自动控制原理 第五章 频率法

合集下载

自动控制原理简明教程 第五章 频率响应法

自动控制原理简明教程 第五章 频率响应法

这时,求扰动输入下的误差传递函数 en(s) ,
先求 E(s) 0 C(s) 1GG((s)s) N(s)

e(n s)
NE((ss))
1
G(s) G(s)
则 ess(2 t) An e(n j)sin(t en( j))
幅频特性
相频特性
二.频率特性的物理意义及求解方法
R
ur
C uc
RC网络微分方程为:
优点:
(1).可以根据系统的开环频率特性判断闭环系 统的稳定性,而不必求解特征方程。
(2).很容易研究系统的结构,参数变化对系统性 能的影响,并可指出改善系统性能的途径,便于
对系统进行校正。
(3).提供了一种通过实验建立元件或系统数 学模型的方法。
(4).可以方便地设计出使系统噪声小到规定 程度的系统。
一.比例环节
传递函数为G(s)=k
频率特性为 G( jw) ke j 0
幅频特性为 A(w)=k
相频特性为 (w) 0
极坐标图和伯德图为:
L(w)(dB)
20lgk
(w)(度) 0.1 1 10 100
w
0
w
-30
Bode图
j
w=0
w
0k
w
极坐标图
二.积分环节和微分环节
积分环节: G(s) C(s) R(s) 1/ s
w? ?
450 W=1/T
1 W=0 w
对数幅频特性:L(w) 20lg 1 T 2w2 1
20lg T 2w2 1
当wT≥1时,L(w)≈-20lgwT
当wT≥1时,L(w)可用一条斜率为-20dB/dec的渐近 直线来表示。
当wT≤1时,L(w)≈0,是一条与0分贝线重合的直线。 两直线交于横坐标w=1/T的地方。

自动控制原理第5章频域分析法

自动控制原理第5章频域分析法
确定方法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。

自动控制原理第五章-频率响应法

自动控制原理第五章-频率响应法

Im
(K,0°)
0
Re
图5.5 比例环节乃氏图
南京工业职业技术学机械学院——自动控制原理
L( )
0
( )
dB K>1
K=1 K<1
lg
0
lg
图5.6 比例环节的Bode图
作用:比例环节只改变原系统的幅值(K<1,降低;K > 1, 抬高),不改变原系统的相位。
南京工业职业技术学机械学院——自动控制原理
➢ 乃氏图的绘制—— “三点法”
G(jω)= A(ω)ejφ(ω) →
A(ω):起止位置 φ(ω) :起止方向
起点:ω→0,[A(0),φ(0)] 终点: ω→∞,[A(∞),φ(∞)] 与负实轴的交点:令φ(ω) =-180°→ ωx
相位截止频 率或相位剪
切频率
则交点为[A(ωg),-180°]
注意:由φ(0) → φ(∞)的变化范围可判断乃氏图所在 的 象限。
2 ( )
1 ( )
图5.8 积分、微分环节Bode图
南京工业职业技术学机械学院——自动控制原理
3. 纯微分环节
G(s) s
G( j) j e j90
传递函数与积分 环节互为倒数
Im
A()
(1)乃氏图 ( ) 90
起点:[0, 90°];终点: [∞, 90°]
0
Re
图5.9 微分环节乃氏图
I ( )
T 1 2T
2
联立消去ω可以得到实部和虚部 的关系式:
[R( ) 0.5]2 [I( )]2 0.52
故,惯性环节的乃氏图是圆心为点(0.5,j0)上,半径为 0.5的半园(ω=0~∞)。
(2)Bode图

自动控制原理--第五章-频率特性法

自动控制原理--第五章-频率特性法
2.频率特性反映系统本身性能,取决于系统结构、参数,与外 界因素无关。
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出

自动控制原理(第三版)第五章频率响应法

自动控制原理(第三版)第五章频率响应法
频段的两条直线组成的折线近似表示, 如图5-18的渐近线所
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为

