淬回火零件渗碳层深度的金相法测定

合集下载

实验三、渗碳件的金相

实验三、渗碳件的金相

剥层分析法 :

在试样上每0.05~0.1mm剥层进行定碳分 析。这种方法较精确,但很麻烦。
金相法 :

是生产上常用的方法。试块一般是退火状态,使 其得到平衡组织。如已经淬火,则必需作退火或等温 退火处理。金相试样磨制后,用4%的硝酸酒精侵蚀, 再在显微镜下放大100倍测量。目前对测量渗碳层深度 的标准还不一致,对于碳素钢,将过共析层+共析层 +1/2亚共析过渡层之和作为渗碳层深度,对于合金结 构钢,将过共析层+共析层+亚共析过渡层三者的总和 作为渗碳层。
它是渗碳介质在工件表面产生活性碳原子经过表面吸收和扩散将碳渗到低碳钢或低碳合金钢工件表层使其达到共析或略高于共析成分时的含碳量以便将工件淬火和低温回火后其表层的硬度强度特别是疲劳强度和耐磨性较心部都有显著的提高而心部仍保持一定的强度和良好的韧性
实验二 渗碳件的金相检验
一、实验目的

1、熟悉渗碳零件渗碳层深度的测量方法。 2、熟悉根据齿轮渗碳金相组织标准评定渗碳 组织的方法。

马氏体根据其针状大小确定,残余奥氏 体根据数量的多少确定。一般分为8级。1~5 级合格。在放大400倍下检查,检查部位以齿 面的节圆附近为准。
心部铁素体

合金钢的心部组织应为低碳马氏体。若 游离铁素体过多会使心部强度大大降低,造成 零件早期破坏。所以,原则上渗碳件心部自由 铁素体越少越好。一般分为8级,小模数的齿 轮1~4级合格。模数大于5时,1~5级合格。大 于5级就要返修。测量轮齿中心线上距齿顶2/3 高处为准。
低碳钢或低碳合金钢渗碳后缓冷表层 至心部的组织为: P+Fe3C→P → P+F →心部组织(P+F)
等温淬火法 :

渗碳层深度检验方法(金相法)

渗碳层深度检验方法(金相法)

渗碳层深度检测方法——金相法1金相试样的制备1.1 取样1.1.1取样原则表面处理零件的检验要求试样取自与处理表面相垂直的横截面,磨面必须平整不可有倒角、卷边,否则会导致处理层厚度的错误测试结果。

