对Δ算符运算规则的讨论及介绍一些有用的张量微分公式

对Δ算符运算规则的讨论及介绍一些有用的张量微分公式
对Δ算符运算规则的讨论及介绍一些有用的张量微分公式

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

第五章 力学量的算符表示

137 第5章 力学量的算符表示 §5.1 算符及其运算规则 在第二章中,已经引入了算符的概念,动量算符和哈密顿量算符分别为 ?-= i ?p (5.1.1) )(2?22 r V m H +?-= (5.1.2) 在量子力学中,算符表示对它后面的波函数的一种运算或者操作,上述的动量算符与哈密顿算符皆表示对其后面的波函数的微商运算,本 章的后面将引入的宇称算符π ?则表示对其后面的波函数的一种操作,即把波函数中的坐标变量改变一个符号。由算符化规则可知,物理上可观测的力学量(例如,坐标、动量、角动量和能量等)与相应的算符相对应,并要求相应的算符为线性厄米特算符,力学量的取值情况由相应算符满足的本征方程的解来决定。 §5.1.1 算符及其运算规则 1、线性算符

138 满足下列运算规则 22112211??)(?ψψψψA c A c c c A +=+ (5.1.3) 的算符A ?,称之为线性算符,其中,21,c c 是两个任意复常数,21,ψψ是两个任意的波函数。在量子力学中,可观测量对应的算符都是线性算符,这是状态叠加原理所要求的。如无特殊声明,下面所涉及到的算符皆为线性算符。 2 、单位算符 若对任意的波函数ψ,算符I ?满足 ψψ=I ? (5.1.4) 则称I ?为单位算符。 3、 算符之和 若对任意的波函数ψ,下式 ψψψB A B A ??)??(+=+ (5.1.5) 总是成立,则称算符B A ??+为算符A ?与算符B ?之和。算符的加法运算满足交换律和结合律,即 A B B A ????+=+ (5.1.6) C B A C B A ?)??()??(?++=++ (5.1.7) 4、 算符之积 两个算符A ?和B ?之积记为)??(B A ,对任意的波函数ψ,算符)??(B A 的作用定义为下列运算 )?(?)??(ψψB A B A = (5.1.8)

微积分的基本运算

第4章微积分的基本运算 本章学习的主要目的: 1.复习高等数学中有关函数极限、导数、不定积分、定积分、二重积分、级数、方程近似求解、常微分方程求解的相关知识. 2.通过作图和计算加深对数学概念:极限、导数、积分的理解. 3.学会用MatLab软件进行有关函数极限、导数、不定积分、级数、常微分方程求解的符号运算; 4.了解数值积分理论,学会用MatLab软件进行数值积分;会用级数进行近似计算. 1 有关函数极限计算的MatLab命令 (1)limit(F,x,a) 执行后返回函数F在符号变量x趋于a的极限 (2)limit(F,a) 执行后返回函数F在符号变量findsym(F)趋于a的极限 (3)limit(F) 执行后返回函数F在符号变量findsym(F)趋于0的极限 52

53 (4)limit(F,x,a,’left’) 执行后返回函数F 在符号变量x 趋于a 的左极限 (5)limit(F,x,a,’right’) 执行后返回函数F 在符号变量x 趋于a 的右极限 注:使用命令limit 前,要用syms 做相应符号变量说明. 例7 求下列极限 (1)42 20 x cos lim x e x x -→- 在MatLab 的命令窗口输入: syms x limit((cos(x)-exp(-x^2/2))/x^4,x,0) 运行结果为 ans =-1/12 理论上用洛必达法则或泰勒公式计算该极限: 方法1 =-+-=---=-- - →- →-→2 2 222 20 x 3 22 x 4 2 20 x 12cos lim 4) (sin lim cos lim x x e e x x x e x x e x x x x x 12112112)2(2 lim 1211cos lim 222 220x 2 2 22220 x -=--+=--++-- →- - →x x x e x x x x x e e x 方法2 4 42 224420x 4 2 20 x ))(2) 2()2(1()(!421lim cos lim x x o x x x o x x x e x x +-+---++-=-→- →

