电子科大研究生图论06-14年图论期末试题
电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。
六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。
电子科大研究生图论06-14年图论期末试题

条边,但不是哈密尔顿图。
七、(10 分)今有赵、钱、孙、李、周五位教师,要承担语文、数学、 物理、化学、英语五门课程。已知赵熟悉数学、物理、化学三门课程, 钱熟悉语文、数学、物理、英语四门课程,孙、李、周都只熟悉数学 和物理两门课程。 问能否安排他们 5 人每人只上一门自己所熟悉的课 程,使得每门课程都有人教,说明理由
(C)
(B)
(D)
5、下列优化问题中,存在好算法的是( ) (A) 最短路问题;(B) 最小生成树问题;(C) TSP 问题;(D) 最优匹配问题. 三、作图题(10 分) 1、分别作出满足下列条件的图 (1)、E 图但非 H 图;(2) H 图但非 E 图;(3) 既非 H 图又非 E 图;(4) 既是 H 图又是 E 图 2、画出度序列为(3,2,2,1,1,1)的两个非同构的简单图。 四、求下图的最小生成树,并给出它的权值之和(10 分)。
一.填空题(每题 2 分,共 12 分) 1. 简单图 G=(n,m)中所有不同的生成子图(包括 G 和空图)的个数 是_____个; 2. 设无向图 G=(n,m)中各顶点度数均为 3, 且 2n=m+3,则 n=_____; m=_____; 3.一棵树有 ni 个度数为 i 的结点,i=2,3,…,k,则它有____个度 数为 1 的结点; 4.下边赋权图中,最小生成树的权值之和为_______;
问能否安排他们5人每人只上一门自己所熟悉的课程使得每门课程都有人教说明理由八10分设g是具有n个顶点m条边p个连通分支的平面图g的每个面至少由k十10分1在一个只有2个奇度点的边赋权图中如何构造一个最优欧拉环游
电子科技大学图论作业

图论作业3一、填空题1. 完全图K2n共有个不同的完美匹配。
2. 超方体Q6的最小覆盖包含的点数为。
3. 图K m,n (m≤n)的最小覆盖包含的点数为。
4. 完全图K60能分解为个边不重的一因子之并。
5. 完全图K61能分解为个边不重的二因子之并。
6. 假设G是具有n个点、m条边、k个连通分支的无圈图,则G的荫度为。
7. 图G是由3个连通分支K1, K2, K4组成的平面图,则其共有个面。
8. 设图G与K5同胚,则至少从G中删掉条边才可能使其成为可平面图。
9. 设连通平面图G具有5个顶点,9条边,则其面数为。
10. 若图G是10阶极大平面图,则其面数等于。
11. 若图G是10阶极大外平面图,其内部面共有个。
二、不定项选择题1. 关于非平凡树T,下面说法错误的是( )(A) T至少包含一个完美匹配;(B) T至多包含一个完美匹配;(C) T的荫度大于1;(D) T是只有一个面的平面图;(E) T的对偶图是简单图。
2. 下列说法正确的是( )(A) 三正则的偶图存在完美匹配;(B) 无割边的三正则图一定存在完美匹配;(C) 有割边的三正则图一定没有完美匹配;(D) 有完美匹配的三正则图一定没有割边;(E) 三正则哈密尔顿图存在完美匹配。
3. 下列说法正确的是( )(A) 在偶图中,最大匹配包含的边数等于最小覆盖包含的点数;(B) 任一非平凡正则偶图包含完美匹配;(C) 任一非平凡正则偶图可以1-因子分解;(D) 偶度正则偶图可以2-因子分解;(E) 非平凡偶图的最大匹配是唯一的。
4. 下列说法中错误的是( )(A) 完全图K101包含1-因子;(B) 完全图K101包含2-因子;(C) 完全图K102包含1-因子;(D) 完全图K102包含2-因子;(E) 图G的一个完美匹配实际上就是它的一个1因子;(F) 图G的一个2-因子实际上就是它的一个哈密尔顿圈。
5. 下列说法正确的是( )(A) 方体Q n可以1-因子分解;(B) 非平凡树可以1-因子分解;(C) 无割边的3正则图可以1-因子分解;(D) 有割边的3正则图一定不可以1-因子分解;(E) 可1-因子分解的3正则图一定是哈密尔顿图。
图论期末考试试题和答案