取样一般应遵循下述原则。

1)代表性。

对局部进行化学热处理的零件,必须在经表面处理过的部位取样。

对于大尺寸的零件,可在附带随炉试块上进行取样。

必要时在事务上取样,以利于对比分析。

2)重要性。

选择零件受力最大或最易损坏的薄弱部位。

在检查零件损坏原因时,必须在损坏的断口或者裂纹处截取试样。

截取试样不应该时试样发生组织变化为原则。

1)对渗层表面未淬硬的零件,可采用常规的机加工方法乳手工锯或车床、刨床等。

2)对已淬硬的零件,可用砂轮切割机(水冷)。

3)对大尺寸零件,先用氧乙炔割下一块,然后再用切割机在无热影响区域截取试样。

试样尺寸以磨面面积小于400mm2,高度15~20mm为宜。

1.1.2 金相试样选取1)纵向取样。

纵向取样是指沿着钢材的锻轧方向取样。

主要检验内容为:非金属夹杂物的变形程度、晶粒畸变程度、塑性变形程度、变形后的各种组织形貌、热处理的全面情况等。

2)横向取样。

横向取样是指垂直于钢材锻轧方向取样。

主要检验内容为:金属材料从表层到中心的组织、显微组织状态、晶粒度级别、碳化物网、表层缺陷深度、氧化层深度、脱碳层深度、腐蚀层深度、表面化学热处理及镀层厚度。

3)缺陷或失效分析取样截取缺陷分析的试样,应包括零件的缺陷部分在内。

取样时应注意不能使缺陷在磨制时被损伤甚至消失。

1.2清洗试样可用超声波清洗。

试样表面若有油渍、污物或锈斑,可用合适的溶剂清除。

任何妨碍以后基体金属腐蚀的镀膜金属应在抛光之前去除。

1.3试样镶嵌若试样过于细薄或过软、易碎、或需检验边缘组织、或者为便于在自动磨抛机上研磨试样实验室通常采用可采用热压镶嵌法和浇注镶嵌法较为方便。

所选用先前方法均不得改变试样原始组织。

1.3.1热压镶嵌法将样品磨面朝下放入模中,树脂倒入模中超过样品高度,封紧模子并加热、加压。

渗碳层深度的测定

渗碳层深度的测定

渗碳层深度的测定〔一)剥层化学分析法取渗碳随炉的棒状试样,按每次进入深度0. 05 mm车削分别用化学分析法测定碳含量。

这种方法对渗碳中的碳浓度分析较准确,常用于调试工艺。

(二)断口法在圆试棒上开一环形缺口,随炉渗碳后出炉直接淬火,然后打断。

由于渗层碳浓度较高,肉眼观察断口呈白色瓷状细晶粒,用读数显微镜测量其深度。

此法测量误差较大。

(三)金相法1.将过共析层、共析层及亚共析层之和作为全渗碳层。

由于工艺不同碳浓度梯度在共析、过共析区域的斜率不同,按有关标准中规定:过共析层+共析层之和不得小于总渗碳层深度的40~70%,以保证过渡区不能太陡。

2.在碳钢、合金渗碳钢中,把过共析层、共析层及1/2亚共析层之和作为渗碳层总深度。

其结果与硬度法测定有效硬化层的结果相近。

3.从渗层表面测量到体积分数为50%珠光体处作为渗碳层总深度。

这种方法在实际操作中.所观察到的珠光体+铁素体区域,往往是参差不齐的,对判定50珠光体界限误差较大。

4.等温淬火后测量渗碳层深度。

18Cr2Ni4W钢属马氏体型钢,它没有平衡组织,只能在等温淬火后测其深度。

这种钢渗碳后随炉冷却,从表面至心部均为马氏体,在基体与高碳区交界处有贝氏体析出,但在金相显微镜下观察其界限不甚清晰。

一般是将试样再加热到860℃后,放人280℃等温槽,数分钟后水淬,这时对含碳量的质量分数大于0.3%的区域形成淬火马氏体,而在含碳量近0.3%区域由于Ms点较高则形成回火马氏体,金相试样侵蚀后则有明显的白色(马氏体)区和黑色(回火马氏体)区的界线。

其相关标准可见JB/T 7710-1995《薄层碳氮共渗或薄层渗碳钢件显微组织检测》等行业标准。

(四)显微硬度法(有效硬化层深度测定法)显微硬度法是从试样边缘起测量显微硬度值的分布梯度,根据GB/T 9450-1988《钢件渗碳淬火有效硬化层深度的测定和校核》的标准规定判断渗层深度。

对GB/T 9450-1988标准的应用应注意:1.有效硬化层深度是指:从零件表面到维氏硬度值为550 HV 处的垂直距离。

渗层厚度的测定

渗层厚度的测定

金相法渗层厚度的测定一、实验目的1)了解渗碳、渗氮工艺及渗碳后热处理的组织特征。

2)掌握金相法测定渗层深度的方法。

二、原理概述渗碳是将钢件置于渗碳介质中,加热到单相奥氏体区,保温一定时间使碳原子渗入钢件表面层的热处理工艺。

渗碳的目的是使钢件获得硬而耐磨的表面,同时又使心部保持一定的韧性和强度。

对于进行渗碳的钢材是碳的质量分数一般都小于0.3%的低碳钢和低碳合金钢,渗碳后的工件主要用于受严重磨损和较大冲击载荷的零件,如齿轮、曲轴、凸轮轴等。

渗碳温度一般取860~930℃,不仅使钢处于奥氏体状态,而又不使奥氏体晶粒显著长大。

近年来,为了提高渗碳速度,也有将渗碳温度提高到1000℃左右的,渗碳层的深度根据钢件的性能要求决定,一般为l mm左右。

按照渗碳介质的状态,可分为固体渗碳、液体渗碳和气体渗碳三种,常用固体和气体渗碳。

渗氮又称氮化,是指向钢的表面层渗入氮原子的过程。

其目的是提高表面层的硬度与耐磨性以及提高疲劳强度、抗腐蚀性等。

传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内, 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。

