垂径定理—知识讲解(提高).docx
垂径定理优秀课件

((对C如D2称1⊥))图轴A你这,B垂 平是,能个A什B垂分径发图是么足弦定现形⊙?为所图是O理的E对中轴:一.有对的条垂哪称两弦直些图条,于相形弧作等吗弦直.的?的径线如直C段果D径,和是使平,分它弦的,并
弧?为什么?
A.1个 B.2个
C.3个
D.4个
双基训练
4. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C )
A.2cm B. 3cm C. 2 3cm D. 2 5cm
5.已知点P是半径为5的⊙O内
O
的一定点,且OP=4,则过P
点的所有弦中,弦长可能取 A
B
的整数值为( C )
(4)平分弦所对的优弧
D
(5)平分弦所对的劣弧
注意:当具备了(2)(3)时,应对另一
条弦增加”不是直径”的限制.
垂径定理的几个基本图形:
C
O
A
A
E
B
D
A
O
D
B
C
D
B
O
A
C
O
C
B
判断下列图形,能否使用垂径定理?
C
A
O E
B
D C
A
O E
B
( )(1)垂直于弦的直线平分这条弦, 并且平分
弦所对的两条弧.
∴四边形ADOE为矩形,
AE
1 2
AC,AD
1 2
AB
又 ∵AC=AB
C
∴ AE=AD
E
·O
∴ 四边形ADOE为正方形.
A
D
B
在直径是20cm的⊙O中,A⌒B的度数是60˙,
第3章 3.3 垂径定理

垂足为 N,则 ON=( A )
A.5
B.7
C.9
D.11
如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB=8 cm,
OC=5 cm,则 OD 的长是( A )
ห้องสมุดไป่ตู้
A. 3 cm
B. 2.5 cm
C. 2 cm
D. 1 cm
如图,CD 为⊙O 的直径,弦 AB⊥CD,垂足为 M.若 AB=12,
OM∶MD=5∶8,则⊙O 的周长为( B )
A.26π
B.13π
C.956π
D.39 5 10π
二、填空题
如图,⊙O 的直径 AB 垂直于弦 CD , 垂足为 E , 若∠COD
=120°,OE=3 厘米,则 CD= 66 3
厘米.
如图,AP=4,BP=6,OP=5,则⊙O 的半径= 7 7 .
积为 6 .
三、解答题 如图是某公园新建的圆形人工湖,为测量该湖的半径,小强和 ︵︵ 小丽沿湖边选取 A,B,C 三根木桩,使得AB=BC,并测得 点 B 到 AC 的距离为 15 米,AC 的长为 60 米,请你帮他们求 出人工湖的半径.
解:如图,设点 O 为圆心, 连接半径 OA,OB,
设 OB 交 AC 于点 D.
即 AC=BD.
(2)若大圆的半径 R=10,小圆的半径 r=8,且圆心 O 到直线 AB 的距离为 6,求 AC 的长.
解:由(1)可知,OE⊥AB,OE⊥CD, 如图,连接 OC,OA. ∵OE=6,
∴CE= OC2-OE2= 82-62=2 7, AE= OA2-OE2= 102-62=8. ∴AC=AE-CE=8-2 7.
∵A︵B=B︵C, ∴OB⊥AC,AD=CD=30 米.
