解:当点P 由点D 向点C 运动,即04x ≤≤时,114222y AD x x x ==⨯=; 当点P 在BC 上运动,即48x <≤时,14482y =⨯⨯=,是一个定值;当点P 在BA 上运动,即812x <≤时,y 随x 的增大而减小.故选:B .【点睛】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势.【变式训练】1.(2021春·福建漳州·七年级福建省漳州第一中学校考期中)如图,已知动点P 从B 点出发,以每秒2cm 的速度在图①的边(相邻两边互相垂直)上按B C D E F A →→→→→的路线移动,相应的ABP 的面积()2cm S 与点P 的运动时间()t s 的图象如图②所示,且6cm AB =.当230cm S =时,t = .【答案】7s 或11s【分析】从图象上分析可知,由于速度是2cm/s ,图中04~的过程为P 点在线段BC 上,故428cm BC =⨯=,46~为4CD =,69为6DE =,910~为2EF =,10到b 为FA ,14FA BC DE =+=,1014217b =+÷=,根据ABP ∆的面积为230cm ,底边6cm AB =可知高为10cm ,也就是P 点距离AB 的距离是10cm ,从数据上可知,P 在线段DE 上有一个符合条件的点,在线段AF 上有一个符合条件的点,求出对应的t 值.【详解】解:由图可知, P 点的运动速度为2cm/s , ()428cm BC ∴=⨯=,()224cm CD =⨯=,()326cm DE =⨯=,()122cm EF =⨯=,()14cm FA BC DE =+=, 2cm 30S =,6cm AB =,∴点P 到AB 的距离为()302610cm ⨯÷=,故可知P 在线段DE 上和线段AF 上各有一个P 点满足条件,当1P 在线段DE 上时:110PD BC +=,()11082cm PD ∴=−=,1()27(s)t BC CD DP ∴=++÷=,当1P 在线段AF 上时:210P F AF =−, ()214104cm P F ∴=−=,2()211(s)t BC CD DE EF FP =++++÷=, 故答案为:7s 或11s .【点睛】本题考查了动点问题的图象,一次函数和动点问题的应用,三角形的面积公式.2.(2023春·安徽宿州·七年级校考期中)如图,在长方形ABCD 中,8BC =,6CD =,点E 为边AD 上一动点,连接CE ,随着点E 的运动,DCE △的面积也发生变化.(1)写出DCE △的面积y 与AE 的长()08x x <<之间的关系式;(2)当3x =时,求y 的值.【答案】(1)324y x =−+(2)15【分析】(1)可求8DE x =−,由12y CD DE =⋅即可求解;(2)将3x =代入解析式即可求解.【详解】(1)解:由题意得:8DE x =−,∴12y CD DE =⋅16(8)2x =⨯⨯−324x =−+.答:DCE △的面积y 与AE 的长()08x x <<之间的关系式为324y x =−+.(2)解:当3x =时,92415y =−+=, 答:当3x =时,15y =.【点睛】本题主要考查了一次函数在动点问题中的应用,掌握“化动为静”的方法解决动点问题的方法是解题的关键.【过关检测】一、单选题 1.(2023秋·安徽亳州·八年级校考阶段练习)甲,乙两车在笔直的公路AB 上行驶,乙车从AB 之间的C 地出发,到达终点B 地停止行驶,甲车从起点A 地与乙车同时出发到达B 地休息半小时后立即以另一速度返回C 地并停止行驶,在行驶过程中,两车均保持匀速,甲、乙两车相距的路程(y 千米)与乙车行驶的时间(x 小时)之间的关系如图所示,下列说法中正确的有( )①甲车行驶的速度为每小时20千米;②AB 两地之间的距离为420千米;③甲车返回C 地的速度为每小时80千米;④甲车返回C 地比乙车到B 地时间晚2小时.【答案】B【分析】根据第三段函数图象甲车到达B 地后休息半小时,求出乙车的速度,然后根据第一段函数图象,求出甲去B 地速度;求出甲车从A 到B 所用的时间,即可求出AB 的长度;根据返回时,两车在870.50.5−−=小时内行驶的路程为60千米,算出甲返回C 的速度,求出BC 间的长度,即可求出返回C 地时甲用的时间,算出乙到达目的地B 比甲到达B 地多用的时间,即可求出甲车返回C 地比乙车到B 地时间晚3小时.