含有新算符的代数运算规则学习的有效样例设计-心理学报

心理学报 2013, Vol. 45, No.10, 1104?1110 Acta Psychologica Sinica DOI: 10.3724/SP.J.1041.2013.01104 收稿日期: 2012-09-27 * 国家自然科学基金面上项目资助(项目批号:30970888)。 通讯作者: 张奇, E-mail: zq55822@https://www.360docs.net/doc/6c2905313.html, 含有新算符的代数运算规则学习的 有效样例设计* 张 华 曲可佳 张 奇 (辽宁师范大学心理学院, 大连 116029) 摘 要 为了探索含有新算符的代数运算规则学习的有效样例设计方式, 分别采用“转换标记法”和“解释法”设计“指-对数转换”运算和对数运算的样例, 考察了初中三年级学生代数运算规则样例学习的迁移效果。结果显示:(1)采用“转换标记法”设计的样例可以明显提高“指-对数转换”规则样例学习的迁移效果; (2)采用“解释法”设计的运算样例, 能够明显促进“对数运算规则”的样例学习迁移效果, 并与被试的基础知识有关。 关键词 新算符; 指-对数转换规则; 对数运算规则; 转换标记法; 解释法 分类号 B849:G44 1 问题提出 早期的样例学习研究关注的是问题解决样例的学习对问题解决的促进作用。有研究发现(Cooper & Sweller, 1987), 与单纯的问题解决练习相比, 学习问题解决的样例能够减轻学生的认知负荷, 有助于问题解决规则的学习与运用或问题解决图式的获得。在问题解决的样例学习中, 如果被试不能很好地理解其中的原理或规则, 就倾向于使用一般的问题解决策略(如手段-目的分析)和一些表面策略(如复制-修改策略, copy-and-adapt) (Renkl & Atkinson, 2007), 而这些策略往往会增加外在认知负荷, 影响问题的解决。因此, 在问题解决的样例学习中, 如何根据具体的问题情境, 掌握和运用具体的解题规则是至关重要的(Renkl, Hilbert, & Schworm, 2009)。Carroll (1994)对高中生数学样例学习的研究发现, 高分组学生能够从样例中更快地概括出其中的规则并应用于问题解决中, 而低分组的被试则难以进行规则的总结和相似问题的解决。Renkl (2002)的研究也发现, 成功的学习者在样例学习时所经常使用的一个自我解释策略就是基于规则进行推理, 即试图去确定样例中的目标结构并对达到目标的规则进行精细加工。这些样例学习的研究结果表明, 问题解决样例学习的关键是能否领悟和正确运用隐含在样例中的问题解决规则。 为了帮助学生更好地领悟和运用隐含在样例中的问题解决规则, 学者们已经开发出一些样例设计方法, 例如:子目标编码(Catrambone, 1996; 邢强, 莫雷, 2002; 张奇, 林洪新, 2005)、完整与不完整的样例(Atkinson & Renkl, 2007)、样例学习的自我解释(Chi, Bassok, Lewis, Reimann, & Glaser, 1989)、正误样例的对比(Kopp, Stark, & Fischer, 2008; Tsovaltzi, Melis, McLaren, Meyer, Dietrich, & Goguadze, 2010)、正误样例的组合(Gro βe & Renkl, 2007), 等等。这些样例设计方法在问题解决样例的学习中发挥了一定的作用, 并得到一些实验的证实。 可是, 如果在数学运算样例中出现被试没有学习过的新的代数运算符号(以下简称为“新算符”)时, 由于被试不理解新算符的运算涵义, 就影响了样例学习的效果。例如, 在小学生代数运算规则的样例学习研究中发现, 六年级学生中只有少数被试能够

导数公式及其运算法则

§1.2.2基本初等函数的导数公式及导数的运算法则(两课时) 学习目标 1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 3.复合函数的分解,求复合函数的导数. 一、预习与反馈(预习教材P 14~ P 19,找出疑惑之处) 复习1:常见函数的导数公式: (1) '____C =(C 为常数);(2)()'________n x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =; (7)(ln )'______x =; (8) e x x a a log 1)'(log = 复习2:根据常见函数的导数公式计算下列导数 (1)6y x = (2 )y = (3)21y x = (4 )y = 新知 1.可导函数的四则运算法则 法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差). 法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)() u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)

例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x =-++导数. 变式:( 1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =- 例2求下列函数的导数: (1)32log y x x =+; (2)n x y x e = (3)y=2e -x 2. 复合函数: 1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住 2.复合函数的求导法则 复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。 例。3 求下列函数的导数: (1)2(23)y x =+; (2)1x y e -+=; (3)sin()y x π?=+