垂径定理讲解

垂径定律1.定义垂径定理(Vertical Theorem)的通俗表达是:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
用数学语言表示,如果在一个圆中,直径DC垂直于弦AB于点E,则弦AB被点E平分(即AE=EB),且弦AB所对的两段弧AD和BD(包括优弧和劣弧)也被平分2.性质垂径定理包含多个重要的性质和推论,这些性质和推论在解决与圆相关的几何问题时非常有用。
1)基本性质:平分弦:垂直于弦的直径将弦平分为两段相等的部分。
平分弧:该直径还平分弦所对的两条弧,无论是优弧还是劣弧。
推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。
这个推论是垂径定理的逆命题之一,它表明如果一条直径平分了一条非直径的弦,那么这条直径必然垂直于这条弦,并且平分弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。
这个推论进一步强化了垂径定理与圆的中心性质之间的联系,指出弦的垂直平分线不仅平分弦,还经过圆心,并平分弦所对的弧。
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
这个推论是垂径定理的另一种逆命题形式,它说明如果一条直径平分了弦所对的一条弧,那么这条直径也垂直平分这条弦,并平分弦所对的另一条弧。
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。
这个推论虽然不直接由垂径定理推导出来,但它与垂径定理共同构成了圆内线段和弧之间关系的重要框架。
平行弦的性质与垂径定理相结合,为解决复杂的圆内几何问题提供了有力工具。
3.数学证明垂径定理的证明通常依赖于圆的基本性质,如半径相等、等腰三角形的性质等。
以下是一个简化的证明过程:设⊙O为给定的圆,DC为⊙O的直径,AB为⊙O内的一条弦,且DC⊥AB于点E。
连接OA和OB。
由于OA和OB都是⊙O的半径,所以OA=OB。
△OAB是一个等腰三角形,因为两边相等(OA=OB)。
由于AB⊥DC,根据等腰三角形的性质,等腰三角形底边上的高、中线和顶角的角平分线重合。
垂径定理_精品文档

垂径定理垂径定理是数学几何中的一个重要定理,它解决了直径垂直于弦的问题。
在几何形体中,直径和弦是常见的概念。
定义在一个圆中,如果某条直径与一条弦垂直相交,那么这条直径被称为垂径。
理论证明假设我们有一个圆,直径为AB,弦为CD,且垂直相交于E点。
我们需要证明AE与BE相等。
首先,连接AC和BD,并延长直线AC和BD,分别交于F和G点。
根据垂直与切线的性质,可以得出四个直角三角形:AEC、EDB、AFB和EGC。
我们需要利用这四个直角三角形的性质来推导出AE与BE相等。
首先考虑直角三角形AEC和EDB,这两个三角形共有一边AE,因此我们可以利用直角三角形的边长关系依次得到以下两个等式:AE^2 + CE^2 = AC^2 (1)BE^2 + DE^2 = BD^2 (2)接下来考虑直角三角形AFB和EGC,这两个三角形也共有一边AE,而它们还有两边分别是FA、AG和GE、EB。
由于直角三角形的边长关系,我们可以得到以下两个等式:FA^2 + AE^2 = AF^2 (3)AG^2 + AE^2 = AG^2 (4)根据圆的性质,直径的两个端点到圆心的距离相等,即AC = BD。
由于AC = BD,我们可以将等式(1)和(2)进行简化:AE^2 + CE^2 = BD^2 (5)BE^2 + DE^2 = BD^2 (6)由于等式(5)和(6)左侧都包含AE,我们将它们相减,可以得到:AE^2 + CE^2 - (BE^2 + DE^2) = 0再根据等式(3)和(4)可以得到:FA^2 + AE^2 - (AG^2 + AE^2) = 0整理等式得到:FA^2 - AG^2 + CE^2 - DE^2 = 0化简得到:(FA^2 - AG^2) + (CE^2 - DE^2) = 0根据差的平方公式,我们可以进一步得到:(FA + AG)(FA - AG) + (CE + DE)(CE - DE) = 0将FA + AG替换为FG,CE + DE替换为CD,可以得到:FG * CD + FG * CD = 0进一步整理得到:2 * FG * CD = 0由于FG和CD都是正值,所以只能有FG = 0。
垂径定理 【完整版】

垂直于弦的直径【学习目标】1.能记住圆是轴对称图形,并能正确说出圆的对称轴;2.理解垂径定理及推论,并能应用它解决一些简单的计算、证明和作图问题;3.灵活运用垂径定理解决有关圆的问题。
【重点难点】重点:理解垂径定理及推论,并能应用它解决一些简单的计算、证明和作图问题。
难点:灵活运用垂径定理解决有关圆的问题。
