传热实验(实验报告)

合集下载

传热实验的实验报告

传热实验的实验报告

一、实验目的1. 理解传热的基本原理和过程;2. 掌握传热系数的测定方法;3. 分析影响传热效率的因素;4. 熟悉传热实验设备的操作和数据处理方法。

二、实验原理传热是指热量在物体内部或物体之间传递的过程。

根据热量传递的方式,传热可分为三种:导热、对流和辐射。

本实验主要研究导热和对流两种传热方式。

1. 导热:热量通过物体内部的分子或原子振动、碰撞等方式传递。

根据傅里叶定律,导热速率Q与物体面积A、温差ΔT和材料导热系数K成正比,即Q = K A ΔT。

2. 对流:热量通过流体(气体或液体)的流动传递。

根据牛顿冷却定律,对流速率Q与物体表面积A、温差ΔT、流体密度ρ、流体运动速度v和流体比热容c成正比,即Q = h A ΔT,其中h为对流换热系数。

三、实验设备与材料1. 实验设备:传热实验装置(包括套管换热器、温度计、流量计、搅拌器等);2. 实验材料:水、空气、酒精、石蜡等。

四、实验步骤1. 装置调试:将传热实验装置连接好,调试好温度计、流量计等设备,确保实验顺利进行。

2. 实验数据采集:(1)选择实验材料,如水、空气、酒精等,放入套管换热器中;(2)打开加热装置,调节加热功率,使实验材料温度逐渐升高;(3)记录不同时间点的温度、流量等数据;(4)重复上述步骤,改变实验条件,如加热功率、流量等,进行多组实验。

3. 数据处理与分析:(1)计算传热系数K:根据实验数据,利用傅里叶定律和牛顿冷却定律,计算导热和对流两种传热方式的传热系数K;(2)分析影响传热效率的因素:通过改变实验条件,观察传热系数K的变化,分析影响传热效率的因素;(3)绘制实验曲线:将实验数据绘制成曲线,直观地展示传热过程。

五、实验结果与分析1. 实验结果:(1)通过实验,得到不同条件下导热和对流两种传热方式的传热系数K;(2)分析实验数据,得出影响传热效率的因素。

2. 分析:(1)实验结果表明,导热和对流两种传热方式的传热系数K与实验条件(如加热功率、流量等)有关;(2)加热功率的增加会提高传热系数K,但过高的加热功率可能导致实验材料过热,影响实验结果;(3)流量的增加也会提高传热系数K,但过大的流量可能导致实验材料流动不稳定,影响实验结果;(4)实验数据表明,在一定的实验条件下,导热和对流两种传热方式的传热效率较高。

化工原理实验报告(传热)

化工原理实验报告(传热)

化工原理实验报告(传热)
实验名称:传热实验
实验目的:掌握传热原理,测定传热系数。

实验原理:传热是指热能从物体的高温区域传递到物体的低温区域的过程。

传热方式
主要有三种,分别是传导、对流和辐射。

传导是指物质内部由高温区传递热量到低温区的过程。

传导的速率与传导材料的种类、厚度、温度差等因素有关。

对流是指由于物流的运动而引起的热量传递过程。

对流的速率与流动速度、流动形式
等因素有关。

辐射是指物体之间通过电磁波传递热量的过程。

辐射的速率与物体温度、表面特性等
因素有关。

实验仪器:传热实验装置、数显恒温槽、数显搅拌器、功率调节器、电热水壶、测温仪、电阻丝、保温材料等。

实验步骤:
1、将传热实验装置放入数显恒温槽内,开启电源,将温度恒定在80℃左右。

2、将试样加热,使其温度达到与恒温槽内温度一致。

3、将试样放入传热实验装置中,开始实验。

4、在实验过程中,保持搅拌器的匀速转动,确保传热速率的稳定。

5、记录实验数据,计算传热系数。

实验结果:
本实验测定的传热系数为:λ=10.2 W/m•K
通过本次实验,我们掌握了传热原理和测定传热系数的方法,同时也了解了传导、对
流和辐射三种传热方式的特点及其影响因素。

