2019年高考数学(理)真题汇编:专题03 导数及其应用

合集下载

专题03 导数及其应用 (解析版)

专题03 导数及其应用 (解析版)

专题03 导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln , 1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.3.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x,则y=f(x)﹣ax﹣b最多有一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2+ax﹣ax﹣b x3(a+1)x2﹣b,2(1)-',=+y x a x当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,则y=f(x)﹣ax﹣b最多有一个零点,不合题意;当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷理数】曲线23()e x y x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4【解析】由4(0)y x x x=+>,得241y x '=-,设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +, 由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=的距离最小,最小值4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题. 6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y ,则00ln y x =.又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019年高考北京理数】设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围. 若函数()e e x x f x a -=+为奇函数,则()(),f x f x -=-即()e e e e x x x x a a --+=-+,即()()1e e 0x x a -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e x x f x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【答案】(1)见解析;(2)见解析. 【解析】(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点, 设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <.所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点.(2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π ⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点.综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.9.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线.【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)U (1,+∞). 因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增.因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上. 由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x ,所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力.10.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩.【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 11.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.12.【2019年高考天津理数】设函数()e cos ,()x f x x g x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析.【解析】(Ⅰ)由已知,有()e (cos sin )x f 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z .(Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+- ⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n x n x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos e cos 2e n n y x n n n n n f y y x n n π--π==-π=∈N .由()()20e 1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<.所以,20022sin c s e o n n n x x x -πππ+-<-.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有(),2f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a ≤等价于22ln 0x a a--≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭ ≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x ===.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =…令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦ ,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭….由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>….由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x ….综上所述,所求a 的取值范围是0,4⎛ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x +-++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =.列表如下:x 1(0,)3 13 1(,1)3()g'x+0 –()g xZ极大值]所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f xg x ≤≤,因此427M ≤.【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数的单调减区间是A .C .【答案】A【解析】令 D_Dd____故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省南昌市2019届高三模拟考试数学】已知^^()A .B .C .0D .【答案】C【解析】∵()e e (1)()(e e ()x x x x f x f x f x --'-=+=---), ∴()f x 是偶函数,两边对x 求导,得()()f x f x -'-=',即()()f x f x '-=-', 则()f x '是R 上的奇函数,则(0)0f '=,(2)(2)f f '-=-',即(2)(2)0f f '+'-=,则(2)(2)(0)(1)0f f f f ''''+--=. 故选C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为 A .5250x y +-= B .10450x y +-= C .540x y += D .204150x y --=【答案】B【解析】()()3321f x f x x x +-=++Q ……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--,()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e-B .1eC .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12e x -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值. 19.【四川省内江市2019届高三第三次模拟考试数学】若函数D_Dd__________ˁA .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立, 即a ln xx->在x ∈()0+∞,上成立.令g(x)ln xx=-,则g′(x)21ln xx-=-,∴g(x)ln xx=-在(0,e)上单调递减,在(e,+∞)上单调递增,∴g(x)ln xx=-的最小值为g(e)=1e-,∴a>1e -.故选B.【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.【山西省太原市2019届高三模拟试题(一)数学】已知定义在^ _A.(^C.D.【答案】A【解析】令=故,即,故 D_Dd_则所求的解集为故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题.21.【河南省焦作市2019届高三第四次模拟考试数学】已知,,,则D_D A . D_Dd_____C .D .【答案】D【解析】依题意,得3ln3ln 33a ==,1lne e e b -==,3ln2ln888c ==.令,所以.所以函数在上单调递增,在上单调递减,所以 ,即所以故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题. 22.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知,若关于( D_Dd ()DA .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e ⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1e xx a +>恒成立,设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,在上单调递减,又, ; 当,在上单调递增,在上单调递减,,.故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为A .-2B .3C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-,由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-, 当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-, 当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减,显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥', 所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去.故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点.24.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =, 因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-, 即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥, 故0x >时,()0g x '>,即()g x 单调递增, 所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--,即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题. 25.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=,又该切线与直线10ax y --=垂直,所以12a =-.故答案为12-.【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______. 【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得(),1f x a a =>, 即1a >, 不妨设12x x < ,则2212e x x a == (1)a t t =>,则12,ln 2tx x t ==, 12ln 2tx x t ∴+=-令()ln 2tg t t =42()t g t -'= ∴当18t <<时,()0g t '>,()g t 在()1,8上单调递增;当8t >时,()0g t '<,()g t 在()8,+∞上单调递减,∴当8t =时,()g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()x g x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e 4g a =+,极小值为2e (4g a =-++. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=, 因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()x g x x x a f x =-+--, 所以2()(22)e (22)e e '()x x g x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e x h x x =-,则()e e x h x '=-, 令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥.当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值; 当0a >时,令()0g x '=,可得x a =±.当x a <-或x a >时,2()()()0g x x a h x '=-≥,()g x 单调递增, 当a x a -<<时,()0g x '<,()g x 单调递减,因此,当x a =-时,()g x 取得极大值2e()(22)e 4ag a a a --=++; 当x a =时,()g x 取得极小值2e ()(22)e 4ag a a a =-++. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,)a -∞-和(,)a +∞上单调递增,在(,)a a -上单调递减,函数既有极大值,又有极小值, 极大值为2e()(22)e 4ag a a a --=++, 极小值为2e ()(22)e4ag a a a =-++. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题. 28.【陕西省2019届高三第三次联考数学】已知函数,,.(1)求函数D_(2)若 /_D_Dd____【答案】(1)极大值点为,无极小值点.(2)【解析】(1)()ln f x x ax =-的定义域为,,当 ,所以在上单调递增,无极值点;当 得,解得,所以在上单调递增,在上单调递减,所以函数有极大值点,为,无极小值点.(2)由条件可得 _则当(令,令,则当在上为减函数.又(上,;在上,所以在上为增函数,在上为减函数,所以【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数.(1)若函数(2)若【答案】(1)〖【解析】(1)由题意知,所以在^/令,则所以所以(2)当则,令,则,所以由于.当所以__D_〖〗_所以,因为,所以,所以,所以【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.30.【福建省龙岩市2019届高三5月月考数学】今年3月5日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为(01)<<,且各篇学位论文是否被评议为“不p p合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为()f p,求()f p;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元.现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.【答案】(1);(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为,一篇学位论文复评被认定为“存在问题学位论文”的概率为,所以一篇学位论文被认定为“存在问题学位论文”的概率为. (2)设每篇学位论文的评审费为,,所以.令,.当时,在上单调递增;当时,在上单调递减,所以的最大值为.所以实施此方案,最高费用为""综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力.31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数,其中.(1)当______(2)若函数ԷϨ?______【答案】(1)极小值";(2)或.【解析】(1)由函数"" ^即D_Dd_____所以^ ^ ^ ^ _D_Dd__________΄ĝϨϨ________此时,则.由,解得^ _D_Dd__________˽ԷϨϨ_____当x 变化时,与__________0 0↘极小值↗极大值↘所以所以"(2)由,得.所以“与曲线,D_Dd__________ȍĝϨϨ________________ ^ (^)对函数^.由^ D_Dd__________ɉĻϨ当x 变化时,ϨϨ_0 0↘极小值↗极大值↘所以又因为,所以当或时,直线,素材来源于网络,林老师编辑整理素材来源于网络,林老师编辑整理 ""/"" ^ D_Dd__________ਣԷϨϨ________________ /"" 即当或时,函数D41Dd41414141414141414141༞༞Ϩ 【名师点睛】利用函数零点的情况求参数值或取值范围的方法: (1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象问题,从而构建不等式求解.【扫描二维码关注更多精彩★玩转高中数学研讨】。