哈密顿算符的运算规则

哈密顿算符的运算规则 厦门大学物理系李明哲 【摘要]本文从哈密顿算符的定义出发,根据哈密顿算符的性质.给|_}{哈离顿算符完整、统…的运算规划,以克服现有物理教剩书中该算符运算规则升;…‘致的缺点,进而帮助学习者更好地掌握该算符。 【关键词】晗密顿算符运算规则场论 物理学中处理“场”的问题时,熟练掌握哈鬻顿算符非常关键。例如。本科《电动力学》整门谋程在菜种程度上可以说就是利用哈密顿算符的性质处理壹克斯市方程组的。该课程被物理系的本科生视为最难的谋私之。,实质原幽在于对晗密顿算符的运算掌握ai好。所以,在正式学习该课程之前,总是需要先温习这部分知识。 然而,~些常用教科书(例如《电动力学》…)在舟绍哈密顿算符的运算规则时并没有给出宠籀、统一、清晰的规则,导致读肴不耪理解和掌握;而另外一然教科书(例如《经典电动力学》“)则直接将其列为公式,并未给山证明,读者遇到列出的公式之外的运算就无法进行,当然也就无法真正掌握。 本文希望能克服这一不足之处,从哈密顿算符豹定义出发,分析暗密顿算符的两个报本性质,并由此给出一套哈密顿算符的完整、统…的运算规则。 一、哈密顿算符的定义 哈密顿算符定义为: 甲=磋+瑶+礓 ∞W∞ 由上图可以看出算符同时具有失罱性和微分性两个根本性质,所以在其运算过程中要同时j主意这两方面的性质。由该定义,场的梯度、教度和旋度可以分别理解为算符V直接作用、点乘和义乘该场。 二、哈密顿算符的运算规则 根姑前商晗密顿算符的定义和性质的分析,哈密顿算符的运算规则为: 步骤1.根据口的微分性写成几项,在V的下标标明算符V作用于哪个函数上。 步骤2.将甲看成….个矢量,利用失?90?量和标量的性质重新排列,使得甲叫纠。【即舻+∥l纠(41)墨繁慕嚣翌霈善v㈤:嗽7+四回㈣面。排列时注意汛注意各符号7够』2V掣;歹+掣Vjq纠荽嚣差耋篁嚣兰嚣置。和,。㈤书曲。刊v。刁㈤X的位置;b.注意正负号。…惮,一t’…,“,1…~’“o,…叫:≤凳耋耋耋0等萝二墓v西司:i婶x7卜7p函")三个运算步骤充分体现了哈密…叫。、 叫。㈩’’ 篓苎篓竺翌0警烹性质?以下举F×西裔:善形.(V疆+p裔再旷v蓐(45)例示范这三个步骤: …“”’…、……。。 步骤1.类似于做微分运算。例如: V啦曲=口,缸¨+已∞∽(21) v∞却,㈤+v㈤(2.2) vx∞=F,x∞+L×∞o.3) V晒=V,嘲+v,黼儡4) 9xB西=Dx|7硝+V。×∞西让5) 步骤2.常用的矢量性质有: 于将看成个矢量,然后还需注意正在 处理的是矢量和标量的点乘(标秘)和叉 乘(矢积)等逛算。它是有别于数乘的。掌 握了.匕述哈密顿算符的运葬规则,对物 理学中场的问题的处理就能够得心应手 了。 于喜=g,,/xg=一gx, 7Ex茅)=;F×动=≯F×动,A管×习:矿疆一萨蕊例如:V,扣囝十V,(£f计=妒∥≯+“0∽o1) 甲,翰+o㈤=帆∞丸妒,回(32) ox㈤+巧x∞=盹办丸毋,×另 0x够j+巧x㈣=R咖,十心,×力(3筇 LVx鲫+可lp×g)=gP,x,J一,甲lx酣(34)÷÷_—}{,■~●—*÷,.h●__ V,x扩。g)+Vjx矿。gj=培,V,弦一p,j,)g+审,g驴一VV,量(35) 步骤3壤简单,抹玉的下标即可-所参考文献 以,由(2.1)~(2.5)和(3.1)一(3.5)得【1]郭硕鸿.电动力学【M】.北京:高总结;由以L哈密顿V算符的运算等教育出版社.1997 规则的三个步骤可以看出,第二二步垠容【2]蘩圣善,束耘经典电动力学【M】,崭出错。在做这一步运算时茸先要习惯t海:复旦夫学出版社,1985※  万方数据