实验结果表明,传热系数是物体传热速率的
量化表示,对于不同的物体和温度差,传热系数是不同的,因此在具体实际应用中需要根
据实际情况进行调整。

传热实验报告实验现象

传热实验报告实验现象

实验时间:2021年X月X日实验地点:实验室一、实验目的1. 熟悉传热的基本原理和实验方法。

2. 了解传热过程中的实验现象,如温度变化、流量变化等。

3. 通过实验验证传热学的基本定律,如牛顿冷却定律、热传导定律等。

二、实验原理传热是指热量从高温物体传递到低温物体的过程。

传热方式主要有三种:传导、对流和辐射。

本实验主要研究传导和对流两种传热方式。

1. 传导传热:热量通过物体内部从高温部分传递到低温部分的过程。

本实验中,采用导热系数较高的金属棒进行实验。

2. 对流传热:热量通过流体(如空气、水等)的流动传递的过程。

本实验中,采用空气作为传热介质。

三、实验现象1. 传导传热现象(1)实验现象:将一端加热的金属棒置于室温环境中,观察到金属棒另一端温度逐渐升高。

(2)分析:这是由于金属棒内部热量通过传导方式传递,导致另一端温度升高。

(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,另一端温度升高ΔT=20℃。

2. 对流传热现象(1)实验现象:将加热后的金属棒放入装有空气的密闭容器中,观察到金属棒温度逐渐降低。

(2)分析:这是由于金属棒表面空气被加热,密度减小,上升;冷空气下降,形成对流,使热量传递给空气,导致金属棒温度降低。

(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,另一端温度降低ΔT=10℃。

3. 热交换器传热现象(1)实验现象:将加热后的金属棒放入热交换器中,观察到金属棒温度逐渐降低,同时热交换器中的冷却水温度逐渐升高。

(2)分析:这是由于金属棒与冷却水之间发生热交换,热量从金属棒传递给冷却水,导致金属棒温度降低,冷却水温度升高。

(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,金属棒温度降低ΔT=15℃,冷却水温度升高ΔT=5℃。

四、实验结论1. 通过实验验证了传导和对流两种传热方式的存在。

传热实验报告

传热实验报告

传热实验报告一、实验目的。

本实验旨在通过测量不同材料的传热性能,探究热传导的基本规律,加深对传热学原理的理解。

二、实验原理。

传热是物体内部或不同物体之间由于温度差而发生的热量传递过程,其方式包括热传导、对流和辐射。

本实验主要关注热传导,即热量在固体内部的传递过程。

热传导的速率与材料的热导率、截面积和温度差有关。

热导率是材料本身的性质,不同材料具有不同的热导率。

三、实验材料和装置。

实验材料,铜棒、铝棒、铁棒。

实验装置,热传导实验装置、热导率测定仪。

四、实验步骤。

1. 将铜棒、铝棒、铁棒分别安装在热传导实验装置上,并接通电源,使其达到稳定状态。

2. 测量不同材料的初始温度,并记录下来。

3. 记录实验装置上的温度计读数,随时间的变化情况。

4. 根据实验数据,计算出不同材料的热传导率。

五、实验数据和结果分析。

通过实验数据的测量和计算,得出了不同材料的热传导率。

结果显示,铜棒的热传导率最高,铁棒次之,铝棒最低。

这与我们对材料热导率的认识是一致的。

铜具有较高的热导率,因此在工业和日常生活中得到广泛应用。

六、实验结论。

通过本次实验,我们深入了解了材料的热传导性能,并通过实验数据验证了热传导的基本规律。

不同材料的热传导率差异较大,这对于材料的选择和应用具有一定的指导意义。

七、实验总结。

本次实验通过测量不同材料的热传导率,加深了我们对传热学原理的理解。

同时,实验过程中我们也学会了使用热传导实验装置和热导率测定仪,提高了实验操作能力。

八、参考文献。

[1] 王振宇. 传热学[M]. 北京,高等教育出版社,2008.[2] 张明. 热力学与传热学[M]. 北京,清华大学出版社,2010.以上就是本次传热实验的实验报告,希望对大家有所帮助。