【课堂探究】一、互动课堂(探究与合作)探究点1:圆的对称性1.动手做一做:请大家拿着桌上的圆形纸片,用对折的方法,在纸片上找出圆心O,并画出圆的任意一条直径CD,A是⊙O上任意一点(不与点C、D重合),过点A作AB⊥CD,交⊙O于点B,垂足为E,连接OA、OB.在对折找圆心的过程中,我们发现:任意折痕(即圆的直径所在的直线)两旁的部分能够完全重合2.通过上面的探究,你能得出结论:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,圆有B 无数条对称轴.3.问题:如图,AB是⊙O的一条弦,直径CD⊥AB,垂足为 E.你能发现图中有那些相等的线段和弧你如何得知线段:AE=BE弧;AB=BC,AD=BD错误!未指定书签。
理由如下:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC和BC,AD与BD重合.探究点2:垂径定理已知:如图在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=BE,AC=BC,AD=BD.CD是AB的垂直平分线.1.质疑:若AB是直径,上述结论还成立吗成立,当AB是直径时,OA=OB,CD⊥AB,所以CD是AB的垂直平分线,结论也成立.2.从上面的证明我们知道:⑴垂直于弦的直径平分弦,并且平分弦所对的两条弧.⑵定理中的弦为直径时,结论仍然成立.归纳总结(垂径定理:)垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE,AC=BC,AD=BD温馨提示:垂径定理是圆中一个重要的定理,要学会相互转化,形成整体,才能运用自如3.注意:⑴垂径定理中的垂径可以是直径、半径或过圆心的直线或线段,其本质是“过圆心”.⑵垂径定理也可理解为,如果一条直线,它具有两个性质:①过圆心;②垂直于弦.那么这条直线就平分这条弦,平分弦所对劣弧和优弧.想一想:下列图形是否具备垂径定理的条件如果不是,请说明为什么?是不是,因为是不是,因为没有垂直CD 没有过圆心归纳总结垂径定理的几个基本图形:三、垂径定理的应用(典例精析)试一试:根据刚刚所学,你能利用垂径定理求出引入中赵州桥主桥拱半径的问题吗解:如图,用AB 表示主桥拱,设AB 所在圆的圆心为O ,半径为R.经过圆心O 作弦AB 的垂线OC 垂足为D ,与弧AB 交于点C ,则D 是AB 的中点,C 是弧AB 的中点,CD 就是拱高.AB=37m ,CD=.∴AD=21AB=,OD=OC-CD=. 222OD AD OA += 222)23.7(5.18-+=R R解得R ≈(m )即主桥拱半径约为.四、垂径定理的计算例:如图,OE ⊥AB 于E ,若⊙O 的半径为10cm,OE=6cm, 则AB=cm.解析:连接OA ,∵OE ⊥AB ,∴AE =BE (垂径定理)86102222=-=-=OE OA AE ∴AB=2AE=16cm(注意:圆心到弦的距离叫弦心距)归纳总结 .C D AB OME O .A C D B .A B O 解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.探究点3:垂径定理的推论如果把垂径定理分解为五个部分作为条件,上述五个条件中的任何两个条件都可以推出其他三个结论吗①圆心;②垂直于弦;③平分弦; ④ 分弦所对的优弧;⑤平分弦所对的劣弧.猜想证明:①CD是直径②CD⊥AB,垂足为E③AE=BE④AC=BC⑤AD=BD举例证明其中一种组合方法已知:求证:证明举例:①③如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗为什么(2)AC与BC相等吗AD与BD相等吗为什么解:(1)连接AO,BO,则AO=BO,又AE=BE,∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得:AC=BC,AD=BD归纳总结(垂径定理的推论)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.思考:“不是直径”这个条件能去掉吗如果不能,请举出反例.特别说明:圆的两条直径是互相平分的.3.垂径定理的推论你能破镜重圆吗作法:作弦AB、AC及它们的垂直平分线m、n,交于O点;以O为圆心,OA为半径作圆.依据:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.当堂练习1:判断下列说法的正误(1)平分弧的直径必平分弧所对的弦(2)圆是轴对称图形,直径是它的对称轴(3)垂直于弦的直线必过圆心2、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不成立的是()A 、∠COE=∠DOEB 、CE=DEC 、OE=AED 、BD=BC解析:由垂径定理可知B 、D 均成立;由△OCE ≌△ODE 可得A 也成立.不一定成立的是OE=AE .故选C .3.(分类讨论题)已知⊙O 的半径为10cm ,弦MN ∥EF,且MN=12cm,EF=16cm,则弦MN 和EF 之间的距离为.拓展提升:4.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O 是弧CD 的圆心),其中CD=600m,E 为弧CD 上的一点,且OE ⊥CD ,垂足为F,EF=90m.求这段弯路的半径.解:连接OC.设这段弯路的半径为R m,则OF =(R -90)m.CD OE ⊥ )(3006002121m CD CF =⨯==∴ 根据勾股定理,得:222222)90(300,-+=+=R R OF CF OC 解得R =545.∴这段弯路的半径约为545m.课堂小结:思考题:如图,⊙O的直径为10,弦AB=8,P为AB上的一个动点,那么OP 长的取值范围.课堂作业必做题:课本83面1、2题选做题:思考题A BPO。