这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。

与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。

渗氮有多种方法,常用的是气体渗氮和离子渗氮。

目前生产中多采用气体渗氮法。

1.渗碳工艺将渗碳件置入具有活性碳气氛中加热到860~930℃,保温一定时间,再将渗碳后的钢件按照性能要求不同,进行不同的热处理工艺有直接淬火、一次淬火和二次淬火三种。

钢铁零件渗氮层深度测定和金相组织检验

钢铁零件渗氮层深度测定和金相组织检验

钢铁零件渗氮层深度测定和金相组织检验下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!钢铁零件的品质往往决定了整个设备的使用寿命和性能表现。

渗碳淬火硬化层深度检测标准

渗碳淬火硬化层深度检测标准

渗碳淬火硬化层深度检测标准渗碳淬火是一种常用的表面处理方法,用于提高金属材料的硬度和耐磨性。

在渗碳淬火过程中,碳原子会渗透到金属表面,并与金属原子结合形成碳化物,从而形成硬化层。

硬化层的深度是评估渗碳淬火质量的重要指标之一。

渗碳淬火硬化层深度的检测标准主要有以下几种方法:1. 金相显微镜观察法:这是一种常用的检测方法,通过金相显微镜观察样品的横截面,可以清晰地看到硬化层的深度。

通常,硬化层的深度应符合相关标准要求。

2. 显微硬度计测量法:显微硬度计是一种常用的硬度测试仪器,可以测量材料的硬度。

通过在硬化层上进行一系列硬度测试,可以确定硬化层的深度。

通常,硬化层的深度应达到一定的数值范围。

3. 金相腐蚀法:金相腐蚀是一种将试样浸泡在特定腐蚀液中,以观察和测量试样表面的腐蚀情况的方法。

通过在硬化层上进行金相腐蚀实验,可以确定硬化层的深度。

通常,硬化层的深度应达到一定的腐蚀程度。

4. 电子显微镜观察法:电子显微镜是一种高分辨率的显微镜,可以观察到非常细小的结构。

通过在硬化层上使用电子显微镜观察,可以清晰地看到硬化层的深度。

通常,硬化层的深度应达到一定的微米级别。

以上是常用的渗碳淬火硬化层深度检测标准方法。

在实际应用中,可以根据具体情况选择合适的检测方法。

同时,还需要注意以下几点:1. 检测设备的准确性和精度:选择合适的检测设备,并确保其准确性和精度。

只有准确的检测结果才能有效评估渗碳淬火的质量。

2. 标准要求的合理性:检测标准应该合理,符合实际应用需求。

标准要求过高或过低都会影响渗碳淬火的质量评估。

3. 检测结果的可靠性:在进行检测时,需要保证样品的代表性和一致性。

只有可靠的检测结果才能准确评估渗碳淬火的质量。

总之,渗碳淬火硬化层深度的检测标准是评估渗碳淬火质量的重要指标之一。

通过选择合适的检测方法,并注意检测设备的准确性和精度,以及标准要求的合理性和检测结果的可靠性,可以有效评估渗碳淬火的质量。

这对于提高金属材料的硬度和耐磨性具有重要意义。

20钢铁材料渗层深度测定及组织检验

20钢铁材料渗层深度测定及组织检验

第四节钢铁材料渗层深度测定及组织检验一、渗碳层检测钢的渗碳层检测包括渗碳层深度测定和渗碳层组织检验。

渗碳层深度检测方法有金相法、硬度法、断口法、剥层化学分析法,其中硬度法是仲裁方法。

(一)金相法一般来说,以过共析层+共析层+(1/2)亚共析过渡层之和作为总渗碳层深度,常用于碳钢;以过共析层+共析层+亚共析过渡层之和作为总渗碳层深度,常用于合金渗碳钢。