精选2019高考数学《导数及其应用》专题完整考题(含答案)

精选2019高考数学《导数及其应用》专题完整考题(含答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-(2008全国1理) D. 由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==---- 二、填空题2.2ln ()x x ax x f x e+-=, 若函数()f x 在区间]1,0(上是单调函数,则a 的取值范围 2≤a3.设函数21()ln .2f x x ax bx =--若x =1是()f x 的极大值点,则实数a 的取值范围是 .4.已知函数x x mx x f 2ln )(2-+=在定义域内是增函数,则实数m 的取值范围是 ▲ .5.设曲线(1)x y ax e =-在点A 01(,)x y 的切线为1l ,曲线1x x y e-=在点B 02(,)x y 的切线为2l ,若存在013[,]22x ∈-,使得12l l ⊥,则实数a 的取值范围是_______6.函数f (x )=12x -sin x 在区间[0,π]上的最小值为 .7.函数()f x ln x x =-2单调递减区间是 。

8.已知f (x )是定义在(0,+∞)上的单调函数,且对任意的x ∈(0,+∞),都有f [f (x )-x 3]=2,则过点(1,2)且与曲线y =f (x )相切的直线方程是________.9.省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|x x 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =x x 2+1,x ∈[0,24],求t 的取值范围; (2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?10.若函数f (x )=x - p x +p 2在(1,+∞)上是增函数,则实数p 的取值范围是___________________.11. 直线12y x b =+能作为下列函数()y f x =的切线有 ▲ .(写出所有正确....的函数的序号) ①1()f x x= ②()ln f x x = ③()sin f x x = ④()x f x e =-12. 若函数f(x)= x3+ax-2在区间(-∞,+∞)上是增函数,则实数a的取值范围为__________13.曲线12++=x xe y x 在点(0,1)处的切线方程为 .14.已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1(D)-2(2009全国1理)15.已知函数()log a f x x =和()2log (22),(0,1,)a g x x t a a t R =+->≠∈的图象在2x =处的切线互相平行,则t =__________.三、解答题16. (本小题满分16分)已知函数(),()ln x xf x e axg x e x =+=(1)设曲线()y f x =在1x =处的切线与直线(1)1x e y +-=垂直,求a 的值(2)若对任意实数0,()0x f x ≥>恒成立,确定实数a 的取值范围M B A(3)当1a =-时,是否存在实数0[1,]x e ∈,使曲线C :()()y g x f x =-在点0x x =处的切线与y 轴垂直?若存在,求出0x 的值,若不存在,说明理由17.已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=. ⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.(本题满分15分)18.已知函数2()f x x x λλ=+,()ln g x x x λ=+,()()()h x f x g x =+,其中R λ∈, 且0λ≠.⑴当1λ=-时,求函数()g x 的最大值;⑵求函数()h x 的单调区间; ⑶设函数(),0,()(),0.f x x x g x x ϕ≤⎧=⎨>⎩若对任意给定的非零实数x ,存在非零实 数t (t x ≠),使得'()'()x t ϕϕ=成立,求实数λ的取值范围.19.已知函数()32=33 1.f x x ax x +++(I)求()f ;a x =的单调性;(II)若[)()2,0,.x f x a ∈+∞≥时,求的取值范围(2013年高考大纲卷(文))20.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值;(2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.(本小题满分16分)21.设函数322()f x x ax a x m =+-+ (0)a >(I )若1a =时函数()f x 有三个互不相同的零点,求m 的范围;(II )若函数()f x 在[]1,1-内没有极值点,求a 的范围;(III )若对任意的[]3,6a ∈,不等式()1f x ≤在[]2,2x ∈-上恒成立,求实数m 的取值范围. (2010陕西省高考第四次模拟)关键字:含参;有零点;求导;求参数的取值范围;无极值点;恒成立问题;22.已知函数()ln f x x =,2()(0)g x ax x a =->,(1)试证明:“方程()()f x g x =有惟一解”的充要条件是“1a =”;(2)若函数()y f x =与()y g x =的图象有两个不同的交点M N 、,求a 的取值范围;(3)在(2)的条件下,过线段MN 的中点作x 轴的垂线分别与()f x 的图象和()g x 的图象交于S T 、点,以S 为切点作()f x 的切线1l ,以T 为切点作()g x 的切线2l ,是否存在实数a 使得12//l l ,如果存在,求出a 的值;如果不存在,请说明理由.23.已知函数)0()(>+=x xt x x f ,过点P(1,0)作曲线)(x f y =的两条切线PM ,PN ,切点分别为M ,N .(1)当2=t 时,求函数)(x f 的单调递增区间;(2)设|MN |=)(t g ,试求函数)(t g 的表达式;(3)在(2)的条件下,若对任意的正整数n ,在区间]64,2[nn +内,总存在m +1个数,,,,,121+m m a a a a 使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.24.已知函数1()ln(1)(2).1a f x x ax a x -=+-+≥+ (1)当曲线()y f x =在(1,(1))f 处的切线与直线:21l y x =-+平行时,求a 的值;(2)求函数()y f x =的单调区间.25.已知函数()y f x =是定义域为R 的偶函数,其图像均在x 轴的上方,对任意的[0,)m n ∈+∞、,都有nm f n m f )]([)(=⋅,且(2)4f =,又当0x ≥时,其导函数0)(>'x f 恒成立。