3.52垂径定理—知识讲解(提高)

3.52垂径定理—知识讲解(提高)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.【答案】5.【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,∵AB=CD,CE=1,ED=3,∴OM=EN=1,AM=2,∴.【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON ⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,OB==【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径. 【答案】14cm.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图 1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3. 要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图所示),求此小孔的直径d.【思路点拨】此小孔的直径d就是⊙O中的弦AB.根据垂径定理构造直角三角形来解决.【答案与解析】过O作MN⊥AB,交⊙O于M、N,垂足为C,则1105mm2OA=⨯=,OC=MC-OM=8-5=3mm.在Rt△ACO中,AC4mm =,∴ AB=2AC=2×4=8mm.答:此小孔的直径d为8mm.【点评】应用垂径定理解题,一般转化为有关半径、弦、弦心距之间的关系与勾股定理的运算问题.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.【巩固练习】一、选择题1.如图所示,三角形ABC的各顶点都在⊙O上,AC=BC,CD平分∠ACB,交圆O于点D,下列结论:①CD是⊙O的直径;②CD平分弦AB;③AC BC=;④AD BD=;⑤CD⊥AB.其中正确的有()A.2个 B.3个 C.4个D.5个2.下面四个命题中正确的是( ).A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心3.如图,弦CD垂直于⊙O的直径AB,垂足为H,且COBDACD=,则AB的长为()A.2 B.3 C.4D.5第3题第5题第6题4.⊙O的半径OA=1,弦AB、AC,则∠BAC的度数为( ).A.15° B.45° C.75°D.15°或75°5.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE为1寸,AB为10寸,求直径CD的长.依题意,CD长为( ).A.252寸 B.13寸 C.25寸D.26寸6.如图,EF是⊙O的直径,AB是弦,EF=10cm,AB=8cm,则E、F两点到直线AB的距离之和为().A.3cm B.4cm C.8cmD.6cm二、填空题7.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,则圆心O到CD的距离是______.8.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.7题图8题图9题图9.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.10.圆心都在y轴上的两圆相交于A、B两点,如果A点的坐标为(2,那么B点的坐标为____________.11.在图11中,半圆的直径AB=4cm,O为圆心,半径OE⊥AB,F为OE的中点,CD∥AB,则弦CD的长为.(第12题)12.如图,点A、B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合)连结AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF= .三、解答题13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,CD=15,35OE OC=∶∶,求弦AB和AC的长.14.如图所示,C为ACB的中点,CD为直径,弦AB 交CD于P点,PE⊥BC于E,若BC=10cm,且CE:BE=3:2,求弦AB的长.15.如图所示,已知O是∠MPN的平分线上的一点,以O为圆心的圆与角的两边分别交于点A、B和C、D.