【详解】解:乙车速度80604012−=(千米/时), 甲车去B 地的速度为:40360603⨯+=(千米/时),甲车去B 地时,两车速度差,60203=(千米/时),第一次相遇后甲车到达B 地时间,80420=(小时),∴甲车从A 地到B 地所用时间为347+=(小时),∴AB 两地之间的距离为607420⨯=(千米),故②正确; 甲车返回时速度,604080870.5−=−−(千米/时),故①错误,故③正确;∴A 、B 两地距离420千米,∴B 、C 两地相距,42060360−=(千米),甲车返回C 地用时,3609802=(小时),乙车比甲车晚到达B 地时间,80240=(小时), 甲车比乙车晚到达目的地时间,192322+−=(小时),故④错误;综上分析可知,正确的有2个,故选:B .【点睛】本题主要考查了从函数图象中获取信息,解决行程问题,解决问题的关键是熟练掌握甲、乙两车行驶路程与速度、时间的关系. AB DC ,B Ð,ABP 的面积为所示,则ACD 面积为 A .10B .16C .18D .20【答案】A 【分析】由题意知:49455BC DC AD ==−==,,,进而根据三角形的面积公式,即可求解.【详解】解:根据图2可知当点P 在CD 上运动时,ABP 的面积不变,与ABC 面积相等;且不变的面积是在4x =,9x =之间;所以在直角梯形ABCD 中4BC =,5CD =,5AD =.连接AC ,∴ACD 面积为11541022CD BC ⨯=⨯⨯=故选:A .【点睛】考查了动点问题的函数图象,解决本题的关键是读懂图意,得到相应的直角梯形中各边之间的关系.此题考查了学生从图象中读取信息的数形结合能力.A .第25天的销售量为200件B .第6天销售一件产品的利润是19元C .第20天和第30天的日销售利润相等D .第18天的日销售利润高于第25天的日销售利润【答案】C【分析】根据函数图象分别求出当020t ≤≤,一件产品的销售利润w (单位:元)与时间t (单位:天)的函数关系为25w t =−+,当025t ≤≤时,产品日销售量y (单位:件)与时间t (单位;天)的函数关系为4100y t =+,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【详解】A 、根据图①可得第25天的销售量为200件,故此选项正确,不符合题意;B 、设当020t ≤≤,一件产品的销售利润w (单位:元)与时间t (单位:天)的函数关系为w kt b =+,把025205(,),(,)代入得:252020b k b =⎧⎨+=⎩,解得:125k b =−⎧⎨=⎩,∴25w t =−+,当6t =时,62519w =−+=,故此选项正确,不符合题意;C 、当025t ≤≤时,设产品日销售量y (单位:件)与时间t (单位;天)的函数关系为11y k t b =+, 把010025200(,),(,)代入得:11110025200b k b =⎧⎨+=⎩,解得:114100k b =⎧⎨=⎩,∴4100y x =+,当20t =时,日销售利润为5420100900wy =⨯⨯+()=(元);当30t =时,日销售利润为5150750⨯=(元),∴第20天和第30天销售利润不相等,故此选项错误,符合题意;D 、当18t =时,日销售利润为18254181001204wy =−+⨯+()()=(元),当25t =时,日销售利润为52001000⨯=(元).∴第18天的日销售利润高于第25天的日销售利润,故此选项正确,不符合题意.故选:C .【点睛】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题 4.(2023秋·山东青岛·八年级统考期末)马家沟芹菜是青岛的名优农产品,某公司零售一箱该产品的利润是10元,批发一箱该产品的利润是6元.经营性质规定,该公司零售的数量不能多于300箱.现该公司出售800箱这种产品,最大利润是 元.【答案】6000【分析】设该公司当月零售这种农产品m 箱,则批发这种农产品()800m −箱,该公司获得利润为y 元,进而得到y 关于m 的函数关系式,利用一次函数的性质,即可求解.【详解】解:设该公司当月零售这种农产品m 箱,则批发这种农产品()800m −箱,依题意得:0300m <≤,设该公司获得利润为y 元,依题意得:()106800y m m =+−,即44800y m =+,∵40>,y 随着m 的增大而增大,∴当300m =时,y 取最大值,此时430048006000y =⨯+=(元),答:该公司要经营800箱这种农产品,最大利润是6000元.故答案为:6000.【点睛】本题主要考查了一次函数的应用,根据题意列出函数表达式,熟练掌握函数性质根据自变量取值范围确定函数值是解决问题的关键.