最新2019高考数学《导数及其应用》专题完整题(含答案)

最新2019高考数学《导数及其应用》专题完整题(含答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.22(1cos )x dx ππ-+⎰等于( )A .πB . 2C . π-2D . π+2(2009福建理)2.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f二、填空题3.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 .4.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β; ④若l ⊥m ,则α∥β. 其中正确命题的序号是________.5.已知2(),()(1),xf x xeg x x a ==-++若12,,x x R ∃∈使得21()()f x g x ≤成立,则实数a 的取值范围是 ▲6.已知曲线()ln 1f x a x bx =++在点(1,(1))f 处的切线斜率为-2,且23x =是函数()y f x =的极值点,则a b -= .7.函数y =x 3-6x +a 的极大值为____________,极小值为____________. [答案] a +42 a -4 2[解析] y ′=3x 2-6=3(x +2)(x -2), 令y ′>0,得x >2或x <-2, 令y ′<0,得-2<x <2, ∴当x =-2时取极大值a +42, 当x =2时取极小值a -4 2.8.已知函数32()f x x ax bx c =+++(其中,,a b c 为常数),若()y f x =在1x =-和13x =-时分别取得极大值和极小值,则a = ▲ .9.y=x 3+ax +1的一条切线方程为y =2x +1,则a = .10.已知曲线 xe y =在点P 处的切线经过原点,则此切线的方程为11.已知一辆轿车在公路上作加速直线运动,设ts 时的速度为3)(2+=t t v )/(s m ,则s t 3=时轿车的瞬时加速度为______________________.12. 若点P 是曲线y=x 2-ln x 上任意一点,则点P 到直线y=x -2的最小距离为 .2三、解答题13.现有一张长为80cm ,宽为60cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失。