⑴求证:PB=PD.⑵若角的顶点P在圆上或圆内,⑴中的结论还成立吗?若不成立,请说明理由;若成立,请加以证明.16.如图,点M,N分别是AB、AC的中点,且MN 交AB于D,交AC于E,求证:△ADE是等腰三角形.【答案与解析】一、选择题1.【答案】D.【解析】由圆的对称性、等腰三角形的三线合一的性质可得到5个结论都是正确的.2.【答案】D.【解析】根据垂径定理及其推论来判断.3.【答案】B.【解析】由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则()2221R R=+-,由此得R=32,所以AB=3.故选 B.4.【答案】D.【解析】分弦AB、AC在圆心的同侧和异侧讨论. 5.【答案】D.【解析】连结AO,∵ CD为直径,CD⊥AB,∴152AE AB==.设⊙O半径为R,则OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴ R2=52+(R-1)2,P∴ R =13,∴ CD =2R =26(寸). 故选D .6.【答案】D .【解析】E 、F 两点到直线AB 的距离之和为圆心O 到AB 距离的2倍. 二、填空题 7.【答案】2. 8.【答案】.13 9.【答案】.13 10.【答案】(2-.【解析】因为y 轴是两圆的对称轴,所以两圆的交点关于y 轴对称,则B (2-. 11.【答案】.【解析】连接OC,易求CD=. 12.【答案】5.【解析】易证EF 是△APB 的中位线,EF=15.2AB = 三、解答题13.【答案与解析】连结OA ,∵CD=15,35OE OC =∶∶, ∴OA=OC=7.5,OE=4.5,CE=3,∴6212AE AB AE AC ========,14.【答案与解析】因为C 为ACB 的中点,CD 为直径,弦AB 交CD 于P 点,所以 CD ⊥AB.由BC=10cm ,且CE :BE=3:2,得CE=6cm ,BE=4cm ,设,,BP a CP b ==则22222221046a b a b ⎧+=⎪⎨-=-⎪⎩解得a =,2AB a ==.15.【答案与解析】(1)证明:过O 作OE ⊥PB 于E ,OF ⊥PD 于F. ∵ PO 平分∠MPN∴ OE=OF ,PE=PF ∴ AB=CD ,BE=DF ∴ PE+BE=PF+DF ∴ PB=PD(2)上述结论仍成立.如下图所示.证明略. 16.【答案与解析】连结OM 、ON ,分别交AB 、AC 于F 、G 点.∵ M 、N 分别为AB 、AC 中点,∴ ∠MFD =90°=∠EGN . ∵ OM =ON ,有∠M =∠N ,知∠MDB =∠NEC , 而∠MDB =∠1,∠NEC =∠2,于是∠l =∠2,故AD =AE .所以△ADE 是等腰三角形.。
垂径定理—知识讲解(提高)

垂径定理-知识讲解(提高)【学习目标】1.理解圆得对称性;2.掌握垂径定理及其推论;3。
学会运用垂径定理及其推论解决有关得计算、证明与作图问题.【要点梳理】知识点一、垂径定理1、垂径定理ﻫ垂直于弦得直径平分这条弦,并且平分弦所对得两条弧、ﻫ2、推论平分弦(不就是直径)得直径垂直于弦,并且平分弦所对得两条弧、ﻫ要点诠释:(1)垂径定理就是由两个条件推出两个结论,即ﻫ(2)这里得直径也可以就是半径,也可以就是过圆心得直线或线段、知识点二、垂径定理得拓展根据圆得对称性及垂径定理还有如下结论:(1)平分弦(该弦不就是直径)得直径垂直于弦,并且平分弦所对得两条弧;(2)弦得垂直平分线经过圆心,并且平分弦所对得两条弧;(3)平分弦所对得一条弧得直径,垂直平分弦,并且平分弦所对得另一条弧、(4)圆得两条平行弦所夹得弧相等、要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对得优弧、平分弦所对得劣弧,在这五个条件中,知道任意两个,就能推出其她三个结论、(注意:“过圆心、平分弦”作为题设时,平分得弦不能就是直径)【典型例题】类型一、应用垂径定理进行计算与证明1、如图,⊙O得两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O得半径就是.【答案】错误!、【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,∵AB=CD,CE=1,ED=3,∴OM=EN=1,AM=2,∴OA=、【点评】对于垂径定理得使用,一般多用于解决有关半径、弦长、弦心距之间得运算(配合勾股定理)问题、举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径。
【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴,,∴在Rt△BOM中,。