【答案】 2400 1248【分析】设日销售量y 与上市时间t 之间的函数关系式为()0y kt k =≠,把()3060,代入得6030k =,解得2k =,则()2030y t t =<≤,再求出4w t b =+的b 值,然后把26t =代入算得48024w t =−=,根据日销售利润=单件产品的利润×销售量进行计算即可.【详解】解:由题图①知,当天数30t =天时,市场日销售量达到最大60件,由题图②知,当天数30t =天时,每件产品销售利润达到最大40元,所以当天数30t =天时,市场的日销售利润最大,最大利润为2400元;设日销售量y 与上市时间t 之间的函数关系式为()0y kt k =≠, 把()3060,代入得6030k =,解得2k =,∴日销售量y 与上市时间t 之间的函数关系式为()2030y t t =<≤, 将点()3040,代人4w t b =+,解得80b =−,所以当2530t ≤≤时,单件产品的销售利润w 与t 之间的函数关系式为()4802530w t t =−≤≤, 当26t =时,48024w t =−=,将26t =时252y t ==,∴此时日销售利润为52241248⨯=(元).故答案为:2400,1248.【点睛】本题考查一次函数的应用,关键是读懂图中信息,利用函数的性质进行解答.【答案】 9,2,9 11680【分析】设x 辆汽车装运食品,y 辆汽车装运药品,则装运生活用品的车辆数为()20x y −−,根据三种物资共100吨列出等式,求出220y x =−+,再根据每种物资至少装运1辆车,求出x 的取值范围,最后列出总费用w 与x 的函数关系式,利用函数的性质即可解决问题.【详解】解:设x 辆汽车装运食品,y 辆汽车装运药品,则装运生活用品的车辆数为()20x y −−, 由题意,得:()20651040x x y y −−=++,∴220y x =−+.∴()2020220x y x x x −−=−−−+=.∵每种物资至少装运1辆车,∴12201x x ≥⎧⎨−+≥⎩. 解得:1912x ≤≤,设总费用为w ,则()12061605220100448016000w x x x x =⨯+⨯−++⨯=−+,∵4800k =−<,∴w 随x 的增大而减小. ∵1912x ≤≤,且为整数, ∴当9x =时,总费最少,最少费用为48091600011680w =−⨯+=元.此时2202y x =−+=.故答案为:9,2,9;11680.【点睛】本题主要考查了一次函数的应用,用两个未知数表示出运送生活用品的车辆数是列出方程的关键,三、应用题 7.(2023秋·安徽淮北·八年级校联考阶段练习)如图,在长方形ABCD 中,2cm AB =,4cm BC =,点P从点B 出发,以1cm/s 的速度沿着B →C →D →A 的方向移动到点A ,设移动过程中三角形PAB 的面积为S (2cm ),移动时间为t (s ).(1)写出S 与t 之间的函数关系式;(2)①当 1.5s t =时,求三角形PAB 的面积;②当三角形PAB 的面积为23cm 时,求t 的值.【答案】(1)()()(),044,4610,610t t S t t t ⎧<≤⎪=<≤⎨⎪−+<≤⎩(2)①21.5cm ;②3t =或7t =【分析】(1)根据题意可分当点P 在BC 上,当点P 在DC 上,当点P 在DA 上,然后分别求出函数解析式即可;(2)①由(1)可进行求解;②根据(1)中函数解析式,然后把三角形PAB 的面积为23cm 代入进行求解即可.【详解】(1)解:由题意可得:①当点P 在BC 上,即04t <≤, ∴11222S AB PB t t =⋅=⨯=;②当点P 在DC 上,即46t <≤,此时三角形PAB 的面积为长方形面积的一半,即为12442S =⨯⨯=; ③当点P 在DA 上,即610t <≤,此时10AP t =-, ∴()112101022S AB AP t t =⋅=⨯−=−+;综上所述:S 与t 之间的函数关系式为()()(),044,4610,610t t S t t t ⎧<≤⎪=<≤⎨⎪−+<≤⎩;(2)解:①当 1.5s t =时,则 1.5cm BP =, ∴21 1.5cm 2S AB BP =⋅=;②由(1)可知:当三角形PAB 的面积为23cm 时,则有:3t =或103t −+=,∴3t =或7t =.【点睛】本题主要是考查一次函数的应用,熟练掌握一次函数的应用是解题的关键. 8.(2023秋·山东枣庄·八年级滕州育才中学校考期中)合肥某校有3名教师准备带领部分学生(不少于3人)参观野生动物园.