编译原理 六章 算符优先分析法

第六章算符优先分析法 课前索引 【课前思考】 ◇什么是自下而上语法分析的策略? ◇什么是移进-归约分析? ◇移进-归约过程和自顶向下最右推导有何关系? ◇自下而上语法分析成功的标志是什么? ◇什么是可归约串? ◇移进-归约过程的关键问题是什么? ◇如何确定可归约串? ◇如何决定什么时候移进,什么时候归约? ◇什么是算符文法?什么是算符优先文法? ◇算符优先分析是如何识别可归约串的? ◇算符优先分析法的优缺点和局限性有哪些? 【学习目标】 算符优先分析法是自下而上(自底向上)语法分析的一种,尤其适应于表达式的语法分析,由于它的算法简单直观易于理解,因此,也是学习其它自下而上语法分析的基础。通过本章学习学员应掌握: ◇对给定的文法能够判断该文法是否是算符文法 ◇对给定的算符文法能够判断该文法是否是算符优先文法 ◇对给定的算符文法能构造算符优先关系表,并能利用算符优先关系表判断该文法是否是算符优先文法。 ◇能应用算符优先分析算法对给定的输入串进行移进-归约分析,在分析的每一步能确定当前应移进还是归约,并能判断所给的输入串是否是该文法的句子。 ◇了解算符优先分析法的优缺点和实际应用中的局限性。 【学习指南】 算符优先分析法是自下而上语法分析的一种,它的算法简单、直观、易于理解,所以通常作为学习其它自下而上语法分析的基础。为学好本章内容,学员应复习有关语法分析的知识,如:什么是语言、文法、句子、句型、短语、简单短语、句柄、最右推导、规范归约基本概念。 【难重点】 ◇通过本章学习后,学员应该能知道算符文法的形式。 ◇对一个给定的算符文法能构造算符优先关系分析表,并能判别所给文法是否为算符优先文法。 ◇分清规范句型的句柄和最左素短语的区别,进而分清算符优先归约和规范归约的区别。 ◇算符优先分析的可归约串是句型的最左素短语,在分析过程中如何寻找可归约串是算符优先分析的关键问题。对一个给定的输入串能应用算符优先关系分析表给出分析(归约)步骤,并最终判断所给输入串是否为该文法的句子。 ◇深入理解算符优先分析法的优缺点和实际应用中的局限性。 【知识点】

第三章 力学量和算符

第三章 力学量和算符 内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数 。用波函数描述粒子的运动状态。本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。我们将证实算符的运动方程中含有对易子,出现 。 § 3.1 力学量算符的引入 § 3.2 算符的运算规则 § 3.3 厄米算符的本征值和本征函数 § 3.4 连续谱本征函数 § 3.5 量子力学中力学量的测量 § 3.6 不确定关系 § 3.7 守恒与对称 在量子力学中。微观粒子的运动状态用波函数描述。一旦给出了波函数,就确定了微观粒子的运动状态。在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。一般说来。当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。当给定描述这一运动状态的波函数 后,力学量出现各种可能值的相应的概率就完全确定。利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。既然一切力学量的平均值原则上可由 给出,而且这些平均值就是在 所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。 力学量的平均值 对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2 (,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是: ()2 *(,) (,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞ ∞ -∞ -∞ = =?? 坐标r 的函数()f r 的平均值是: ()()()* (,)(,) 3.1.2f r r t f r r t dr ψψ∞ -∞ =? 现在讨论动量的平均值。显然,P 的平均值P 不能简单的写成 2(,)P r t Pdr ψ∞ -∞ = ?,因为2 (,)r t dr ψ只表示在 r r dr →+中的概率而不代表在 P P dP →+中找到粒子的概率。要计算P ,应该先找到在t 时刻,在P P dP →+中找 到粒子的概率2 (,)C P t dP ,这相当于对(,)r t ψ作傅里叶变化,而(,)C r t 有公式 给出。动量p 的平均值可表示为 但前述做法比较麻烦,下面我们将介绍一种直接从(,)r t ψ

实验七比例求和运算及微分运算电路

实验七比例求和运算及微分运算电路 一.实验目的 1.掌握集成运算放大器的特点,性能及使用方法。 2.掌握比例求和电路,微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.GOS-620模拟示波器 2.GFG-8250A信号发生器 3.台式三位半数字万用表 4.指针式交流毫伏表 5.SPD3303C直流电源 三.实验内容及步骤 1.搭接电压跟随器并验证其跟随特性,测量2-3组数据进行验证。 2.测量反向比例电路的比例系数,测量其计算值与理论值进行比较