自动控制原理-频率特性与系统性能的关系课件

自动控制原理-频率特性与系统性能的关系课件

第四节 频率特性与系统性能的关 系
(2) ωc、γ与ts 之间的关系
根据:
ts=
3 ζωn
ts·ωc=3
4ζ4+1 -2ζ2 ζ
整理得
ts·ωc=
6 tgγ
调节时间 ts 与ωc以及γ有关。γ不变 时,穿越频率ωc 越大,调节时间越短。
第四节 频率特性与系统性能的关 系
例 采用频率法分析随动系统的性能,求 出系统的频域指标ωc、γ和时域指标 σ%、 ts。

闭环幅频特性曲线
系统的闭环频率 指标主要有:
1 零频幅值Mo
M(ω)
Mm
M0
0.707M(0)
432ω幅M程M=频o度0=o谐的带=谐谐最1闭上M时振幅闭宽振振大环反(,峰ω频环频频峰值峰映)输值=值幅率率值与了值M出反降值ωMωM零系出(与0映br到γr频)=统现输了0幅的时M.M7入系0值Mm快的o7相统(M之0速频ω等的0比b性率时),相=。。。的ω0没对.r在7频有稳0ω一率7误b定M定。差性0 的。ω
第四节 频率特性与系统性能的关 系
低频段的对数频率特性为:
L(ω)=20lgA(ω)=20lg
K ωv
=20lgK-v·20lgω
对数幅频特性曲线
对数幅频特性曲
L(ω)/dB
线的位置越高,开
ν=0 ν=1 -20ν ν=2 0 νK K
环增益K 越大,斜
率越负,积分环节
K
ω 数越多。系统稳态 性能越好。
1)=τ9=00o-.0712.38o+3.6o
L(ω)/dB
系统=2开1.环22传o 递函数 ξ=γ/100=0.21
ωGn=(s)=4ζ2S04(ω(+001c..05-12SζS+2+1=1)6).59

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
L ( ) L a( ) L ( ,)
振荡环节的幅相特性 振荡环节的对数幅频渐进特性
七、二阶微分环节
G(s)sn
2
2sn
1
G (j) j n 22 j n 1 1 n 2 2 j2 n
n0,01
2
G(j) (12)2422
n2
n2
G( j) arctg n 2
1
2 n
G(ju)
1
(1u2)242u2
G(j u)arc2tgu
1u2
若 u1 G (ju) arctg2u 90
1u2
振荡环节的幅相特性曲线(极坐标图)
u0
0.9
0.8
0.6
u 1
0.4
振荡环节的幅频、相频特性曲线
0.05
0.2 0.5 0.7
幅频特性的谐振峰值和谐振角频率:
G(ju)
G(
j)
1
j
e2
相频特性是一常值 2
积分环节的幅频/相频、幅相特性曲线
对数频率特性
三、微分环节
传递函数 G(s) s
j
幅相特性 G( j) e 2
相频特性是一常值 2
微分环节的幅频/相频、幅相、对数特性曲线
四、惯性环节(一阶系统)
传递函数 幅相特性
G(s) 1 Ts1
G(j) 1 1 ejta1nT Tj1 (T)21
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
rn12 2 ( 1/ 20 .7)0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2

自动控制原理第五章频率响应法

自动控制原理第五章频率响应法
智能化和自适应频率响应分析方法
随着人工智能和机器学习技术的发展,将人工智能和机器学习技术应用于频率响应分析中 ,可以大大提高分析的准确性和效率,是未来研究的一个重要方向。
06
参考文献
参考文献
01
《现代控制系统分析与设计(第八版)》作者: Richard C. Dorf and Robert H. Bishop
01
频率响应法的起源可以追溯到20世纪30年代,当时研究者开始 使用频率响应法来分析电气系统的稳定性。
02
随着计算机技术和信号处理技术的发展,频率响应法的应用范
围不断扩大,分析精度和计算效率也不断提高。
目前,频率响应法已经成为自动控制原理中最重要的分析方法
03
之一,广泛应用于控制系统的分析和设计。
02
非线性系统的频率响应分析
非线性系统的频率响应分析是研究非线性系统对不同频率输入信号的响应特性。由于非线性系统的输出与输入之间不存在明 确的函数关系,因此需要采用特殊的方法进行分析。
在实际应用中,非线性系统的频率响应分析广泛应用于音频处理、图像处理、通信等领域。通过分析非线性系统的频率响应 特性,可以揭示系统的内在规律,为系统设计和优化提供依据。
02
《自动控制原理(第五版)》作者:孙亮
03
《控制系统设计指南(第二版)》作者:王树青
感谢您的观看
THANKS
对数坐标图分析法
对数坐标图分析法也称为伯德图,通过将系统 的频率响应以对数坐标的形式表示出来,可以 方便地观察系统在不同频率下的性能变化。
在对数坐标图中,幅值响应和相位响应分别以 对数形式表示,这样可以更好地展示系统在不 同频率下的变化趋势。
对数坐标图分析法适用于分析各种类型的系统 和多输入多输出系统,对于非线性系统也可以 进行一定的分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10