以上两种试样应为退火状态。

(二)硬度法硬度法是从试样边缘起测量显微硬度分布的方法。

执行标准为GB/T9450-2005《钢件渗碳淬火有效硬化层深度的测定与校核》和GB/T9451-2005《钢件薄表面总硬化层深度或有效硬化层深度的测定》。

被检测试样应在渗碳、淬火后采用维氏硬度试验方法进行,淬硬层深度是指从零件表面到维氏硬度值为550HV1处的垂直距离。

渗碳层的深度就是渗碳淬火硬化层深度,用CHD表示,单位为mm,如CHD=0.8mm;测定维氏硬度时试验力为1kg();硬度测试应在最终热处理后的试样横截面上进行。

测试时,一般宽度在1.5mm的范围内,垂直于渗碳层表面沿着两条平行线呈之字形打压痕,在一条直线上两相邻压痕的距离S不小于压痕对角线的倍,两条直线上相错位的压痕间距不应超过0.1mm。

测量压痕中心至试样表面的距离精度应在±μm的范围内,每个压痕对角线的测量精度应在±μm以内。

在适当条件下,可使用至HV1的试验力进行试验,并在足够的放大倍数下测量压痕。

测试时至少应在两条硬化线上进行,并绘制出每条线的硬度分布曲线(硬度值为纵坐标,至表面的距离为横坐标),用图解法分别确定硬度值为550HV处至表面的距离,如果两数值的差≤0.1mm,则取二者的平均值作为淬硬层深度,否则应重复试验。

上述方法适用于渗碳和碳氮共渗淬火硬化层,距表面3倍于硬化层深度处硬度值小于450HV且硬化层深度大于0.3mm的零件。

经协议各方协商,对于距表面3倍于硬化层深度处硬度大于450HV的钢件,可以选择硬度值大于550HV(以25HV为一级)的某一特定值作为界限硬度;可以使用其它维氏硬度载荷;也可以使用努氏硬度。

20钢铁材料渗层深度测定及组织检验.doc

20钢铁材料渗层深度测定及组织检验.doc

第四节钢铁材料渗层深度测定及组织检验一、渗碳层检测钢的渗碳层检测包括渗碳层深度测定和渗碳层组织检验。

渗碳层深度检测方法有金相法、硬度法、断口法、剥层化学分析法,其中硬度法是仲裁方法。

(一)金相法一般来说,以过共析层+共析层+(1/2)亚共析过渡层之和作为总渗碳层深度,常用于碳钢;以过共析层+共析层+亚共析过渡层之和作为总渗碳层深度,常用于合金渗碳钢。

以上两种试样应为退火状态。

(二)硬度法硬度法是从试样边缘起测量显微硬度分布的方法。

执行标准为GB/T9450-2005《钢件渗碳淬火有效硬化层深度的测定与校核》和GB/T9451-2005《钢件薄表面总硬化层深度或有效硬化层深度的测定》。

被检测试样应在渗碳、淬火后采用维氏硬度试验方法进行,淬硬层深度是指从零件表面到维氏硬度值为550HV1处的垂直距离。

渗碳层的深度就是渗碳淬火硬化层深度,用CHD表示,单位为mm,如CHD=0.8mm;测定维氏硬度时试验力为1kg(9.807N);硬度测试应在最终热处理后的试样横截面上进行。

测试时,一般宽度在1.5mm的范围内,垂直于渗碳层表面沿着两条平行线呈之字形打压痕,在一条直线上两相邻压痕的距离S不小于压痕对角线的2.5倍,两条直线上相错位的压痕间距不应超过0.1mm。

测量压痕中心至试样表面的距离精度应在±0.25μm的范围内,每个压痕对角线的测量精度应在±0.5μm以内。

在适当条件下,可使用HV0.1至HV1的试验力进行试验,并在足够的放大倍数下测量压痕。

测试时至少应在两条硬化线上进行,并绘制出每条线的硬度分布曲线(硬度值为纵坐标,至表面的距离为横坐标),用图解法分别确定硬度值为550HV处至表面的距离,如果两数值的差≤0.1mm,则取二者的平均值作为淬硬层深度,否则应重复试验。