理论值:Uo=-(R F/Ri)*Ui,ui=7mV,uo=-70mV 实际值: uo=7mV,ui=69mV 3.测量同相比例放大器的比例系数及上限截止频率 理论值:uo=-(1+RF/Ri)*ui,ui=6.9mV,uo=75.9mV 实际值:ui=6.9mV,uo=76mV 4.测量反相求和电路的求和特性,注意多路输入信号可通过电阻分压法获取 仿真值如下图所示, Ui1=3.185mV,Ui2=1.706mV,Uo=48.899mV, 满足输入与输出运算关系: Uo=-[(RF /R1)*Ui1+( RF /R2)*Ui2]

5.验证双端输入求和的运算关系

6.积分电路 如图所示连接积分运算电路,检查无误后接通±12V直流电源 ①取ui=-1V,用示波器观察波形uo,并测量运放输出电压值的正向饱和电压值 正向饱和电压值为11V ②取ui=1V,测量运放的负向饱和电压值。注意±1V的信号源可用1Hz交流信号代替 反向饱和电压值为-11V ③将电路中的积分电容改为0.1uF,ui分别输入1kHz幅值为2V的方波和正弦波信号, 观察ui和uo的大小及相位关系并记录波形,计算电路的有效积分时间。 Ui=1.414V,Uo=222.157mV

力学量和算符

第三章力学量和算符 内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数。用波函数描述粒子的运动状态。本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。我们将证实算符的运动方程中含有对易子,出现。 §3.1 力学量算符的引入 §3.2 算符的运算规则 §3.3 厄米算符的本征值和本征函数 §3.4 连续谱本征函数 §3.5 量子力学中力学量的测量 §3.6 不确定关系 §3.7 守恒与对称 在量子力学中。微观粒子的运动状态用波函数描述。一旦给出了波函数,就确定了微观粒子的运动状态。在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。一般说来。当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。当给定描述这一运动状态的波函数后,力学量出现各种可能值的相应的概率就完全确定。利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。既然一切力学量的平均值原则上可由给出,而且这些平均值就是在所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。 力学量的平均值

对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2 (,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是: ()2 * (,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞ ∞ -∞ -∞ = =?? 坐标r 的函数()f r 的平均值是: ()()() *(,)(,) 3.1.2f r r t f r r t dr ψψ∞ -∞ =? 现在讨论动量的平均值。显然,P 的平均值P 不能简单的写成 2(,)P r t Pdr ψ∞ -∞ = ?,因为2 (,)r t dr ψ只表示在 r r dr →+中的概率而不代表在 P P dP →+中找到粒子的概率。要计算P ,应该先找到在t 时刻,在P P dP →+中找 到粒子的概率2 (,)C P t dP ,这相当于对(,)r t ψ作傅里叶变化,而(,)C r t 有公式 给出。动量p 的平均值可表示为 但前述做法比较麻烦,下面我们将介绍一种直接从(,)r t ψ 计算动量平均值的方法。由(3.1.4)式得 利用公式 可以得到 记动量算符为 ?p i =-? 则 ()* ?(,)(,) 3.1.9p r t p r t dr ψ ψ∞ -∞ = ? 从而有 ()()()* ?(,)(,) 3.1.10f p r t f p r t dr ψψ∞ -∞ = ? 例如:动能的平均值是 角动量L 的平均值是

微积分公式与运算法则

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2

(2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

导数公式及其运算法则

§122基本初等函数的导数公式及导数的运算法则 (两课时) 学习目标 1. 理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2. 理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数 3. 复合函数的分解,求复合函数的导数 . 一、预习与反馈(预习教材P l4~ P l9,找出疑惑之处) 复习1:常见函数的导数公式: cosx)' ________ ; (5) (e x )' ________ ; ⑹(a x )' 1 ⑺(l nx)' ________ ; (8) (log a x)' log a e x 复习2:根据常见函数的导数公式计算下列导数 新知 1. 可导函数的四则运算法则 法则1 [u(x) v(x)]' ______________ . ( 口诀:和与差的导数等于导数的和与差 ). 法则2 [u(x)v(x)] ____________ . ( 口诀:前导后不导,后导前不导,中间是正号 ) 法则3 [凹] __________________ ( v(x) 0)( 口诀:分母平方要记牢,上导下不导,下 v(x) (1) C' _______ (C 为常数);(2) (x n )' n € N +; (3) (sin x)' ______ 6 (1)y x (2) y - x