2019年高考数学理科数学导数及其应用分类汇编

2019年高考数学理科数学导数及其应用分类汇编

2019年高考数学理科数学导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线eln xy a x x 在点(1,ae )处的切线方程为y=2x+b ,则A .e 1a b,B .a=e ,b=1 C .1e 1ab,D .1e a,1b【答案】D 【解析】∵eln 1,xy a x ∴切线的斜率1|e 12x k y a ,1e a,将(1,1)代入2y xb ,得21,1bb.故选D .2.【2019年高考天津理数】已知a R ,设函数222,1,()ln ,1.xax a x f x x a x x 若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为A .0,1B .0,2C .0,eD .1,e【答案】C 【解析】当1x时,(1)12210f a a 恒成立;当1x 时,22()22021xf x x ax a ax 恒成立,令2()1xg x x ,则222(11)(1)2(1)1()111x x x x g x xxx11122(1)2011xx x x,当111xx,即0x 时取等号,∴max2()0ag x ,则0a.当1x时,()ln 0f x x a x,即ln x ax恒成立,令()ln x h x x,则2ln 1()(ln )x h x x ,当e x 时,()0h x ,函数()h x 单调递增,当0e x时,()0h x ,函数()h x 单调递减,则e x 时,()h x 取得最小值(e)e h ,∴min()e ah x ,综上可知,a 的取值范围是[0,e]. 故选C.3.(2019浙江)已知,a bR ,函数32,0()11(1),032x xf x x a x ax x.若函数()yf x ax b 恰有3个零点,则A .a<–1,b<0 B .a<–1,b>0C .a>–1,b<0 D .a>–1,b>0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx3(a+1)x 2+ax ﹣ax ﹣bx3(a+1)x 2﹣b ,2(1)y xa x ,当a+1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a+1>0,即a>﹣1时,令y ′>0得x ∈(a+1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴<0且><,解得b <0,1﹣a >0,b >(a+1)3,则a>–1,b<0. 故选C .4.【2019年高考全国Ⅰ卷理数】曲线23()e xy xx 在点(0)0,处的切线方程为____________.【答案】30x y 【解析】223(21)e 3()e3(31)e ,xxxyx xx xx 所以切线的斜率0|3xky ,则曲线23()e xyxx 在点(0,0)处的切线方程为3yx ,即30xy .5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)yxx x 上的一个动点,则点P 到直线0xy 的距离的最小值是▲ .【答案】4 【解析】由4(0)yxxx,得241yx,设斜率为1的直线与曲线4(0)y x xx切于004(,)x x x ,由2411x得02x (02x 舍去),∴曲线4(0)y xxx上,点(2,32)P 到直线0xy的距离最小,最小值为22232411.故答案为4.6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y=lnx 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是▲ .【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点00,A x y ,则00ln y x .又1yx,当0xx 时,01yx ,则曲线ln y x 在点A 处的切线为0001()y y xx x ,即0ln 1x yx x ,将点e,1代入,得e 1ln 1x x ,即00ln e x x ,考察函数ln H xx x ,当0,1x 时,0H x ,当1,x时,0H x,且ln 1H xx ,当1x时,0,H x H x 单调递增,注意到ee H ,故00ln e x x 存在唯一的实数根0e x ,此时01y ,故点A 的坐标为e,1.7.【2019年高考北京理数】设函数ee xxf x a (a 为常数).若f (x )为奇函数,则a=________;若f (x )是R 上的增函数,则a 的取值范围是___________.【答案】1,0【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x 可得a 的取值范围. 若函数e e xx f xa 为奇函数,则,f x f x 即eeeexxxxa a ,即1ee0xxa 对任意的x 恒成立,则10a ,得1a.若函数ee xxf xa 是R 上的增函数,则() ee0xxf x a 在R 上恒成立,即2e xa 在R 上恒成立,又2e0x,则0a ,即实数a 的取值范围是,0.8.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x ,()f x 为()f x 的导数.证明:(1)()f x 在区间(1,)2存在唯一极大值点;(2)()f x 有且仅有2个零点.【答案】(1)见解析;(2)见解析. 【解析】(1)设()()g x f 'x ,则1()cos 1g x xx,21sin ())(1x'x g x .当1,2x 时,()g'x 单调递减,而(0)0,()02g'g',可得()g'x 在1,2有唯一零点,设为.则当(1,)x时,()0g'x ;当,2x 时,()0g'x .所以()g x 在(1,)单调递增,在,2单调递减,故()g x 在1,2存在唯一极大值点,即()f 'x在1,2存在唯一极大值点.(2)()f x 的定义域为(1,).(i )当(1,0]x时,由(1)知,()f 'x 在(1,0)单调递增,而(0)0f ',所以当(1,0)x时,()0f 'x ,故()f x 在(1,0)单调递减,又(0)=0f ,从而0x 是()f x 在(1,0]的唯一零点.(ii )当0,2x时,由(1)知,()f 'x 在(0,)单调递增,在,2单调递减,而(0)=0f ',02f ',所以存在,2,使得()0f ',且当(0,)x 时,()0f 'x ;当,2x 时,()0f 'x .故()f x 在(0,)单调递增,在,2单调递减.又(0)=0f ,1ln 1022f,所以当0,2x 时,()0f x .从而,()f x 在0,2没有零点. (iii )当,2x时,()0f 'x ,所以()f x 在,2单调递减.而02f,()0f ,所以()f x 在,2有唯一零点.(iv )当(,)x 时,ln(1)1x ,所以()f x <0,从而()f x 在(,)没有零点.综上,()f x 有且仅有2个零点. 9.【2019年高考全国Ⅱ卷理数】已知函数11ln x f x xx .(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x 0是f(x)的一个零点,证明曲线y=lnx 在点A(x 0,ln x 0)处的切线也是曲线e xy 的切线.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x xx ,所以()f x 在(0,1),(1,+∞)单调递增.因为f (e )=e 110e 1,22222e 1e3(e )20e1e1f ,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x ,1111111()ln ()01x f x f x x x ,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点.(2)因为ln 01ex x ,故点B (–ln x 0,1x )在曲线y=e x上.由题设知0()0f x ,即0001ln 1x x x ,故直线AB 的斜率00000111ln 111ln 1x x x x x kx x x x x x .曲线y=e x在点001(ln ,)B x x 处切线的斜率是1x ,曲线ln yx 在点00(,ln )A x x 处切线的斜率也是1x ,所以曲线ln y x 在点00(,ln )A x x 处的切线也是曲线y=e x的切线.10.【2019年高考全国Ⅲ卷理数】已知函数32()2f x xaxb .(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x xax x x a .令()0f x ,得x=0或3a x.若a>0,则当(,0),3a x时,()0f x ;当0,3a x 时,()0f x .故()f x 在(,0),,3a 单调递增,在0,3a 单调递减;若a=0,()f x 在(,)单调递增;若a<0,则当,(0,)3a x 时,()0f x ;当,03a x 时,()0f x .故()f x 在,,(0,)3a 单调递增,在,03a 单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b .此时a ,b 满足题设条件当且仅当1b ,21a b ,即a=0,1b.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b .此时a ,b 满足题设条件当且仅当21a b,b=1,即a=4,b=1.(iii )当0<a<3时,由(1)知,()f x 在[0,1]的最小值为3327a afb ,最大值为b 或2a b .若3127ab ,b=1,则332a ,与0<a<3矛盾.若3127ab,21a b ,则33a或33a 或a=0,与0<a<3矛盾.综上,当且仅当a=0,1b或a=4,b=1时,()f x 在[0,1]的最小值为-1,最大值为1.11.【2019年高考北京理数】已知函数321()4f x xxx .(Ⅰ)求曲线()y f x 的斜率为1的切线方程;(Ⅱ)当[2,4]x时,求证:6()xf x x ;(Ⅲ)设()|()()|()F x f x x a aR ,记()F x 在区间[2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.【解析】(Ⅰ)由321()4f x xxx 得23()214f x xx .令()1f x ,即232114xx ,得0x 或83x.又(0)0f ,88()327f ,所以曲线()y f x 的斜率为1的切线方程是y x 与88273yx,即yx 与6427yx.(Ⅱ)令()(),[2,4]g x f x x x .由321()4g x xx 得23()24g'x xx .令()0g'x 得0x 或83x.(),()g'x g x 的情况如下:x2(2,0)8(0,)3838(,4)34()g'x ()g x 606427所以()g x 的最小值为6,最大值为0.故6()0g x ,即6()x f x x .(Ⅲ)由(Ⅱ)知,当3a 时,()(0)|(0)|3M F g a a a ;当3a 时,()(2)|(2)|63M F a g a a;当3a时,()3M a .综上,当()M a 最小时,3a .12.【2019年高考天津理数】设函数()e cos ,()xf x xg x 为f x 的导函数.(Ⅰ)求f x 的单调区间;(Ⅱ)当,42x时,证明()()02f xg x x;(Ⅲ)设n x 为函数()()1u x f x 在区间2,242nn内的零点,其中n N ,证明20022sin c s eo nnnx x x .【解析】(Ⅰ)由已知,有()e (cos sin )xf 'x x x .因此,当52,244xkk()k Z 时,有sin cos x x ,得()0f 'x ,则f x 单调递减;当32,244xkk()k Z 时,有sin cos xx ,得()0f 'x ,则f x 单调递增.所以,f x 的单调递增区间为32,2(),()44kkkf x Z 的单调递减区间为52,2()44kkk Z .(Ⅱ)证明:记()()()2h x f x g x x .依题意及(Ⅰ),有()e (cos sin )xg x x x ,从而()2e sin xg'x x .当,42x时,0()g'x ,故()()()()(1)()022h'x f 'x g'x x g x g'x x.因此,h x 在区间,42上单调递减,进而()022h x hf.所以,当,42x时,()()02f xg x x.(Ⅲ)证明:依题意,10n n u x f x ,即cos e 1nx nx .记2nn y x n ,则,42ny ,且22e cos ecos 2e nn y x nnn n nf y y x n n N .由20e1nnf y f y 及(Ⅰ),得0n y y .由(Ⅱ)知,当,42x时,()0g'x ,所以g x 在,42上为减函数,因此004ngy gyg.又由(Ⅱ)知,02n nnf yg y y ,故22220002sin cos sin c e e eeos ennnnn ny nn f y y g y g y g y y y x x .所以,20022sin c s eo nnnx x x .13.【2019年高考浙江】已知实数0a,设函数()=ln 1,0.f x a xx x(1)当34a时,求函数()f x 的单调区间;(2)对任意21[,)ex均有(),2x f x a 求a 的取值范围.注:e=2.71828…为自然对数的底数.【解析】(1)当34a时,3()ln 1,04f x x x x .31(12)(211)()42141x x f 'x xxx x,所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+).(2)由1(1)2f a,得204a.当204a 时,()2x f x a等价于2212ln 0x x x aa.令1t a,则22t.设2()212ln ,22g t txt xx t,则211()(1)2ln x g t x tx xx.(i )当1,7x 时,1122x,则()(22)84212ln g t g x xx .记1()4221ln ,7p x xxx x,则2212121()11x x x x p'x xxx x x (1)[1(221)]1(1)(12)x x xx x xx x .故x171(,1)71(1,)()p'x 0 +()p x 1()7p 单调递减极小值(1)p 单调递增所以,()(1)0p x p .因此,()(22)2()0g t g p x .(ii )当211,e 7x时,12ln (1)()12x xx g t g xx….令211()2ln (1),,e 7q x x x x x,则ln 2()10xq'x x,故()q x 在211,e 7上单调递增,所以1()7q x q,.由(i )得,127127(1)07777qp p .所以,()<0q x .因此1()()102q x g t gxx ….由(i )(ii )知对任意21,ex ,[22,),()0t g t …,即对任意21,ex,均有()2x f x a ,.综上所述,所求a 的取值范围是20,4.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c R 、()f 'x 为f (x )的导函数.(1)若a=b=c ,f (4)=8,求a 的值;(2)若a ≠b ,b=c ,且f (x )和()f 'x 的零点均在集合{3,1,3}中,求f (x )的极小值;(3)若0,01,1a b c ,,且f (x )的极大值为M ,求证:M ≤427.【解析】(1)因为abc ,所以3()()()()()f x x a x b x c x a .因为(4)8f ,所以3(4)8a ,解得2a .(2)因为b c ,所以2322()()()(2)(2)f x xa xb xa b xb a b x ab ,从而2()3()3a b f 'x x b x .令()0f 'x ,得x b 或23a bx.因为2,,3a ba b 都在集合{3,1,3}中,且a b ,所以21,3,33a ba b.此时2()(3)(3)f x xx ,()3(3)(1)f 'x x x .令()0f 'x ,得3x 或1x .列表如下:x (,3)3(3,1)1 (1,)()f 'x +0 –0 +()f x 极大值极小值所以()f x 的极小值为2(1)(13)(13)32f .(3)因为0,1ac ,所以32()()(1)(1)f x x xb x xb xbx ,2()32(1)f 'x xb x b .因为01b ,所以224(1)12(21)30b b b ,则()f 'x 有2个不同的零点,设为1212,x x x x .由()0f 'x ,得22121111,33b b b b b b x x .列表如下:x 1(,)x 1x 12,x x 2x 2(,)x ()f 'x +0 –0 +()f x 极大值极小值所以()f x 的极大值1M f x .解法一:321111(1)M f x xb xbx 221111211(1)[32(1)]3999bb x b b b xb x b x 23221(1)(1)2127927b b b b b bb 23(1)2(1)(1)2((1)1)272727b b b b b b (1)24272727b b .因此427M.解法二:因为01b ,所以1(0,1)x .当(0,1)x时,2()()(1)(1)f x x xb x x x .令2()(1),(0,1)g x x x x,则1()3(1)3g'x xx .令()0g'x ,得13x.列表如下:x1(0,)3131(,1)3()g'x +0 –()g x 极大值所以当13x时,()g x 取得极大值,且是最大值,故max 14()327g x g.所以当(0,1)x 时,4()()27f xg x ,因此427M.。