经洽谈,野生动物园的门票价格为教师票每张36元,学生票半价,且有两种购票优惠方案.方案一:购买一张教师票赠送一张学生票;方案二,按全部师生门票总价的80%付款,只能选用其中一种方案购买.假如学生人数为x (人),师生门票总金额为y (元).(1)分别写出两种优惠方案中y 与x 的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少;(3)若选择最优惠的方案后,共付款288元,则学生有多少人?【答案】(1)方案一:1854y x =+;方案二:14.486.4y x =+(2)当9x =时,两种方案一样多;当39≤<x 时,方案一更优惠;当9x >时,方案二更优惠(3)学生人数为14人【分析】(1)根据题意可直接进行求解;(2)由(1)中函数关系式及一次函数的性质可进行求解;(3)由(2)可进行求解.【详解】(1)解:方案一:()133636318542y x x =⨯+⨯−=+;方案二:13363680%14.486.42y x x ⎛⎫=⨯+⨯⨯=+ ⎪⎝⎭;(2)解:由(1)可知:当两种方案的费用一样多时,则有:185414.486.4x x +=+,解得:9x =,∴当9x =时,两种方案一样多;当39≤<x 时,方案一更优惠;当9x >时,方案二更优惠;(3)解:由(2)可知:当学生人数为9人时,方案一和方案二的费用一样多,费用即为18954216⨯+=(元), ∵288216>,∴应选择方案二更优惠,∴14.486.4288x +=,解得:14x =;答:学生人数为14人.【点睛】本题主要考查一次函数的应用,熟练掌握一次函数的性质是解题的关键. 9.(2023春·河南新乡·九年级校联考开学考试)河南某景区为了发展旅游,吸引游客,推出了两种优惠方案(设购买门票的张数为x 张,费用为y 元)方案一:充值500元购买年卡,每张门票80元.方案二:每张门票的单价按图中的折线OAB 所表示的函数关系确定.某单位准备组织员工到该景区旅游.(1)当购买15张门票时,按方案一和方案二分别应花费多少钱?(2)求方案二中y 关于x 的函数关系式,并写出折线OAB 所表示的实际意义.(3)该单位选择哪种购买方案更划算?【答案】(1)按方案一应花费1700元;按方案二应花费1500元(2)()10001590150(15)x x y x x ⎧≤≤=⎨+>⎩;折线OAB 所表示的实际意义见解析 (3)见解析【分析】(1)方案一:用每张门票的费用乘以购买的数量再加上年卡的费用计算即可,方案二:根据图象作答即可;(2)当015x ≤≤时,设y ax =;当15x >时,设y kx b =+.由待定系数法即可求解;(3)分类讨论当0x ≤15≤和15x >的情况,即可求解.【详解】(1)解:当购买15张门票时,按方案一应花费50080151700+⨯=(元);按方案二应花费:1500元.(2)解:当015x ≤≤时,设y ax =.将(15,1500)代入,得150015a =.解得100a =.∴100y x =.当15x >时,设y kx b =+.将(15,1500),(30,2850)代入,得151500302850k b k b +=⎧⎨+=⎩,解得90150k b =⎧⎨=⎩.∴90150y x =+.∴方案二中y 关于x 的函数关系式为()10001590150(15)x x y x x ⎧≤≤=⎨+>⎩ 折线OAB 所表示的实际意义为若购买门票的张数不大于15时,则每张的价格是100元;若购买门票的张数大于15时,则每张的价格是90元.(3)解:方案一中:150080y x =+.当0x ≤15≤时,50080100x x +>.∴选择方案二划算.当15x >时,令500+8090150x x >+,解得35x <.∴1535x <<时,选择方案二更划算.令5008090150x x +=+,解得35x =.∴35x =时,选择两种购买方案一样划算.令50080x +<90150x +,解得35x >.∴35x >时,选择方案一更划算.∴当购买门票张数35x <时,该单位选择购买方案二更划算;当购买门票张数35x =时,该单位选择两种购买方案一样划算;当购买门票张数35x >时,该单位选择购买方案一更划算.10.(2023秋·山东济南·八年级山东省济南稼轩学校校考期中)在A、B 两地之间有服务区C ,甲车由A 地驶往服务区C ,乙车由B 地驶往A 地,两车同时出发,匀速行驶,如图是甲、乙两车分别距离服务区C 的路程1y 、2y (单位:千米)与乙车行驶时间x (单位:小时)之间的函数图象,结合图象信息,解答下列问题:(1)甲车的速度是________千米/时;。