(a )
( )
0o
90o

(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.
系统开环频率特性
一、 系统开环幅相频率特性 简单系统常用的两种方法: GK(jw) = P(w) + jQ(w) 无tg-1的多值性问题. GK(jw) = A(w) e
-1
0
与惯性环节相同

图5-19 一阶不稳定环节 的
一阶不稳定环节
当由0变化时,惯性环节的相频由0趋向于-90;相 位角的绝对值小,称为最小相位环节. 一阶不稳定环节的相频则由-180趋向-90。相位角的绝对
值大称为非最小相位环节.
推广之,传递函数中有右极点、右零点的环节(或系统) 称为非最小相位环节(或系统),而传递函数中没有右极点、 右零点的环节(或系统)则称为最小相位环节(或系统)。
G(jw) = 1/(1+jwRC) —— 频率特性 线性系统或环节在正弦函数作用下稳态输出与输入之比。
自动控制原理 蒋大明
频率特性

幅相特性: G(jw) = A(w)ejυ (w) 幅频特性: A(w) = |G(jw)| A(w) = |e2/e1| = 1/[1+(wRC)2]1/2

- jw - jw
= | G(jw)| e-j∠G(jw)Ar/(-2j)
= | G(jw)| Ar e-j[∠G(jw 同理:D = | G(jw)| Ar e
-π /2)]
/2 /2
j[∠G(jw -π /2)]
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
CS(t) = [|G(jw)|/2]Are-j[∠G(jw
自动控制原理 蒋大明
幅相频率特性
绘制方法: 1. G(jw) = A(w) e 计算幅值,
jυ (w)
幅角相对简单,
但计算幅角时有时会遇到多值性的问题.
2. G(jw) = P(w) + 计算实部, jQ(w)
虚部相对复杂.
自动控制原理
蒋大明
二、对数频率特性(Bode图)
通过半对数坐标分别表示幅频特性和相频特性的图形— —对数频率特,也称Bode图。 G(jw) = A(w) e
0.8 1
2
3
4 5 6 8 10
图5-12 振荡环节的误差修正曲线
δ =0, wm=wn, 信号频率(峰值频率)=自然振荡频率----共振.
自动控制原理 蒋大明
微分环节
理想微分环节 G(S) = S 是积分环节的倒数
L2(w) = - L1(w)
υ 2(w) = -υ 1(w)
自动控制原理
蒋大明
A( ) | G( j ) |
相频特性:
实频特性:
T 2 2 1
T ( ) argG( j ) arct an 1
P ( ) 1 1 T 2 2
与惯性环节不同
j
0
与惯性环节不同
虚频特性:
T Q ( ) 1 T 2 2
jυ (w)
lg G(jw) = lg A(w) + jυ (w)lg e
= lg A(w) + j0.434υ (w) 两张图:对数幅频特性, 对数相频特性
自动控制原理
蒋大明
对数频率特性
对数幅频特性图 纵坐标:L(w) = 20lg | G(jw) | = 20 lg A(w) 单位:分贝(db)
20 dB
ξ =0.05
误差除与w有关, 还与δ 有关. δ >0.5 负误差 δ <0.5 正误差 令:dA(w)=0,可得峰值频率:
16 12
0.2 0.1
8
0.3
4
0.4 0.5
wm = wn(1- 2ξ
)1/2
0 -4 -8 0.1 0.2 0.3 0.4
0.6 0.7 0.8
δ >0.707, 无峰值频率 δ <0.707, wm<wn,转折频率前出现峰值.
S=jw S=jw
自动控制原理