传热实验报告范文

传热实验报告范文

一、实验目的1. 了解传热的基本原理和传热过程。

2. 熟悉传热实验装置的结构和操作方法。

3. 通过实验,测定传热系数,分析影响传热效果的因素。

4. 培养实验操作技能和数据分析能力。

二、实验原理传热是指热量从高温物体传递到低温物体的过程。

传热方式主要有三种:导热、对流和辐射。

本实验主要研究导热和对流传热。

1. 导热:热量通过固体物质从高温部分传递到低温部分的过程。

其基本原理为热传导定律,即热量在单位时间内通过单位面积,沿着温度梯度方向传递的速率与温度梯度的乘积成正比。

2. 对流:热量通过流体(气体或液体)的流动而传递的过程。

其基本原理为牛顿冷却定律,即流体与固体表面之间的热交换速率与流体与固体表面的温度差成正比。

三、实验装置与仪器1. 实验装置:传热实验装置包括加热器、温度计、流量计、实验管等。

2. 实验仪器:温度计、流量计、秒表、游标卡尺、电子天平等。

四、实验步骤1. 准备工作:检查实验装置是否完好,调节加热器功率,预热实验管。

2. 实验数据记录:1. 测量实验管的长度、直径和厚度。

2. 测量实验管两端的温度,计算温度差。

3. 调节流量计,控制流体流量。

4. 记录实验数据,包括时间、温度、流量等。

3. 实验结束:关闭加热器,停止实验。

五、实验结果与分析1. 实验数据:| 时间(min) | 流体温度(℃) | 温度差(℃) | 流量(L/min) || :----------: | :------------: | :----------: | :------------: || 0 | 20.0 | 10.0 | 1.0 || 5 | 30.0 | 20.0 | 1.0 || 10 | 40.0 | 30.0 | 1.0 || 15 | 50.0 | 40.0 | 1.0 |2. 结果分析:根据实验数据,绘制温度-时间曲线。

可以看出,随着时间推移,流体温度逐渐升高,温度差也逐渐增大。

1. 影响传热效果的因素:1. 流体流量:流体流量越大,传热效果越好。

传热实验实验报告

传热实验实验报告

传热实验实验报告一、实验目的。

本实验旨在通过传热实验,探究不同材料的传热特性,加深对传热机理的理解,为工程实践提供理论支持。

二、实验原理。

传热是物体内部或不同物体之间热量传递的过程,包括传导、对流和辐射三种方式。

在本实验中,我们主要关注传导传热的特性。

传导是通过物质内部的分子振动传递热量,其速度取决于物质的导热系数和温度梯度。

传热实验通常通过测量材料的导热系数来研究传热性能。

三、实验仪器与材料。

1. 导热实验仪。

2. 不同材料的样品(如金属、塑料、绝缘材料等)。

3. 温度计。

4. 数据记录仪。

四、实验步骤。

1. 将实验仪器连接好并预热至稳定状态。

2. 准备不同材料的样品,并测量其初始温度。

3. 将样品放置在传热实验仪上,记录下不同时间间隔下的温度变化。

4. 根据实验数据,计算不同材料的导热系数。

五、实验数据与分析。

通过实验记录和数据处理,我们得到了不同材料的导热系数。

在实验过程中,我们发现金属类材料的导热系数较高,而绝缘材料的导热系数较低。

这与材料的分子结构和热传导机理密切相关。

通过对实验数据的分析,我们得出了不同材料传热特性的定性和定量结论。

六、实验结论。

通过本次传热实验,我们深入了解了不同材料的传热特性,掌握了传热实验的基本方法和数据处理技巧。

同时,我们也加深了对传热机理的理解,为今后的工程实践提供了有益的参考。

七、实验总结。

本次传热实验取得了良好的实验结果,但也存在一些不足之处,例如实验过程中的温度测量误差、样品准备不均匀等。

在今后的实验中,我们将进一步改进实验方法,提高实验数据的准确性和可靠性。

八、参考文献。

1. 李华,张三. 传热学[M]. 北京,高等教育出版社,2008.2. 王五,赵六. 传热实验指导[M]. 北京,科学出版社,2015.以上就是本次传热实验的实验报告内容,谢谢阅读。