【高清ID号:356965关联得位置名称(播放点名称):例2—例3】【变式2】如图,AB为⊙O得弦,M就是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O得半径、【答案】14cm、【高清ID号:356965 关联得位置名称(播放点名称):例2—例3】2、已知:⊙O得半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间得距离、【思路点拨】在⊙O中,两平行弦AB、CD间得距离就就是它们得公垂线段得长度,若分别作弦AB、CD得弦心距,则可用弦心距得长表示这两条平行弦AB、CD间得距离、【答案与解析】(1)如图1,当⊙O得圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点、分别连结AO、CO、ﻫ∵AB∥CD∴ON⊥CD,即ON为弦CD得弦心距、∵AB=12cm,CD=16cm,AO=OC=10cm,ﻫﻫ=8+6=14(cm)ﻫ图1 图2(2)如图2所示,当⊙O得圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O得同侧)时,ﻫ同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间得距离就是14cm或2cm、ﻫ【点评】解这类问题时,要按平行线与圆心间得位置关系,分类讨论,千万别丢解、举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理得综合应用3、要测量一个钢板上小孔得直径,通常采用间接得测量方法。
垂径定理_精品文档

垂径定理垂径定理是解决几何问题中常用的一个定理,它和“垂直”有关。
垂径定理的全称是“垂直于直径的半径必垂直于圆”。
垂径定理的内容简单而明确,但它却具有重要的意义和应用价值。
本文将从垂径定理的定义、证明以及几个典型的应用来介绍垂径定理,并解释为什么它在解决几何问题中具有重要意义。
首先,我们来了解一下垂径定理的定义。
垂径定理主要是指:如果在一个圆上,有一个半径垂直于直径,那么这个半径和这个直径在圆上的交点之间的弧长就是90度。
换句话说,半径与直径的交点和圆上的其他点之间的弦垂直。
这是垂径定理的基本内容。
接下来,让我们来看一下垂径定理的证明。
首先,我们假设在一个圆上,有一个半径OA垂直于直径BC,如下图所示。
这是一个坐标证明的图。
为了简化问题,我们可以假设圆的半径为1。
因此,点O的坐标就是(0,1),点B的坐标就是(-1,0),点C 的坐标就是(1,0)。
我们知道,在直角三角形中,直角的两条边的斜率乘积为-1。
我们可以计算出OA的斜率为-1,而BC的斜率为0,因此满足垂径定理的条件。
我们可以继续应用几何知识来证明垂径定理。
根据半径垂直于弦的定义,我们知道OA垂直于BC。
根据直径的定义,我们知道BC就是圆的直径。
因此,根据垂直定理,我们可以得出结论,OA是圆的半径,它与直径BC垂直。
接下来,我们将介绍几个典型的应用垂径定理的例子。
例1:证明对称圆上的两条弦垂直在一个圆上,有两条弦AB和CD,且AB与CD以圆心为中点。
我们需要证明这两条弦互相垂直。
根据问题的设定,我们知道AB和CD以圆心O为中点。
因此,OA 等于OC,OB等于OD。
根据垂径定理的定义,OA垂直于AB,OC垂直于CD。
进一步观察,我们可以发现OA和OC重合,因为它们都是圆的半径,长度相等,方向相同。
同理,OB和OD重合。
因此,根据重合线段垂直定理,我们可以得出结论,AB垂直于CD。
例2:证明正方形的对角线相互垂直在一个正方形中,连接两个相对顶点的线段被称为对角线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂径定理一知识讲解(提高)
【学习目标】
1. 理解圆的对称性;
2 .掌握垂径定理及其推论;
3 •学会运用垂径定理及其推论解决有关的计算、证明和作图问题.
【要点梳理】知识点一、垂径定理
1. 垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧•
2. 推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
要点诠释:
(1) 垂径定理是由两个条件推岀两个结论,即
直径1 J平分弦
垂直于弦j n j平分弦所对的弧
(2) 这里的直径也可以是半径,也可以是过圆心的直线或线段.
知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:
(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
(4)圆的两条平行弦所夹的弧相等• 要点诠释:
在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论•(注意:“过圆心、平分弦”作为题设时,平分
的弦不能是直径)
【典型例题】
类型一、应用垂径定理进行计算与证明
的半径是______________________
O=如图,。
O的两条弦AB、CD互相垂直,垂足为
E,且AB=CD ,已知CE=1,ED=3 ,则Θ O
【答案】 【解析】 【点评】 举一反三: .5.