导上不导,中间是负号) 1 例1. 根据基本初等函数的导数公式和导数运算法则,求函数 y x 3 2x 丄3导数. x 变式:(1) y log 2x ; 例2求下列函数的导数: (1) y x 3 log 2 x ; 2. 复合函数: 1. 定义:一般地,对于两个函数y =f (u )和u g(x)如果通过变量u,y 可以表示成x 的函数, 那么这个函数为函数 _________ 和 ______________ 的复合函数,记住 _____________________ 2. 复合函数的求导法则 复合函数y f(g(x))的导数和函数y =f (u ), u g(x)的导数间的关系式 为 ________________ ,即y 对x 的导数等于 _________________ 的乘积。 例。3求下列函数的导数: 2 x 1 (1) y (2x 3) ; ( 2) y e ; (3) y sin( x ) x (2) y 2e ; (3) y 2x 5 3x 2 5x 4; (4) y 3cosx 4sin x (3)y=2e -x

运算符和表达式教案

QBASIC语言程序设计之 运算符和表达式 科目:计算机 授课人:赵华 时间:20XX年10月

《运算符和表达式》教案 教学目标: 1、识记运算符的分类及表达式的定义。 2、掌握算术运算符的运算规则。 3、掌握QBASIC表达式的书写规则。 4、掌握算术表达式的求值方法。 教学重点: 1、掌握算术运算符的运算规则。 2、掌握算术表达式的求值方法。 教学难点: 1、掌握算术运算符的运算规则。 2、掌握算术表达式的求值方法。 课前巩固: 1、函数SQR(X)的功能是什么?(举例介绍) 2、函数INT(X)的功能是什么?(举例介绍) 教学内容: 一、运算符的分类 运算符表示对数据进行的具体运算。在QBASIC中分为四类:算术运算符、字符串运算符、关系运算符、逻辑运算符本节我们重点学习算术运算符和算术表达式的有关内容。 二、算术运算符 1、种类: 2、运算规则: ①^ 是乘方运算符: 例如:6^2就表示数学上的62,其值等于36。 2^-2就表示数学上的2-2,其值等于0.25。

② \ 是整除运算符: 运算功能是:如果参与运算的两个数是整数,运算结果为商的整数部分;如果参与运算的量含有小数,则系统先将它们按四舍五入转换为整数,然后再进行运算。 例1: 7 \ 2 = 3 10 \ 4 = 2 例2: 8.7 \ 5 = 1 12.37 \ 4.78 = 2 ③ MOD 是求余运算符: 运算功能是:如果参与运算的两个数是整数,运算结果为两数相除后的余数;如果参与运算的量含有小数,则系统先将它们按四舍五入转换为整数,然后相除取它们的余数。 例1: 12 MOD 5 = 2 23 MOD 4 = 3 例2: 11.7 MOD 8 = 4 13.23 MOD 4.76 = 3 三、算术表达式 1、什么叫表达式? 是指用圆括号和运算符将常量、变量和函数连接起来的式子。 2 、表达式分为哪几类? 根据运算性质不同可分为四类: 算术表达式 、 字符表达式 、 关系表达式 、 逻辑表达式 3、什么是算术表达式? 就是用圆括号和算术运算符将数值常量、变量和函数连接起来的式子。 4、怎样把代数式写成QBASIC 的算术表达式 例1: 2X + Y +6 写成QBASIC 表达式为: 2*X +Y + 6 例2:A AC 24B +B -2-写成QBASIC 表达式为: (-B+SQR (B^2-4*A*C ))/(2*A) 例3:B A y x +写成QBASIC 表达式为: (ABS (X )* ABS (Y ))/(A+B )

基本初等函数的导数公式及运算法则教案

§1.2.2基本初等函数的导数公式及导数的运算法则 一.教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点: 基本初等函数的导数公式和导数的四则运算法则的应用 三.教学过程: (一).创设情景 复习五种常见函数y c =、y x =、2y x =、1y x = 、y = 用 (二).新课讲授 1(1)基本初等函数的导数公式表

(2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2x y = (2)3x y =与3log y x = 2.(1 推论:[]' '()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)sin y x x =?;(3)2(251)x y x x e =-+?;(4)4 x x y =; 【点评】 ① 求导数是在定义域内实行的. ② 求较复杂的函数积、商的导数,必须细心、耐心. 四.典例精讲 例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 分析:商品的价格上涨的速度就是函数关系()(15%)t p t =+的导数。 解:根据基本初等函数导数公式表,有'() 1.05ln 1.05t p t = 所以'10(10) 1.05ln 1.050.08p =≈(元/年)