传热实验实验报告

传热实验实验报告

传热实验实验报告一、实验目的通过本实验,掌握传热实验的基本原理、方法和技能,了解不同材质导热性能的差异,并能够计算不同材料的传热速率。

二、实验仪器和材料1.实验仪器:传热实验装置、温度计、定时器等。

2.实验材料:铁、铝、铜、纸、木材等不同材质的样品。

三、实验原理传热是热能从一个物体传递到另一个物体的过程。

主要有三种传热方式:热传导、热对流和热辐射。

本实验主要研究热传导方式。

热传导是物质中微观颗粒间能量传递的方式。

传导的速率与导热系数、温度差和导热面积有关,其数学表达式为:Q=K*A*(T1-T2)/l其中,Q为传热速率,K为导热系数,A为传热面积,T1和T2为物体的温度,l为传热距离。

四、实验步骤1.准备不同材质的样本,如铁、铝、铜、纸、木材等。

2.将样品按照一定的厚度和形状放置在传热实验装置上,并确保各个样品与装置接触良好。

3.启动传热实验装置,设定初始温度和结束温度,并开始计时。

4.在设定的时间间隔内,记录每个样品的温度变化。

5.根据记录的温度数据,计算不同材料的传热速率,并作出相应的图表和分析。

五、实验结果和分析根据实验测得的温度数据,根据热传导公式计算不同材料的传热速率,并绘制传热速率和时间的关系图表。

通过分析图表,可以看出不同材料的传热速率的差异。

铜的导热性能最好,导热速率最快,其次是铝,然后是铁。

纸和木材的导热性能较差,传热速率较慢。

六、实验误差和改进方法在实际实验中,可能存在的误差包括温度测量误差、传热面积测量误差等。

1.高精度的温度计和测量仪器,确保温度测量的准确性;2.使用适当的仪器和方法测量传热面积,减小测量误差;3.多次重复实验,取平均值,提高结果的可靠性;4.即时记录实验过程中的变化,减小人为因素对结果的影响。

七、实验结论通过本实验,我们掌握了传热实验的基本原理、方法和技能,了解和比较了不同材料的导热性能差异。

铜具有较好的导热性能,传热速率最快,纸和木材的导热性能较差,传热速率较慢。

小学热传导实验报告(3篇)

小学热传导实验报告(3篇)

第1篇一、实验背景热传导是物理学中的一个基本概念,指的是热量在物体内部或物体间的传递过程。

为了让学生更好地理解热传导的原理,我们进行了以下实验。

二、实验目的1. 了解热传导的概念和原理。

2. 观察不同材料的热传导性能。

3. 探讨影响热传导速度的因素。

三、实验器材1. 铜棒、铁片、木棒、塑料棒、玻璃棒、酒精灯、火柴、试管夹、烧杯、热水、凡士林。

四、实验步骤1. 实验一:(1)将铜棒固定在支架上,在火柴头上蘸少许凡士林,依次粘在铜棒的三个孔上。

(2)用酒精灯加热铜棒的一端,观察火柴由被加热的一端向另一端逐渐脱落的现象。

2. 实验二:(1)用试管夹夹住铁片,在铁片上放上蜡,分别从一边或中央加热铁片,观察铁片的熔化情况。

(2)将铁丝、木棒、塑料棒、玻璃棒、铜棒同时放入装有热水的烧杯中,用手感觉不同材料传热速度的快慢。

五、实验现象1. 实验一:(1)加热铜棒时,火柴由被加热的一端向另一端逐渐脱落。

(2)加热铁片时,从一边加热的熔化速度比从中央加热的快。

2. 实验二:将不同材料放入热水中,发现铜棒传热速度最快,其次是铁片、玻璃棒、塑料棒和木棒。

六、实验结论1. 热传导是指热量在物体内部或物体间的传递过程。

2. 不同材料的热传导性能不同,铜的热传导性能最好,其次是铁、玻璃、塑料和木棒。

3. 影响热传导速度的因素包括材料的热传导性能、物体的形状和大小等。

七、实验反思本次实验让学生直观地了解了热传导的原理,提高了学生的实验操作能力和观察能力。

在实验过程中,我们发现以下问题:1. 实验过程中,部分学生操作不规范,导致实验结果不准确。

2. 实验过程中,部分学生对实验现象的描述不够准确,影响了实验结论的可靠性。

针对以上问题,我们提出以下改进措施:1. 加强实验操作规范培训,确保实验结果准确。

2. 提高学生对实验现象的观察能力和描述能力,为实验结论提供有力支持。

八、实验总结本次实验让学生通过实际操作,了解了热传导的原理,掌握了不同材料的热传导性能,为今后的学习奠定了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传热实验(实验报告) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
实验五 传热实验
一、 实验目的
1. 了解换热器的结构及用途。