蒋大明
一、幅相频率特性(Nyquist曲线)
G(jw) = A(w) e
jυ (w)
矢量的长度 = A(w) 相对于极坐标轴的转角 =υ (w)
当w由0到∞变化时,G(jw)矢量
的终端描绘出一条曲线——称 为Nyquist曲线。 一条曲线, 同时表示幅频和相 频特性----幅相频率特性.
自动控制原理 蒋大明
对数频率特性
特点:
1、 对串联环节,变乘为加; 2、 有近似画法; 3、 高低频特性兼顾。
自动控制原理
蒋大明
第二节 基本环节的频率特性
一、 比例环节
传递函数:G(S) = K 幅相频率特性:G(jw) = K = K + j 0
自动控制原理
蒋大明
比例环节
对数频率特性:L(w) = 20 lg A(w) = 20 lg K υ (w) = 0 K﹥1, 20lgK﹥0db K﹤1, 20lg K﹤0db
斜率:-20db/dec (每十倍频程 -20db)
转折频率:1/T 对数相频:
W 0
υ (w) 0 -45° -90°
υ (w) =∠G(jw) =∠[1/ (1+jTw)] = 自动控制原理
tg-1Tw
1/T ∞
蒋大明
惯性环节
1/T处误差最大: 误差 = 实际值 - 近似值 = -20lg (1+T2w2)1/2︱w=1/T - 0
第五章
定性,快速性和稳态精度。
频率法
频率法所研究的问题,仍然是控制系统的控制性能:稳
频率响应——系统对正弦输入信号的稳态响应。 频率特性——频率响应与正弦输入信号之间的关系。 频率特性是一种稳态响应特性,但它不仅反映系统的稳
态性能,而且可以用来研究系统的暂态性能.
自动控制原理
蒋大明
第一节
输入正弦信号:e1 = E1Sin wt
对数频率特性: 对数幅频(近似画法): L(w)= 20 lg A(w) = -20lg(1+T2w2)1/2 低频段:w<<1/T,L(w)≈-20lg1= 0db 高频段: w>>1/T,L(w)≈-20lgTw (直线) w = 1/T, L(w)= -20lgTw=0 db (w=1/T处过横轴) w1=10/T, L(w1)= -20lgTw1= -20lg10 = -20 db
微分环节
一阶微分环节 G(S) = TS + 1 是惯性环节的倒数
二阶微分环节 G(S)= T2S2 + 2δ TS + 1 是振荡环节的倒数。
自动控制原理 蒋大明
一阶不稳定环节
具有正实部特征根(即不稳定根)的环节----不稳定环节。 传递函数: G(S) = 1/(TS-1) 频率特性: G(jω ) = 1/(jω T -1) 幅频特性: 与惯性环节相同 1
0db
= - 40lgTw
转折频率:w=1/T
直线
斜率:- 40db/dec (每十倍频程 -40db) υ (w) = - tg-1[2δ Tw/(1-T2w2)]
自动控制原理 蒋大明
振荡环节
误差 = 实际值 - 近似值 = -20lg [(1 - T2w2)2 + (2δ Tw)2]1/2︱w=1/T - 0 = -20lg (2δ ) db
= -20 lg 21/2 - 0
= -3 db
自动控制原理
蒋大明
积分环节
传递函数: G(S) = 1/S 幅相频率特性: G(jw) = 1/(jw) = 0–j(1/w)
W 0 1 ∞ Re 0 0 0 Im -∞ -1 0
自动控制原理
蒋大明
积分环节
对数频率特性: L(w) = 20lg A(w)
-20db/dec
= -20lg w
直线
0 1/T φ(W) 0 W W
w=1, L(w) = 0, (过横轴)
斜率:-20db/dec
-90°
υ (w) = - 90°
自动控制原理
相关文档
最新文档