图论期末考试试题和答案****一、单项选择题(每题2分,共20分)1. 图论中,图的基本元素不包括以下哪一项?A. 顶点B. 边C. 权重D. 节点答案:D2. 在图论中,一个图的路径是指什么?A. 一系列顶点B. 一系列边C. 一系列顶点和边的序列D. 一系列权重答案:C3. 有向图和无向图的主要区别是什么?A. 边的方向B. 顶点的数量C. 边的数量D. 图的颜色答案:A4. 在图论中,一个完全图是指什么?A. 所有顶点都相连的图B. 所有边都相连的图C. 所有顶点和边都相连的图D. 所有权重都相同的图答案:A5. 图论中的欧拉路径是指什么?A. 经过每条边恰好一次的路径B. 经过每个顶点恰好一次的路径C. 经过每条边恰好一次的回路D. 经过每个顶点恰好一次的回路答案:C6. 图论中的哈密顿路径是指什么?A. 经过每条边恰好一次的路径B. 经过每个顶点恰好一次的路径C. 经过每条边恰好一次的回路D. 经过每个顶点恰好一次的回路答案:B7. 在图论中,二分图是指什么?A. 图的顶点可以被分成两个不相交的集合B. 图的边可以被分成两个不相交的集合C. 图的顶点和边可以被分成两个不相交的集合D. 图的权重可以被分成两个不相交的集合答案:A8. 图论中的最短路径问题是指什么?A. 寻找从一个顶点到另一个顶点的最短路径B. 寻找从一个顶点到所有其他顶点的最短路径C. 寻找所有顶点之间的最短路径D. 寻找所有边之间的最短路径答案:A9. 图论中的最小生成树问题是指什么?A. 寻找一个图中所有顶点的最小生成树B. 寻找一个图中所有边的最小生成树C. 寻找一个连通图中所有顶点的最小生成树D. 寻找一个连通图中所有边的最小生成树答案:C10. 图论中的网络流问题是指什么?A. 在图中寻找最大流量B. 在图中寻找最小流量C. 在图中寻找最大流和最小割D. 在图中寻找最小流和最大割答案:C二、填空题(每题2分,共20分)1. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为______图。
电子科技大学-图论第二次作业

复杂性分析:在第 k 次循环里,找到点 u0 与 v0,要做如下运算: (a) 找出所 有不邻接点对----需要 n(n-1)/2 次比较运算;(b) 计算不邻接点对度和----需要做 n(n-1)/2-m(G)次加法运算;(c ),选出度和最大的不邻接点对----需要 n(n-1)/2-m(G)次
2) 若 ek 不在 Ck 中,令 Gk-1=Gk-ek, Ck-1=Ck; 否则转 3); 3) 设 ek=u0v0 ∈Ck, 令 Gk-1=Gk-ek; 求 Ck 中两个相邻点 u 与 v 使得 u0,v0,u,v 依序 排列在 Ck 上,且有:uu0,vv0 ∈E(Gk-1),令:
Ck1 Ck u0v0,uvuu0,vv0
如果在
中有 H 圈
如下: Ck1 (u0 , v0 , v1,..., vn2 , u0 )
我们有如下断言: 在Ck1上,vi , vi1, 使得u0vi , v0vi1 E(Gk )
若不然,设
那么在 Gk 中,至少有 r 个顶点与 v0 不邻接,则
≦(n-1)-r < n-r, 这样与 u0,v0 在 Gk 中度和大于等于 n 矛盾!
图的闭包算法:
1) 令 =G ,k=0;
2) 在 中求顶点 与 ,使得:
dGk (u0 ) dGk (v0 ) max dGk (u) dGk (v) uv E(Gk )
3) 如果 此时得到 G 的闭包;
dGk (u0 ) dGk (v0 ) n
则转 4);否则,停止,
4) 令
,
,转 2).
则 是非 Hamilton 图
(2)因为 是具有二分类 的偶图,又因为
,在这里假设
,则有
,也就是说:对于
《图论》练习题201410