构建函数模型解决实际问题

构建函数模型解决实际问题

高中数学:构建函数模型解决实际问题角度1 构造一次函数、二次函数模型某创业团队拟生产A ,B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图①),B 产品的利润与投资额的算术平方根成正比(如图②).(注:利润与投资额的单位均为万元)(1)分别将A ,B 两种产品的利润f (x ),g (x )表示为关于投资额x 的函数.(2)该团队已筹集到10万元资金,并打算全部投入A ,B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A ,B 两种产品能获得最大利润?最大利润为多少?解:(1)由A 产品的利润与投资额成正比,可设f (x )=kx ,将点(1,0.25)代入,得f (x )=14x (x ≥0).由B 产品的利润与投资额的算术平方根成正比,可设g (x )=t x ,将点(4,2.5)代入,得g (x )=54x (x ≥0).(2)设B 产品的投资额为x 万元,则A 产品的投资额为(10-x )万元, 创业团队获得的利润为y 万元,则y =g (x )+f (10-x )=54x +14(10-x )(0≤x ≤10).令x =t ,则y =-14t 2+54t +52(0≤t ≤10), 即y =-14⎝ ⎛⎭⎪⎫t -522+6516(0≤t ≤10), 当t =52,即x =6.25时,y 取得最大值4.062 5.答:当B 产品的投资额为6.25万元时,创业团队获得最大利润,获得的最大利润为4.062 5万元.角度2 构造指数函数、对数函数模型候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.解:(1)设DQ =x m(x >0),则AQ =(x +20)m.∵QD DC =AQ AP ,∴x 30=x +20AP ,∴AP =30(x +20)x. ∴S =12AP ·AQ =15(x +20)2x =15⎝ ⎛⎭⎪⎫x +400x +40≥1 200, 当且仅当x =20时取等号,∴DQ 的长度为20 m 时,S 最小,S 的最小值为1 200 m 2.(2)∵S ≥1 600,∴由(1)整理得3x 2-200x +1 200≥0.解得0<x ≤203或x ≥60,即要使S 不小于1 600 m 2,则DQ 的长度范围是⎝ ⎛⎦⎥⎤0,203∪[60,+∞). 角度4 构造分段函数模型(2019·湖北孝感八校联考)共享单车是城市慢行系统的一种创新模式,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20 000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h (x )=⎩⎨⎧ 400x -12x 2,0<x ≤400,80 000,x >400,其中x 是新样式单车的月产量(单位:辆),利润=总收益-总成本. (1)试将自行车厂的利润y (单位:元)表示为关于月产量x 的函数.(2)当月产量为多少辆时自行车厂的利润最大?最大利润是多少?解:(1)依题设知,总成本为(20 000+100x )元,则y =⎩⎨⎧ -12x 2+300x -20 000,0<x ≤400,60 000-100x ,x >400.(2)当0<x ≤400时,y =-12(x -300)2+25 000,故当x =300时,y max =25 000;当x >400时,y =60 000-100x 是减函数,故y <60 000-100×400=20 000.所以当月产量为300辆时,自行车厂的利润最大,最大利润为25 000元.1.一、二次函数模型问题的2个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错.(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法.2.指数函数、对数函数两类函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般需要先通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.3.“y=x+ax(a>0)”型函数模型的求解策略(1)“y=x+ax”型函数模型在实际问题中会经常出现.解决此类问题,关键是利用已知条件,建立函数模型,然后化简整理函数解析式,必要时通过配凑得到“y=x+ax”型函数模型.(2)求函数解析式要确定函数的定义域.对于y=x+ax(a>0,x>0)类型的函数最值问题,要特别注意定义域和基本不等式中等号成立的条件,如果在定义域内满足等号成立,可考虑用基本不等式求最值,否则要考虑函数的单调性,此时可借用导数来研究函数的单调性.4.分段函数模型的求解策略(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏.(3)分段函数的最值是各段最大值(或最小值)中的最大者(或最小者).(1)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为(B) A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.(2)(2019·福建三明第一中学月考)某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:y =⎩⎪⎨⎪⎧ 13x 3-80x 2+5 040x ,x ∈[120,144),12x 2-200x +80 000,x ∈[144,500),且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.①当x ∈[200,300]时,判断该项目能否获利.如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?②该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?解:①当x ∈[200,300]时,该项目获利为S ,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12(x -400)2, ∴当x ∈[200,300]时,S <0,因此,该项目不会获利.当x =300时,S 取得最大值-5 000,∴政府每月至少需要补贴5 000元才能使该项目不亏损.②由题意可知,生活垃圾每吨的平均处理成本为:y x =⎩⎪⎨⎪⎧ 13x 2-80x +5 040,x ∈[120,144),12x -200+80 000x ,x ∈[144,500).当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240,∴当x =120时,y x 取得最小值240.当x ∈[144,500)时,y x =12x -200+80 000x ≥2x 2·80 000x -200=400-200=200,当且仅当x 2=80 000x ,即x =400时,y x 取得最小值200.∵240>200,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.。