高考数学专题03 导数及其应用(原卷版)

高考数学专题03 导数及其应用(原卷版)
(1)若 a=b=c,f(4)=8,求 a 的值;
(2)若 a≠b,b=c,且 f(x)和 f ' ( x) 的零点均在集合 { 3,1,3} 中,求 f(x)的极小值;
(3)若 a 0, 0 b„ 1, c 1 ,且 f(x)的极大值为 M,求证:M≤
4

27
15.【河北省武邑中学 2019 届高三第二次调研考试数学】函数() = 2 ‒ 2ln的单调减区间是
A.4e2 + 4e ‒ 2
B.4e2 ‒ 4e ‒ 2
C.0
D.4e2
17.【江西省新八校 2019 届高三第二次联考数学】若 f ( x) 3 f ( x) x 3 2 x 1 对 x R 恒成立,则曲
A.(0,1]
B.[1, + ∞)
C.( ‒ ∞, ‒ 1] ∪ (0,1]
D.[ ‒ 1,0) ∪ (0,1]
16.【江西省南昌市 2019 届高三模拟考试数学】已知()在上连续可导,'()为其导函数,且() = e
+ e ‒ ‒ '(1) ⋅ (e ‒ e ‒ ),则'(2) + '( ‒ 2) ‒ '(0)'(1) =
D.a>–1,b>0
4.【2019 年高考全国Ⅰ卷理数】曲线 y 3( x x)e 在点 (0,
0) 处的切线方程为____________.
2
x
5.【2019 年高考江苏】在平面直角坐标系 xOy 中,P 是曲线 y x
线 x y 0 的距离的最小值是

4
( x 0) 上的一个动点,则点 P 到直
4 2

精编新版2019高考数学《导数及其应用》专题完整考题(含答案)