2. 学习换热器的操作方法。

3. 了解传热系数的测定方法。

4. 测定所给换热器的传热系数K 。

5. 学习应用传热学的概念和原理去分析和强化传热过程,并实验之。

二、 实验原理
根据传热方程m t KA Q ∆=,只要测得传热速度Q 、有关各温度和传热面积,即可算出传热系数K 。

在该实验中,利用加热空气和自来水通过列管式换热器来测定K ,只要测出空气的进出口温度、自来水的进出口温度以及水和空气的流量即可。

在工作过程中,如不考虑热量损失,则加热空气放出的热量Q 1与自来
水得到热量Q 2应相等,但实际上因热量损失的存在,此两热量不等,实验
中以Q 2为准。

三、 实验流程及设备
四、 实验步骤及操作要领
1.开启冷水进口阀、气源开关,并将空气流量调至合适位置,然后开启空气加热电源开关
2.当空气进口温度达到某值(加120℃)并稳定后,改变空气流量,测定不同换热条件下的传热系数;
3.试验结束后,先关闭电加热器开关。

待空气进口温度接近室温后,关闭空气和冷水的流量阀,最后关闭气源开关;
五、 实验数据
1.有关常数
换热面积:0.4m 2
2.实验数据记录表
以序号1为例:
查相关数据可知:18.8℃水的密度348.998m kg

20℃水的比热容()C kg kJ
C p 。

⋅=185.4
空气流量:s m Q 3004.0360016==气
水流量:s kg Q W 022.03600/48.9981080
3-=⨯⨯=⋅=ρ水水
水的算数平均温度:C t t t 。

出入平均3.212
246.182=+=+= 传热速率:s
J Q t t W C p 437.5016.18-24022.0418512=⨯⨯=-⋅=)()(水
()()()()℃
查图得:对数平均温度:逆△△。

△022.3699.0386.3699
.09.146.18245.291.110-06.06.181.1106.1824386.366.185.29241.110ln 6.185.29241.110ln 1
221
11122
121=⨯====--=-==--=--==-----=∆∆∆-∆=∆∆t t t t T T t
T t t t t t t m t m t m R P C t ϕϕ 传热系数:K m W t S Q K m 2801.34022
.364.0437.501=⨯=∆⋅=
六、 实验结果及讨论
1.求出换热器在不同操作条件下的传热系数。

答:如上表所示。

2.对比不同操作条件下的传热系数,分析数值,你可得出什么结论?
答:K 值总是接近热阻大的流体侧的α值,实验中,提高空气侧的α值以提高K 值。

3.转子流量计在使用时应注意什么问题如何校正
答:对于液体而言,()()
122121ρρρρρρ--=f f Vs Vs 下标1表示出场标定液体,下标2表示实际液体;
对于气体:2
121s g g Vs V ρρ= (转子材料密度ρf>>ρg ), 下标1表示出场标定气体,下标2表示实际气体。

4.针对该系统,如何强化传热过程才更有效为什么
答:提高对流传热系数α值,如提高空气流速,内管加入填充物或采用螺纹
管,加热面在上,制冷面在下。

5.逆流换热和并流换热有什么区别你能用该实验装置加以验证吗
答:①逆流推动力m t ∆大,载热体用量少,热敏物料加热,控制壁温以免过高;
②在相同水流量条件下,在获得相同Q 时,逆流操作的时间较并流 所需时间要少。

6.传热过程中,哪些工程因素可以调动?
答:①增大传热面积S;
②提高传热系数α;
③提高平均温差
t
m
7.该实验的稳定性受哪些因素的影响?
答:①空气和蒸汽的流向;
②冷凝水不及时排走;
③蒸汽冷凝过程中,存在不冷凝气体,对传热有影响。

8.你能否对此实验装置做些改进,使之能够用于空气一侧对流传热系数的测定?
答:让空气走壳程,水走管程,根据流体在管外的强制对流公式,可提出空气一侧的对流传热系数α值。

相关文档
最新文档