一次函数解决实际问题的步骤

一次函数解决实际问题的步骤

一次函数解决实际问题的步骤
解决实际问题时,我们需要对一次函数进行彻底理解和正确运用。

首先,需要将实际问题抽象化,找出问题中的自变量和因变量,它们之间的关系就是一次函数的关系。

其实,自变量和因变量就是我们生活、工作中常说的“因素”和“结果”,二者之间的函数关系就是我们常说的“原因和结果”。

一次函数的解决步骤分为以下几个阶段:
一、抽象化。

将实际问题抽象成数学模型。

这一步主要是识别相关的变量,并将它们形式化。

经过抽象处理后的问题,表述方式更为精确,便于详细分析。

二、建立函数方程。

分析问题,找出变量之间的关系,建立一次函数关系式。

这个公式就是我们的数学模型,帮助我们理解问题并找到解决方案。

三、解出函数。

使用相关知识,如一次函数的性质、解法等,求出一次函数的解。

四、根据获取的结果,将其转化为实际问题中的答案。

这就是将数学模型的解转化回实际语境的过程。

五、验证结果。

对于解决实际问题,我们需要检验解决方案是否可行。

将结果带入原问题中,看是否能得到合理的解答。

六、总结经验。

回顾并掌握解决问题的过程和方法,为解决类似问题积累经验。

这就是解决实际问题的一次函数步骤,希望大家能通关实践,熟练掌握这些步骤,更好的运用一次函数解决实际问题。

新泸教版数学八年级上册课件:12.4 综合与实践 一次函数模型的应用

新泸教版数学八年级上册课件:12.4 综合与实践 一次函数模型的应用
海拔高度 x( 米 ) 400 500 600 700 800 … 气温 y( ℃ ) 29.228.6 28.0 27.426.8 …
( 1 )以海拔高度为x轴,根据上表提供的数据在如图的平面直角坐标系中描点并连线. ( 2 )观察( 1 )中所画出的图象,猜想y与x之间的函数关系,求出所猜想的函数表达式,并根据表 中提供的数据验证你的猜想.
8.某水果批发市场香蕉的价格如下表:
购买香蕉数 ( 千克 )
不超过 20 千克
20 千克以上 但不超过 40
千克
40
千克以上
每千克价格 6 元 5 元
4元
若小丽购买香蕉x千克( x大于40 )付了y元,则y关于x的函数关系式为 y=4x+60 .
9.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y( 米 ) 与时间t( 秒 )之间的函数关系如图,则这次越野跑的全程为 2200 米.
12.4 综合与实践 一次函数模型的应用
知识点1 构建一次函数模型求表达式
1.某超市进了一些食品,出售时要在进价的基础上加一定的利润,其数量x( 千克 )与售价y( 元 ) 的关系如下表:
数量 x( 千克 ) 1 2
3
4
5

售价 y( 元 ) 6+0.5 12+1.0 18+1.5 24+2.0 30+2.5 …
所以需要携带外套上山.
12.在北方冬季,对某校一间坐满学生、门窗关闭的教室中二氧化碳的总量进行检测,部分数据 如下:
教室连续使用时间 x( 分 )5 10 15 20 二氧化碳总量 y( m3 ) 0.6 1.1 1.6 2.1
经研究发现,该教室空气中二氧化碳总量y( m3 )是教室连续使用时间x( 分 )的一次函数. ( 1 )求y与x的函数表达式.( 不要求写出自变量x的取值范围 ) ( 2 )根据有关资料推算,当该教室空气中二氧化碳总量达到6.7 m3时,学生将会稍感不适,请通 过计算说明,该教室连续使用多长时间学生将会开始稍感不适? ( 3 )如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室 空气中二氧化碳的总量减少到0.1 m3,求开门通风时教室空气中二氧化碳平均每分钟减少多少 m3?