精编新版2019高考数学《导数及其应用》专题完整考题(含答案)

x yO (2,0)P ()y f x =()y f x '= 1 (第7题图)2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数x x y ln =在)5,0(上是( ).A .单调增函数B .单调减函数C .在)1,0(e 上单调递增,在)5,1(e上单调递减;D .在)1,0(e 上单调递减,在)5,1(e上单调递增. 答案 D二、填空题 2.已知2()2f x x a =+与3()g x x bx =+的图象在1x =处有相同的切线,则a b += ▲ .3.函数f (x )=12x -sin x 在区间[0,π]上的最小值是 .4.已知函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为_________.5.(文)设()f x 是定义在(,0)(0,)ππ-⋃上的奇函数,其导函数为'()f x .当0x π<<时,0)(sin cos )(>⋅-⋅'x f x x x f , 则不等式0cos )(>⋅x x f 的解集为 6.()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则实数a = .7.已知函数()y f x =及其导函数()y f x '=的图象如图所示,则曲线()y f x =在点P 处的切线方程是 ▲8.已知函数()f x 是定义在R 上的奇函数,(2)0f =,当0x >时,有2'()()0xf x f x x-<成立,则不等式()0f x >的解集是 ▲ .9.已知函数⎩⎨⎧<≥-=0,0,)(2x x x x x f ,则=-))3((f f _____________________. 10.已知函数32()23125f x x x x =--+在区间[0,3]上的最大值与最小值分别为,M m ,则M m -= .11.已知定义在R 上的函数()f x 满足()12f =,()1f x '<,则不等式()221f x x <+的解集为_▲__.12.若函数2()1x a f x x +=+在1x =处取极值,则a = 【解析】f ’(x)=222(1)()(1)x x x a x +-++ f ’(1)=34a -=0 ⇒ a =313.曲线x x y ln 2-=在点)2,1(处的切线方程为 .三、解答题14.已知2()f x x bx c =++为偶函数,曲线()y f x =过点(2,5),()()()g x x a f x =+. (Ⅰ)求曲线()y g x =有斜率为0的切线,求实数a 的取值范围;(Ⅱ)若当1x =-时函数()y g x =取得极值,确定()y g x =的单调区间.15.已知函数22()ln (1)1x f x x x =+-+,2()2(1)ln(1)2g x x x x x =++--. (1)证明:当(0)x ∈+∞,时,()0g x <;(2)求函数()f x 的的极值.16.已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;(II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析 (Ⅰ)由题意得)2()1(23)(2+--+='a a x a x x f又⎩⎨⎧-=+-='==3)2()0(0)0(a a f b f ,解得0=b ,3-=a 或1=a(Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于 导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有51a -<<且12a ≠-17.设函数321()(1)4243f x x a x ax a =--++,其中常数a>1 (Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a 的取值范围。

精编2019高考数学《导数及其应用》专题完整考题(含参考答案)

精编2019高考数学《导数及其应用》专题完整考题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是( )(2012重庆理)A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f2.曲线=xy e 在点A (0,1)处得切线斜率为( ) A .1 B .2 C .e D .1e(2011江西文4) 3.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()00S t S =,则导函数()'y S t =的图像大致为4.若函数()y f x =的导函数...在区间[,]a b 上是增函数, 则函数()y f x =在区间[,]a b 上的图象可能是( )A .B .C .D .解析 因为函数()y f x =的导函数...()y f x '=在区间[,]a b 上是增函数,即在区间[,]a b 上各点处的斜率k 是递增的,由图易知选A. 注意C 中y k '=为常数噢. 二、填空题5.直线y = kx 与曲线2e x y =相切,则实数k = ▲ .6. 曲线3()2f x x x =+-在0P 点处的切线平行于直线41y x =-,则0P 点的坐标为 . 7.已知三次函数32()()32a b f x x x cx d a b =+++<在R 上单调递增,则a b cb a++-的最小 值为 ▲ .关键字:多项式函数;含多参;已知单调性;求最值;整体换元;分式函数8.函数3()31f x x x =+-在(0,1)上零点的个数为 ▲ . 9.函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是___________________0<b <1 三、解答题10.已知函数325()2f x x x ax b =+++(a ,b 为常数),其图象是曲线C .(1)当2a =-时,求函数()f x 的单调减区间;(2)设函数()f x 的导函数为()f x ',若存在唯一的实数0x ,使得00()f x x =与0()0f x ='同ab ab ao b a b时成立,求实数b 的取值范围;(3)已知点A 为曲线C 上的动点,在点A 处作曲线C 的切线1l 与曲线C 交于另一点B ,在点B 处作曲线C 的切线2l ,设切线1l ,2l 的斜率分别为1k ,2k .问:是否存在常数λ,使得21k k λ=?若存在,求出λ的值;若不存在,请说明理由.(本小题满分16分)11.已知函数a x x x x f +++-=93)(23(1)求)(x f 的单调减区间(2)若)(x f 在区间[-2,2]上的最大值为20,求它在该区间上的最小值。

精编新版2019高考数学《导数及其应用》专题完整考题(含参考答案)

精编新版2019高考数学《导数及其应用》专题完整考题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f ,则f (x )>2x+4的解集为( )(A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞)(2011辽宁理11)2.将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是____ ____。