矩阵微分运算

矩阵微分运算 矩阵的微分运算 1 纯量对向量求导 T 1()(,,)n f f x x x x == T 1d (,,)d n f f f x x x ??=??(列向量) 2 纯量对矩阵求导 ()()d ()d i j n m n m ij f f X X x f f X x ??==?=? 3 向量对向量求导 T T 11()(,,)(,,)m n g g x g g g x x x === d ()d i m n j g g x x ??=? 4 复合函数求导 T T T 11()(),(,,),(,,),:n m f u x Ru x x x x u u u R m m ===? T T T d d [][]d d u Ru u R R u x x =+ T T T T 111()(),(,,),(,,),(, ,),:n m p f u x Rv x x x x u u u v v v R m p ====? T T T T d d d [][]d d d u Rv v u R u Rv x x x =+ T T 11(),(),(,,),(,,)n m f f y y y x x x x y y y ==== T d d d []d d d f y f x x Cy = 易知: (1)T T d d d d x x I x x == (2)d d Ax A x = (3)T d ,:d c x c c x =列向量 (4)T T d ()d x Ax A A x x =+ (5)T d 2d x x x x = 5 矩阵的迹的求导 设,,X A B 是适当维阵(不一定是方阵),但有关的乘积是方阵。

算符优先分析算法(c语言)

编译原理实验 一实验目的 设计、编制并调试一个算符优先分析算法,加深对此分析法的理解 二实验过程 先在算符栈置“$”,然后开始顺序扫描表达式,若读来的单词符号是操作数,这直接进操作数栈,然后继续读下一个单词符号。分析过程从头开始,并重复进行;若读来的是运算符θ2则将当前处于运算符栈顶的运算符θ1的入栈优先数f与θ2的比较优先函数g进行比较。 2.2 各种单词符号对应的种别码 2.3 算符优先程序的功能 完成一个交互式面向对象的算符优先分析程序,而一个交互式面向对象的算符优先分析程序基本功能是: (1)输入文法规则 (2)对文法进行转换 (3)生成每个非终结符的FirstVT和LastVT (4)生成算符优先分析表 (5)再输入文法符号 (6)生成移进规约步骤 三设计源码 算符优先分析器 #include "stdio.h"

#include "stdlib.h" #include "iostream.h" char data[20][20]; //算符优先关系 char s[100]; //模拟符号栈s char lable[20]; //文法终极符集 char input[100]; //文法输入符号串 char string[20][10]; //用于输入串的分析 int k; char a; int j; char q; int r; //文法规则个数 int r1; int m,n,N; //转化后文法规则个数 char st[10][30]; //用来存储文法规则 char first[10][10]; //文法非终结符FIRSTVT集 char last[10][10]; //文法非终结符LASTVT集 int fflag[10]={0}; //标志第i个非终结符的FIRSTVT集是否已求出int lflag[10]={0}; //标志第i个非终结符的LASTVT集是否已求出int deal(); //对输入串的分析 int zhongjie(char c); //判断字符c是否是终极符 int xiabiao(char c); //求字符c在算符优先关系表中的下标 void out(int j,int k,char *s); //打印s栈 void firstvt(char c); //求非终结符c的FIRSTVT集 void lastvt(char c); //求非终结符c的LASTVT集 void table(); //创建文法优先关系表 void main() { int i,j,k=0; printf("请输入文法规则数:"); scanf("%d",&r); printf("请输入文法规则:\n"); for(i=0;i

微分概念及其运算

§2 微分概念及其运算 设()y f x =在x 点可导,即下面的极限存在: '()f x =0lim x y x ?→??=0lim x ?→()()f x x f x x +?-? 因此 y x ??='()f x +α,其中0α→(0x ?→), 于是 y ?='()f x x x α?+?='()()f x x o x ?+?,0x ?→ (函数的增量y ?=(x ?的线性函数)+)(x o ?) 物理意义:如果把()y f x =视为时间x 时所走过的路程, x ?时间内所走过的路程y ? =以匀速()f x '运动所走过的路程()f x 'x ? +因为加速度的作用而产生的附加路程)(x o ? 定义 4.2 设()y f x =在(,)a b 有定义,如果对给定的x ∈(,)a b ,有 y ?=()f x x +?-()f x =A x ?+()o x ?,(0x ?→) 其中A 与x ?无关,则称()f x 在x 点可微,并称A x ?为函数()f x 在x 点的微分,记为 dy =A x ? 或 ()df x =A x ? 由前面的讨论得 微分具有两大重要特征: 1) 微分是自变量的增量的线性函数; 2) 微分与函数增量y ?之差dy y -?,是比x ?高阶的无穷小量. 因此,称微分dy 为增量y ?的线性主要部分。 事实上当dy 0≠时 ()f x 在x 点可导?()f x 在x 点可微