一次函数解决实际问题的一般步骤

一次函数解决实际问题的一般步骤

一次函数解决实际问题的一般步骤一、引言在我们的日常生活和工作中,常常会遇到各种各样的实际问题需要解决。

而数学中的一次函数则是一种常用的工具,可用来解决实际问题。

本文将深入探讨一次函数解决实际问题的一般步骤,帮助读者更好地理解和运用这一数学工具。

二、了解一次函数的基本概念在讨论一次函数解决实际问题的一般步骤之前,我们需要首先了解一次函数的基本概念。

一次函数是指函数的自变量的最高次数为1的一种函数,通常表示为y = kx + b。

其中,k为斜率,b为常数项。

一次函数的图像为一条直线,通过斜率和常数项可以确定直线的斜率和截距,进而分析其特性和规律。

三、实际问题的建模与分析解决实际问题首先需要将问题进行数学建模,将实际问题转化为数学问题。

在建模过程中,我们可以运用一次函数来描述和分析问题。

某物品的售价与销量之间的关系、运动物体的位移与时间之间的关系等都可以用一次函数来建模。

在建模的基础上,我们需要对实际问题进行深入的分析和探讨。

我们可以通过观察数据、制作表格、绘制图表等方法,分析一次函数的斜率、截距以及函数的变化趋势。

这些分析将有助于我们更好地理解实际问题,并为后续的解决提供依据。

四、一次函数解决实际问题的一般步骤1. 确定问题在解决实际问题时,我们首先需要确定问题的具体内容和要解决的核心。

我们可能需要确定要分析的变量、需要测量的数据等。

2. 建立模型在确定问题后,我们需要根据实际情况建立一次函数的数学模型。

通过观察数据或实际情况,我们可以确定函数的斜率和截距,进而建立数学模型。

3. 分析模型建立数学模型后,我们需要对模型进行深入的分析,探讨其特性和规律。

这包括分析斜率和截距的意义、函数的变化趋势等。

4. 解决问题我们可以利用建立的一次函数模型来解决实际问题。

根据已知条件,我们可以通过函数模型来预测未知数值、分析问题趋势等,为实际问题的解决提供数学支持。

五、个人观点和总结在实际问题解决中,一次函数作为数学工具能够有效地帮助我们建立模型、分析问题、预测趋势等。

建立函数模型解决实际问题教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册

建立函数模型解决实际问题教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册

可以采用Excle 制表,能够非常方便的得出各种类型的拟合函数曲线,这个试验我们可以选择指数型的拟合函数y = 47.05e0.0014x我们还可以选取其他类型的拟合函数,例如这个问题还可以选取线性拟合函数y = 0.1382x + 30.8 ,下面我们来对比两种拟合函数哪个更能接近真实情况.通过烧开 1100 毫升水(已达水壶最大水位线)并记录时间,跟两种拟合函数预测的时间作对比来进行检验.应用指数型拟合函数ݕ= 47.05e0.0014ݔ计算,预测用时219 秒,真实测量用时211 秒,误差+8 秒;运用线性拟合ݕ = 0.1382ݔ+8.03计算,预测用时182 秒,误差-29 秒.分析误差原因,很可能来自于指数型函数值随ݔ的增长速度逐渐变快,一次函数增长速度不变.所以会出现指数型拟合函数计算值超过真实值,线性拟合函数预测值低于真实值的情况,由于水壶最大水位线为 1100 毫升,此时指数型拟合更接近真实值,同时水量也不会再多于这个最大值了,决定本问题使用指数型拟合更符合实际情况. 也可以应用Excle 软件自带的功能,选择显示 2 值功能, 2 更接近 1 的拟合函数能够更好的描述数据的规律. 这部分知识在高二我们会学习,所以这里不做赘述.根据拟合函数ݕ= 47.05e0.0014ݔ,烧水660 毫升用时约为 118.5353 秒,可计算出用电0.05926 度,烧水330 毫升用时72 秒用电0.036 度;因为要烧两次所以用电0.072 度,所以一次烧水660 毫升更为省电.注意:应用Excle 绘图功能,将数据用函数关系拟合并进行分析,是函数类建模的常用方法.重点分析拟合函数的选择,要经过实践的检验,选择更符合检测结果的函数关系对数据进行拟合.通过对比拟合函数,选择更好的拟合函数,在这个过程中还可以复习相关函数的性质.数学建模的实验报告写作要求包括:2分钟总结提升1、对实际问题中的变化过程进行分析,分析其中常量、变量及相互关系;2、明确运动变化基本特征,确定运动变化类型;3、选择适当的函数类型建立数学模型,将实际问题转化为数学问题;4、通过运算、推理、求解函数模型,利用函数模型的解描述实际问题的变化规律,达到解决问题的目的.。

数学八年级下册《建立一次函数的模型解决实际问题》课件

数学八年级下册《建立一次函数的模型解决实际问题》课件
根据已知数据求出具体的函数表达式; (3)进行检验; (4)应用这个函数模型解决问题.
典例精析 例:请每位同学伸出一只手掌,把大拇指与小拇指尽
量张开,两指间的距离称为指距. 已知指距与身高具 有如下关系:
指距x(cm) 19
20
21
身高y(cm) 151 160 169
(1)求身高y与指距x之间的函数表达式; (2)当李华的指距为22cm时,你能预测他的身高吗?
9 cm 10 cm
一次函数模型的应用
现实生活或具体情境中的很多问题或现象都可
以抽象成数学问题,并通过建立合适的数学模型来
表示数量关系和变化规律,再求出结果并讨论结果
的意义.
下面有一个实际
问题,你能否利用已
学的知识给予解决?
问题:奥运会每4年举办一次,奥运会的游泳成 绩在不断的被刷新,如男子400m自由泳项目, 2016年的奥运冠军马克-霍顿的成绩比1984年的 约提高了30s,下面是该项目冠军的一些数据:
b=231.23, 6k+b=221.86. 解得k=-1.56, b=231.23 所以,一次函数的解析式为y=-1.56x+231.23.
(3) 当把1984年的x值作为0,以后每增加4年得x的一 个值,这样2016年时的x值为8,把x=8代入上式,得 y=-1.56×8+231.23=218.74(s)
年份
冠军成绩/s
年份
冠军成绩/s
1984 1988
231.23 226.95
2004 2008
223.10 221.86
1992 1996 2000
225.00 227.97 220.59
2012 2016 2020