上述方法适用于渗碳和碳氮共渗淬火硬化层,距表面3倍于硬化层深度处硬度值小于450HV且硬化层深度大于0.3mm的零件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淬回火零件渗碳层深度的金相法测定
陈静,易琨
(东风汽车电气公司,襄樊441021)
摘要:金相法测定渗碳层深度要求试件必须为退火状态。

采用金相法对淬火+低温回火状态渗碳试件进行了渗层深度的测定,并对其误差作了对比分析。

实验说明,直接用金相法测定淬火+低温回火状态的化学热处理试件渗层深度是可行性的。

关键词:淬火和回火;渗层深度;金相法测定
1 引言
渗层深度的测量有断口法、显微硬度法和金相法。

断口法仅适用于热处理炉前检查;显微硬度法能直接反映零件的力学性能,为渗层深度的仲裁方法,并有相应的国家标准[1]及行业标准[2];金相法采用渗碳后缓冷试样测定渗层,由于检测效率较高且界限明显而得到广泛使用[3]。

目前渗碳层深度的测定若是仲裁和校核则采用显微硬度法[4],一般生产控制普遍采用金相法。

我公司生产的汽车渗碳齿轮材质为20CrMo钢,采用气体渗碳,渗碳后采用预冷直接淬火+低温回火工艺,炉前检测渗碳层深度采用断口法,最终检验采用试件缓冷后的金相法。

由于试件状态与实际生产零件的不同,退火金相法测定的结果不能代表零件的最终使用状态,因此需要对预冷直接淬火+低温回火零件直接进行渗层深度测量,但是目前对淬火+低温回火零件渗碳层深度的测定尚无明确的方法与界限阐述。

2 淬回火件渗层深度金相法测量的可行性
目前国内常用的渗碳钢有20钢、20Mn钢、20Cr钢、20CrMo钢和20CrMnTi钢等,其含碳量均在低碳钢(或低碳合金钢)范围。

低碳钢与合金钢渗碳时的主要区别在于低碳钢比合金钢渗层中的碳浓度要低,其组织和硬度略有不同,但对渗碳层深度测量无影响。

由于渗碳层具有变化的碳浓度,其由表及里逐渐减小,退火状态的渗碳层由表及里由以下三个区域组成[5]:①过共析层组织为珠光体+二次渗碳体;②共析层组织为珠光体;③亚共析渗碳层过渡层,组织为珠光体+铁素体。

珠光体逐渐减少,铁素体逐渐增加,直到心部原始组织(珠光体+铁素体),渗碳缓冷试样渗碳层界限为出现铁素体组织,较容易区分。

渗碳零件采用渗碳预冷直接淬、回火工艺的一般工艺曲线如下[6]。

图1 渗碳预冷直接淬、回火工艺
由于零件自渗碳温度预冷至略高于心部A r3温度实行淬火,而此时温度也高于渗碳层各区域A r3温度,按含碳量高低分区,淬火后零件表层组织为针状淬火马氏体+残余奥氏体+颗粒状碳化物,中间层为隐针马氏体组织,里层为隐针马氏体+低碳马氏体+托氏体组织,心部组织为低碳马氏体。

低温回火后实际零件应由以下三个区域组成:
①过共析层含碳量为0.8%~1.0%,组织为针状回火马氏体+残余奥氏体+颗粒状碳化物;
②共析层含碳量为0.5%~0.8%,组织为隐针马氏体;
③亚共析渗碳层(过渡层) 含碳量为0.15%~0.5%,组织为隐针马氏体+低碳马氏体;隐针马氏体逐渐减少,低碳马氏体逐渐增加。