0lim x y dy ?→?=0lim x ?→()dy o x dy +?=0lim x ?→()(1)o x A x ?+?=1 即y ?与dy 是等价无穷小量。 注1 系数A 是依赖于x 的,它是x 的函数, 注2 微分dy 既与x 有关,又与x ?有关,而x 和x ?是两个互相独立的 变量,但它对x ?的依赖是线性的. 例1 自由落体运动中,21()2 s t gt = s ?=()()s t t s t +?-=2211()22g t t gt = +?- 21(2())2g t t =+?=21()2 gt t g t ?+? 即s ?可表为t ?的线性函数和t ?的高阶无穷小量之和,由微分定义知,()s t 在t 点可微,且微分 ds gt t =? 它等于以匀速()s t '=gt 运动,在t ?时间内走过的路程. 例2 圆面积2y R π=, y ?=2()R R π+?一2R π=22()r R R ππ?+?. y ?可表示为R ?的线性函数与R ?的高阶无穷小之和,故函数在R 可微,且微分 2dy R R π=? 从几何上看,微分可以这样理解: R π2是圆周长,当半径R 变大即圆面积膨胀时,设想圆周长保持不变,半径增大R ?所引起的圆面积变化就是2R R π?。 这就是圆面积的微分,它与R ?成正比,与圆面积真正的变化之差是较R ?高阶的无穷小,当然圆不可能保持周长不变而膨胀,这只是一种设想而已,但当R ?很小时,两者之差就更小了。 例3 设正方形的边长为x ,则面积为 2 ()f x x =

基本运算电路比例积分微分

第一节基本运算电路 一、比例运算电路 比例运算电路有反相输入、同相输入和差动输入三种基本形式。1.反相比例运算电路 ·平衡电阻――使两个差分对管基极对地的电阻一致,故R 2 的阻值为 R 2=R 1 //R F 反相比例运算电路 ·虚地概念 运放的反相输入端电位约等于零,如同接地一样。“虚地”是反相比例运算电路的一个重要特点。 可求得反相比例运算放大电路的输出电压与输入电压的关系为 反相比例运算电路的输入电阻:由于反相输入端为“虚地”,显然电路的输 入电阻为 R i =R 1 。 反相比例运算电路有如下几个特点: ①输出电压与输入电压反相,且与R F 与R 1 的比值成正比,与运放内部各项 参数无关。当R F =R 1 时,u O =-u I ,称为反相器。 ②输入电阻R i =R 1 ,只决定于R 1 ,一般情况下反相比例运算电路的输入电阻 比较低。 ③由于同相输入端接地,反相输入端为“虚地”,因此反相比例运算电路没有共模输入信号,故对运放的共模抑制比要求相对比较低。 2.同相比例运算电路 利用“虚短”和“虚断”,可得输出电压与输入电压的关系为

同相比例运算电路有如下几个特点: ①输出电压与输入电压同相,且与R F 与R 1 的比值成正比,电压放大倍数 当R f =∞或R 1 =0时,则u O =u I 。这种电路的输出电压与输入 电压幅度相等、相位相同,称为电压跟随器,又称为同相跟随器。 ②同相比例运算电路的输入电阻很高。由于电路存在很深的负反馈实际的输入电阻要比R id 高很多倍。 ③同相比例运算电路由于u +=u - 而u + =u I ,因此同相比例运算电路输入端 本身加有共模输入电压u IC =u I 。故对运放的共模抑制比相对要求高。 无论是反相比例运算电路还是同相比例运算电路由于引入的是电压负反馈(详细分析见第七章),所以输出电阻R o 很低。 3.差分比例运算电路 利用“虚短”和“虚断”,即i +=i - =0、u + =u - ,应用叠加定理可求得 当满足条件R 1=R 2 、R F =R 3 时, 电路的输出电压与两个输入电压之差成正比,实现了差分比例运算。 电路的差模输入电阻为R i =2R 1 。 缺点:对元件的对称性要求较高,外接电阻要求精密匹配,即使选用误差为±0.1%的电阻,也往往不能满足要求。在要求改变运算关系时,又必须同时选配两对高精密电阻,非常不方便。输入电阻不够高。 4.比例电路应用实例 二、加法电路

相关文档
最新文档