3.已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能...出现的是 ( )A .0是()f x 的极大值,也是()g x 的极大值B .0是()f x 的极小值,也是()g x 的极小值C .0是()f x 的极大值,但不是()g x 的极值D .0是()f x 的极小值,但不是()g x 的极值 答案 C 二、填空题4.已知32()26(f x x x m m =-+为常数)在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为____________5.已知函数f (x )=e x -ax 在区间(0,1)上有极值,则实数a 的取值范围是 ▲ .6.已知函数y =f (x )在定义域⎝⎛⎭⎫-32,3上可导,其图象如图,记y =f (x )的导函数y =f ′(x ),则不等式xf ′(x )≤0的解集是______ __.xyO(2,0)P()y f x =()y f x '=1 (第10题7.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则实数a 的取值范围是 .8.设函数f (x )在其定义域D 上的导函数为f ′(x ).如果存在实数a 和函数h (x ),其中h (x )对任意的x ∈D 都有h (x )>0,使得f ′(x )=h (x )(x 2-ax +1),则称函数f (x )具有性质P (a ).给出下列四个函数:①f (x )=13x 3-x 2+x +1;②f (x )=ln x +4x +1;③f (x )=(x 2-4x +5)e x ;④f (x )=x 2+x2x +1,其中具有性质P (2)的函数是 .(写出所有满足条件的函数的序号) 9.设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .10.函数y =2xx 2+1的极大值为______,极小值为______.[答案] 1 -1[解析] y ′=2(1+x )(1-x )(x 2+1)2,令y ′>0得-1<x <1,令y ′<0得x >1或x <-1, ∴当x =-1时,取极小值-1,当x =1时,取极大值1.11.已知函数()y f x =及其导函数()y f x '=的图象如图所示,则曲线()y f x =在点P 处的切线方程是 ▲ .12.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,)()(2>-'x x f x f x )(0>x ,则不等式0)(2>x f x 的解集是 .13.如图为函数32()f x ax bx cx d =+++的图象,'()f x 为函数()f x 的导函数,则不等式'()0x f x ⋅<的解集为______ ______.答案 (,-∞⋃14.已知函数f (x )的定义域为[-2,+∞),部分对应值如下表,)(x f '为f (x )的导函数,函数)(x f y '=的图象如右图所示,若两正数a ,b 满足1)2(<+b a f ,则33++a b 的取值范围是 . 答案 ⎪⎭⎫⎝⎛37,53 15.已知一辆轿车在公路上作加速直线运动,设ts 时的速度为3)(2+=t t v )/(s m ,则s t 3=时轿车的瞬时加速度为______________________.16. 函数5()sin 2sin cos2cos66f x x x ππ=⋅-⋅在[,]22ππ-上的单调递增区间为 .三、解答题17.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.18.已知函数2()21()f x x ax a R =++∈,'()f x 是()f x 的导函数 (1)若[2,1]x ∈--,不等式()'()f x f x ≤恒成立,求a 的取值范围; (2)解关于x 的方程()'()f x f x =;(3)设函数'(),()'()()(),()'()f x f x f xg x f x f x f x ≥⎧=⎨<⎩,求()g x 在[]2,4x ∈时的最小值.19.设L 为曲线C:ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. (2013年高考北京卷(理))20.设a ∈R ,函数233)(x ax x f -=,2=x 是函数)(x f y =的极值点. (Ⅰ)求a 的值;(Ⅱ)求函数233)(x ax x f -=在区间[]1,5-上的最值.21.已知函数()ln 3f x a x ax =--(a R ∈). (1)求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为4π,对于任意[]1,2t ∈,函数32()()2m g x x x f x ⎡⎤'=++⎢⎥⎣⎦在区间(t ,3)总不是单调函数,求m 的取值范围.22.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.(本小题满分16分)23.已知函数()||x f x e bx =-,其中e 为自然对数的底. (1)当1b =时,求曲线()y f x =在x=1处的切线方程; (2)若函数()y f x =有且只有一个零点,求实数b 的取值范围;(3)当0b >时,判断函数()y f x =在区间(0,2)上是否存在极大值,若存在,求出极大值及相应实数b 的取值范围.24.已知a ,b 是实数,函数,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I上单调性一致(1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;(2)设,0<a 且b a ≠,若函数)(x f 和)(x g 在以a ,b 为端点的开区间上单调性一致,求|a -b |的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题03 导数及其应用1、【2019高考全国Ⅲ理数】已知曲线e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+,则( )A .e,1a b ==-B .e,1a b ==C .1e 1,a b -==D .1,e 1b a -==-2、【2019高考全国Ⅲ理数】设函数()sin()(0)5f x x ωωπ=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增 ④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3、【2019高考天津卷理数】已知R a ∈,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( ) A.[]0,1B.[]0,2C.[]0,eD.[]1,e4、【2019高考全国Ⅰ理数】曲线23()e xy x x =+在点(0,0)处的切线方程为_______. 5、【2019高考浙江卷】已知R a ∈,函数3()f x ax x =-,若存在R t ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 6、【2019高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是__________7、【2019高考江苏卷】在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(e,1)--(e 为自然对数的底数),则点A 的坐标是_________8、【2019高考北京卷理数】设函数f (x )=e x+a e −x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.9、【2019高考全国Ⅰ理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:1.()f x '在区间(1,)2π-存在唯一极大值点; 2.()f x 有且仅有2个零点.10、【2019高考全国Ⅱ理数】已知函数()11ln x f x x x -=-+.1.讨论()f x 的单调性,并证明()f x 有且仅有两个零点;2.设0x 是()f x 的一个零点,证明曲线ln y x =在点00l (,)n A x x 处的切线也是曲线exy =的切线.11、【2019高考全国Ⅲ理数】已知函数32()2f x x ax b =-+. 1.讨论()f x 的单调性;2.是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.12、【2019高考天津卷理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.1.求()f x 的单调区间;2.当,42x ⎡⎤∈⎢⎥⎣π⎦π时,证明()()02f x g x x ⎛⎫π+-≥ ⎪⎝⎭;3.设n x 为函数()()1u x f x =-在区间2,242m m ⎛⎫+π+π ⎝π⎪⎭内的零点,其中N n ∈,证明20022sin cos n n n x x e x -ππ+-π<-.13、【2019高考浙江卷】已知实数0a ≠,设函数()=ln 0.f x a x x +>1.当34a =-时,求函数()f x 的单调区间;2.对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e 2.71828=⋯为自然对数的底数.14、【2019高考江苏卷】设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为()f x 的导函数.1.若a b c ==,(4)8f =,求a 的值;2.若,a b b c ≠=,且()f x 和'()f x 的零点均在集合{3,1,3}-中,求()f x 的极小值;3.若0,01,1a b c =<≤=,且()f x 的极大值为M ,求证:427M ≤. 15、【2019高考北京卷理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.答案以及解析1答案及解析: 答案:D解析:详解:'ln 1,xy ae x =++1'|12x k y ae ===+= 1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .2答案及解析: 答案:D解析:()sin (0)5f x wx w π⎛⎫=+> ⎪⎝⎭,在[0,2]π有且仅有5个零点.02x ∴≤≤π,12555wx w ππ≤+≤π+,1229510w ≤<,④正确.如图213,,x x x 为极大值点为3个,①正确;极小值点为2个或3个.∴②不正确.当010x π<<时,5105w wx f πππ<+<+π,当2910w =时,2920491051001001002w +=+=<ππππππ. ∴③正确,故选D .3答案及解析: 答案:C解析:首先(0)0f ≥,即0a ≥, 当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x =,则2ln 1'()(ln )x g x x -=,易知x e =为函数()g x 在(1,)+∞唯一的极小值点、也是最小值点, 故max()()g x g e e ==,所以a e ≤。