3 淬回火件金相法测渗碳层组织界限探讨
要对渗碳淬火+低温回火零件直接进行渗碳层深度的测量,必须先找出渗碳层的三个区域界限。

图2至图4(图中虚线为开始界限,实线为结束界限)是同一零件经渗碳淬火低温回火的渗碳层由外及里的组织照片,可以看出组织具有容易分辨的界限。

金相法检验渗碳层深度的理论,是建立在渗碳层组织的变化及其区分上的。

而含碳量在0.2%~0.3%之间淬火形成的主要是板条状马氏体,含碳量在0.6%~0.8%之间淬火形成的主要是针状马氏体[7]。

若用淬火低温回火试样直接测量渗碳层深度,理论上以组织出现低碳马氏体作为判定界限。

图2 过共析层组织(针状回火马氏体+残余奥氏体+颗粒状碳化物) 180×
图3 共析层组织(隐针马氏体) 180×图4 过渡层组织(隐针马氏体+低碳马氏体) 180×
由以上渗碳热处理组织探讨及相应的组织图片分析,认为渗碳预冷淬火回火零件直接进行渗碳深度的测量是可行的,其界限分辨可以依据低碳马氏体的出现来判定。

4 渗碳层深度测量及评定
用金相法进行渗碳层深度的测量,主要就在于渗层深度界限的规定,现以低碳马氏体的出现作为依据,其界限见图5a~d,测量操作及界限分辨规定如下。

(a)(b)
(c)(d)
图5 过渡层组织及界线200×
(1)制样方法金相试样按一般方法制样,采用4%的硝酸酒精溶液侵蚀,侵蚀时间4~10s,夏天取下限,冬天取上限;试样侵蚀后立即用水冲洗,快速用脱脂棉蘸酒精轻轻擦拭磨面后吹干。

(2)界限规定在光学显微镜下判定界限时,以出现发亮的板条状马氏体为界限。

(3)渗层深度测量时混淆组织的判别如下:
碳化物:一般在零件边缘出现,光学显微镜下呈白亮色的棱角块状,有时呈网状分布,在零件尖角处更多;显微硬度高。

铁素体:一般在零件中间部位出现,光学显微镜下呈白亮色的块状,一般不呈网状分布,亮度较碳化物弱一些,显微硬度低。

有碳化物出现的区域不会有铁素体存在。

残余奥氏体:一般在零件边缘随碳化物、针状或隐针马氏体出现,光学显微镜下呈亮色,亮度较铁素体更弱一些,充填针状马氏体针叶之间的空隙。

按以上方法对渗碳层深度进行测量,并对同一状态、同一观察部位的试样采用显微硬度法进行对比测量,对近两年来的渗碳深度要求为0.2~014mm,0.4~0.8mm,0.7~1.0mm和0.9~115mm的渗碳件进行了多次重复测量,渗层深度的测量结果均值对比见表1。

可以看出,采用直接金相法测量渗碳层深度的误差
一般<5%,只在渗层深度<0.3mm时误差较大,采用退火试样金相法测量渗碳层深度的一般误差为5%。

5 说明
本方法适用于合金钢或低碳钢的渗碳、碳氮共渗零件,渗氮层深度测定亦可参照使用,只是渗氮层表面多了一层白亮层。

由于合金钢与低碳钢渗碳后组织在光学显微镜下极其相似,划界方法相同。

界限判定推荐放大倍数为100倍,也可在其它≤400的放大倍数下进行。

放大倍数太高,组织粗化、明度减弱,不利于界限的确定。

在有显微硬度计的场合,可以以本方法作为日常测定,把握有困难时采用显微硬度法作为仲裁测定。

对于不同渗碳钢界限的三种规定与退火试样金相法检测时界限的三种规定一致,即①合金渗碳钢
以过共析、共析和过渡层三者之和作为渗碳层深度。

②碳素渗碳钢以过共析、共析和过渡层的1/2三者之和作为渗碳层深度。

③含铬的渗碳钢以过共析、共析和过渡层的2/3三者之和作为渗碳层深度。

6 结论
采用淬火+低温回火试样的直接金相法可以测量≥0.3mm渗碳层深度,其误差<5%,完全能够满足一般生产需要。

测量<0.3mm渗碳层深度时误差较大,应谨慎使用。

采用直接金相法(淬火回火试样)测量渗碳层深度,可以在同一个试样上观察零件淬火回火金相组织和测量渗碳层深度,提高了实验效率。

本方法可以对实际零件直接进行渗碳层深度的测量,在对零部件进行失效分析时十分方便。

相关文档
最新文档