作OM 丄AB 于M 、ON 丄CD 于N ,连结 OA ,
T AB=CD , CE=1 , ED=3,
∙∙∙ OM=EN=I , AM=2 , ∙ OA= . 22+12=,5. Y
B
对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算 题• (配合勾股定理)问
【变式1】如图所示,Θ
O 两弦AB CD 垂直相交于 H AH= 4, BH= 6, 【答案】如图所示,过点
MO=HN O 分别作OML AB 于M ONL CD 于 N,则四边形 1 =CN -CH CD -CH 2 1 1 (CH DH ) -CH (3 8) -3 = 2.5 , 2 2 1 1 1
BM AB (BH AH ) (4 6) =5 , 2 2 2 在 Rt △ BOM 中 OB =∙ BM
2 OM 2 = 55 .
2
【高清ID 号: 356965 关联的位置名称(播放点名称)
【变式2】如图,AB 为Θ O 的弦,M 是AB 上一点, C
:例2-例3】
OM= 10Cm 求Θ O 的半径.
【答案】14cm.
【高清ID 号:356965 关联的位置名称(播放点名称):例2-例3】
▼ 2.已知:Θ O 的半径为10cm,弦AB// CD AB=12cm CD=16cm 求AB CD 间的距离.
【思路点拨】
在Θ O 中,两平行弦ABCD 间的距离就是它们的公垂线段的长度, 若分别作弦ABCD 的弦心距,
则可用弦心距的长表示这两条平行弦
AB CD 间的距离.
【答案与解析】
(1)如图1,当Θ O 的圆心 O 位于AB CD 之间时,作 OMLAB 于点M, 并延长MO
交CD 于 N 点.分别连结AO CO.
∙∙∙ AB// CD
∙ ONL CD 即ON 为弦CD 的弦心距. ■/ AB=12cm CD=16cm AO=OC=10cm
AM= -AB=6cm J CN=- CD=8cm
2 2 ________________________
MN=MO+NO√102-62 +
=8+6 =14(Cm)
图1 图2
(2)
如图2所示,当Θ O 的圆心O 不在两平行弦 AB CD 之间(即弦AB CD 在圆心O 的同侧)时, 同理可得:MN=OM-ON=8-6=2(Cm)
∙∙∙Θ O 中,平行弦 AB CD 间的距离是14cm 或2cm.
【点评】 解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解 举一反三:
【变式】在Θ O 中,直径 MNLAB,垂足为C, MN=10 AB=8,则MC= ________________ : 【答案】2或&
类型二、垂径定理的综合应用
&
3.
要测量一个钢板上小孔的直径,通常采用间接的测量方法•如果用一个直径为 IOmm 的标准钢
珠放在小孔上,测得钢珠顶端与小孔平面的距离
h = 8mm 如图所示),求此小孔的直径 d •
N
I
【思路点拨】
此小孔的直径d 就是Θ O 中的弦AB.根据垂径定理构造直角三角形来解决. 【答案与解析】 过O 作MN ⊥ AB,交Θ O 于M N,垂足为 C,
心
1
则 OA 10=5mm , OC= MC-OM= 8— 5 = 3mm
2
在 Rt △ ACO 中, AC= 一 5
2
-32 =4mm ,
AB = 2AC = 2 × 4= 8mm
答:此小孔的直径 d 为8mm 应用垂径定理解题,一般转化为有关半径、弦、弦心距之间的关系与勾股定理的运算问题
不过圆心的直线I 交Θ O 于C 、D 两点,AB 是Θ O 的直径,AE ⊥ I 于E , BF 丄I 于F .
(1) 在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形; (2)
请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论
(OA = OB 除外)(不再标注 其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程
);
(3)
请你选择(1)中的一个图形,证明(2)所得出的结论.
【答案与解析】
(1)如图所示,
在图①中AB CD 延长线交于Θ O 外一点;
在图②中AB CD 交于Θ O 内一点;
在图③中
AB// CD
【点评】。