一次函数模型及应用

一次函数模型及应用

一次函数模型及应用一次函数模型是指含有一次幂的函数,可以用以下形式表示:y = kx + b,其中k和b为常数,x为自变量,y为因变量。

一次函数又称为线性函数,其与直线的关系密切。

一次函数模型广泛应用于实际生活中各个领域,下面将以几个具体的实际例子来说明一次函数模型的应用。

第一个例子是汽车的油耗问题。

假设某辆汽车在行驶时,每小时的平均油耗为k 升,初始油量为b升。

那么在x小时后,油量为y升的关系可以用一次函数模型来表示:y = -kx + b。

其中负号表示油量在不断减少。

这个模型可以帮助我们预测在车速不变的情况下,汽车在行驶x小时后的剩余油量。

通过测量汽车不同车速下的油耗数据,可以确定k的值,并通过初始油量来确定b的值。

在实际生活中,这个模型可以帮助我们合理安排加油时间,避免油量不足造成的困扰。

第二个例子是商品价格的变化。

假设某商品的价格在每个月都以恒定的速度上涨,每月涨价k元。

初始价格为b元。

那么在x个月后,商品价格为y元的关系可以用一次函数模型来表示:y = kx + b。

通过测量商品连续几个月的变价趋势,可以确定k的值,并通过初始价格来确定b的值。

这个模型可以用来预测未来几个月内商品价格的变化情况,帮助消费者做出购买决策。

第三个例子是人口增长问题。

假设某地区的人口在每年都以固定比例的速度增长,每年增长k人。

初始人口数量为b人。

那么在x年后,人口数量为y人的关系可以用一次函数模型来表示:y = kx + b。

通过观察人口连续几年的增长情况,我们可以确定k的值,并通过初始人口数量来确定b的值。

这个模型可以用来预测未来几年内人口的增长趋势,对于城市规划和社会发展具有重要意义。

以上三个例子只是一次函数模型在实际应用中的几个常见例子,实际上一次函数模型在各个领域都有广泛的应用。

在经济学中,一次函数模型被用来研究需求和供应的关系,分析市场价格的变化。

在物理学中,一次函数模型被用来描述物体的速度、加速度和位移之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时建立一次函数模型解决预测类型的实际问题
学习目标:
1.能用一次函数的知识解决简单的实际问题.
2.能结合对函数关系的分析,尝试对变量的变化规律进行初步预测.
3、感受一次函数的应用价值,乐于运用所学知识去解决实际问题,体验成功,增强自信.
学习重点:建立一次函数模型,结合对函数关系的分析,对变量的变化规律作出初步预测.
学习难点:建立一次函数模型
学习过程:
一、复习导入:
1、回忆利用待定系数法求函数解析式的步骤
已知一次函数经过两点(1,3),(2,0),求这个函数的解析式.
2、温度的度量有两种:摄氏温度和华氏温度,水的沸点是100℃,用华氏温度度量为212F,水的冰点是0℃,用华氏温度度量为32F,已知摄氏度与华氏温度的关系可近似为一次函数,你能不能想出办法,方便地把华氏温度换算成摄氏温度?
二、师生合作,探究新知:
解决导入中的问题2
三、检查学习效果
1.“练习”
(1)把温度84华氏温度换算成摄氏温度.
(2)已知正比例函数的图像经过点M(-1,5).求这个函数解析式.
(3)已知一次函数经过两点(-1,3),(2,-5),求这个函数的解析式
2.例题点拨:
如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d
指距d(cm) 20 2l 22 23
身高h(cm) 160 169 178 187
(1)求出h
(2)某人身高为196cm,一般情况下他的指距应是多少?
五、归纳小结:这节课你有什么收获,还有什么疑惑?
六、当堂训练:
1.将直线y=4x+1的图象向下平移3个单位长度,得到直线 .
2..已知y是x的一次函数,下表列出了部分对应值,则m= .
x 1 O 2
y 3 m 5
3.已知一次函数y=kx+b(k≠O)的图象经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数关系式.
4.某商店今年7
(1
(2)用求出的函数解析式预测今年7月8日该商店销售纯净水的数量;
(3)能用求出的解析式预测今年12月1日该商店纯净水的销售量吗?
5.
(1)找出Q
(2)用解析式表示Q与t的函数关系.。

相关文档
最新文档