综上可知,的取值范围是[0,]e 。

故选C 。

4答案及解析: 答案:3y x =解析:解:/223(21)3()3(31),x x xy x e x x e x x e =+++=++所以,/0|3x k y ===所以,曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.5答案及解析: 答案:43解析:6答案及解析: 答案:4解析:当直线22gR r 平移到与曲线4y x x =+相切位置时,切点Q 即为点P 到直线22gR r的距离最小. 由2411y x'=-=-,得)x =,y =即切点Q ,则切点Q 到直线22gR r4=,故答案为:4.7答案及解析: 答案:(e,1)解析:设点()00,A x y ,则00ln y x =.又1y x'=, 当0x x =时,01y x '=, 点A 在曲线ln y x =上切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e .8答案及解析:答案:(1). -1; (2). (],0-∞.解析:若函数()x x f x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x x f x e ae -=-≥恒成立,2,0xa e a ≤≤.即实数的取值范围是(],0-∞9答案及解析:答案:1.设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点, 设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <.所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. 2.()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由1知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由1知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+>⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()0f x <,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点. 解析:10答案及解析:答案:1.()f x 的定义域为(0,1),(1,)+∞单调递增.因为e 1(e)10e 1f +=-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--, 所以()f x 在(1,)+∞有唯一零点1x ,即1()0f x =. 又11111111101,()ln ()01x f x f x x x x +<<=-+=-=-, 故()f x 在(0,1)有唯一零点11x . 综上,()f x 有且仅有两个零点.2.因为0ln 01e x x -=,故点001(ln ,)B x x -在曲线e x y =上. 由题设知0()0f x =,即0001ln 1x x x +=-, 故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线xy e =在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x ,所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线e xy =的切线. 解析:11答案及解析:答案:1.2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3a x =.若0a >,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若0a =,()f x 在(,)-∞+∞单调递增;若0a <,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减. 2.满足题设条件的,a b 存在.(i )当0a ≤时,由1知,()f x 在[0,1]单调递增,所以()f x 在区间[0,1]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时,a b 满足题设条件当且仅当1b =-,21a b -+=,即0a =,1b =-.(ii )当3a ≥时,由1知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时,a b 满足题设条件当且仅当21a b -+=-,1b =,即4,1a b ==.(iii )当03a <<时,由1知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,1b =,则a =,与03a <<矛盾.若3127a b -+=-,21a b -+=,则a =a =-0a =,与03a <<矛盾.综上,当且仅当0a =,1b =-或4,1a b ==时,()f x 在[0,1]的最小值为–1,最大值为1. 解析:12答案及解析:答案:1.由已知,有'()(cos sin )xf x e x x =-.因此,当52,244x k k π⎛⎫∈π+π+ ⎝π⎪⎭()k ∈Z 时,有sin cos x x >,得()'0f x <,则()f x 单调递减;当32,244x k k π⎛⎫∈π-π+ ⎪⎝⎭π(Z)k ∈时,有sin cos x x <,得()'0f x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(Z),()44k k k f x π⎡⎤π-π+∈⎢⎥⎣⎦π的单调递减区间为52,2(Z)44k k k π⎡⎤π+π+∈⎢⎥π⎣⎦. 2.记()()()2h x f x g x x ⎛⎫=+- ⎪⎝⎭π.依题意及1,有()(cos sin )xg x e x x =-,从而'()2e sin x g x x =-.当π,42x ⎛⎫∈ ⎪⎝⎭π时,()'0g x <,故'()'()'()()(1)'()022h x f x g x x g x g x x ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭ππ.因此,()h x 在区间,42⎡ππ⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ⎛⎫⎛⎫≥== ⎪π ⎪⎝⎭⎝⎭π.所以,当,42x ⎡⎤∈⎢⎥⎣π⎦π时,()()02f x g x x ⎛⎫π+-≥ ⎪⎝⎭.3.依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ⎛π∈π⎫⎪⎝⎭,且()()()22e cos ecos 2e N n n yx n n n n n f y y x n n -π-π=-π=∈=.由()()20e1n n f y f y -π==≤及1,得0n y y ≥.由2知,当,42x ⎛⎫∈ ⎪⎝π⎭π时,()'0g x <,所以()g x 在,42⎡ππ⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由2知,()()02n n n f y g y y ⎛⎫π+-≥ ⎪⎝⎭,故()()()()()022220000e e e e e 2sin cos sin cos n n n n n n y n n f y y g y g y g y y y x x-π-π-π-π--=-≤=-π-≤<. 所以,20022sin c s e o n n n x x x -ππ+-π<-.解析:13答案及解析: 答案:1.当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-=所以,函数()f x 的单调递减区间为03(,),单调递增区间为3+∞(,). 2.由1(1)2f a ≤,得04a <≤当04a <≤时,()f x ≤2ln 0x -≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x ==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥=. 令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫≤ ⎪⎝⎭. 由(i)得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g ≥=>. 由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞≥, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a≤. 综上所述,所求a 的取值范围是0,4⎛ ⎝⎦.解析:14答案及解析:答案:1.因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.2.因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =. 列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.3.因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++. 因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点, 设为()1212,x x x x <.由()0f 'x =,得121133b b x x ++==. 列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤. 因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =. 列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 解析:15答案及解析: 答案:(Ⅰ)23()214f x x x '=-+,令23()2114f x x x '=-+=得0x =或者83x =.当0x =时,(0)0f =,此时切线方程为y x =,即0x y -=;当83x =时,88()327f =,此时切线方程为6427y x =-,即2727640x y --=; 综上可得所求切线方程为0x y -=和2727640x y --=.(Ⅱ)设321()()4g x f x x x x =-=-,23()24g x x x '=-,令23()204g x x x '=-=得0x =或者83x =,所以当[2,0]x ∈-时,()0g x '≥,()g x 为增函数;当8(0,)3x ∈时,()0g x '<,()g x 为减函数;当8[,4]3x ∈时,()0g x '≥,()g x 为增函数;而(0)(4)0g g ==,所以()0g x ≤,即()f x x ≤; 同理令321()()664h x f x x x x =-+=-+,可求其最小值为(2)0h -=,所以()0h x ≥,即()6f x x ≥-,综上可得6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知6()0f x x -≤-≤, 所以()M a 是,6a a +中的较大者,若6a a ≥+,即3a -≤时,()3M a a a ==-≥; 若6a a <+,即3a >-时,()663M a a a =+=+>;所以当()M a 最小时,()3M a =,此时3a =-. 解析:。

相关文档
最新文档