《图论》练习题(2014)1、利用Dijkstra 算法求下图中顶点0v 到其它各顶点的距离,并写出到顶点8v 的最短路。
2、1、列出色数3为的三个图: 。
2、p 阶完全图的色数为: 。
3、p 阶树的邻接多项式为: 。
4、p 阶完全图的邻接多项式为: 。
5、如下图所示的图的邻接矩阵为 ,关联矩阵为 。
6、度序列为(2,2,2,2,2,2)的简单图是 。
7、是否存在度序列为(2,2,3,4,5,6),(1,2,3,4,4,5)的简单图?若存在,给出一个图;若不存在,请说明理由。
8、画出如下图的所有生成子图。
9、设图G 如下图所示,求该图的生成树个数)(G 。
v 2v 6v 4v 610、已知图G (V 、E ),画出G -V 5,G -v 3v 4,G[{v 2,v 3,v 5}],G[{v 3v 4,v 4,v 6,v 7v 8}]G :11、已知图G 的邻接矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2111102112011111A ,画出G ,并求出度序列。
12、证明:偶图G 的任意子图H 仍为偶图。
13、证明:设图G (V 、E )的度序列为(p d d d ,,,21 ),边数为q ,则q i d pi 21==∑14、证明:在任何图中,奇顶点个数为偶数。
15、证明:整数序列(6,6,5,4,3,3,1)不可能为一个简单图的图序列。
16、证明顶点度数均为2的简单连通图是圈。
17、证明非平凡树T 的边连通度为'()1T κ=。
18、n 阶完全图n K 的连通度为()1T n κ=-。
19、设G 是一个p 阶图,且()()21,-≥∈∀p v d G V v ,则G 连通图。
20、若图G 是 不连通的,则其补图G C 是连通的。
21、证明:设G 是由1G 和2G 两个连通分支组成的图,则);();();(21x G P x G P x G P =。
v 1v 2v 3v 4v 5v 6v 8v 722、证明:设G 是由1G 和2G 两个连通分支组成的图,则)}(),(max{)(21G G G χχχ=。
电大离散数学图论部分期末复习辅导Word版

离散数学图论部分期末复习辅导一、单项选择题 1.设图G =<V , E >,v V ,则下列结论成立的是 ( ) .A .deg(v )=2EB .deg(v )=EC .deg()2||v Vv E ∈=∑ D .deg()||v Vv E ∈=∑解 根据握手定理(图中所有结点的度数之和等于边数的两倍)知,答案C 成立。
答 C2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110, 则G 的边数为( ).A .6B .5C .4D .3解 由邻接矩阵的定义知,无向图的邻接矩阵是对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有102=5条边。
答 B3.已知无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110101110001000111010,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边解 由邻接矩阵的定义知,矩阵是5阶方阵,所以图G 有5个结点,矩阵元素有14个1,14÷2=7,图G 有7条边。
答 D4.如图一所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d, e)}是边割集定义3.2.9 设无向图G =<V ,E >为连通图,若有边集E 1ÌE ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图仍是连通图,则称E 1是G 的一个边割集.若边割集为单元集{e },则称边e 为割边(或桥).解 割边首先是一条边,因为答案A 中的是边集,不可能是割边,因此答案A 是错误的.删除答案B 或C 中的边后,得到的图是还是连通图,因此答案B 、C 也是错误的.在图一中,删去(d , e )边,图就不连通了,所以答案D 正确. 答 D注:如果该题只给出图的结点和边,没有图示,大家也应该会做.如:若图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ) , (a , e ) , (b , c ) , (b , e ) , (c , e ) , (e , d )},则该图中的割边是什么?5.图G 如图二所示,以下说法正确的是 ( ). A .a 是割点 B .{b, c}是点割集 C .{b , d }是点割集 D .{c }是点割集定义3.2.7 设无向图G =<V ,E >为连通图,若有点集V 1ÌV ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图仍是连通图,则称V 1是G 的一个点割集.若点割集为单元集{v },则称结点v 为割点.οοο ο a bc d图一 οe ο οο a b c d图二ο解 在图二中,删去结点a 或删去结点c 或删去结点b 和d 图还是连通的,所以答案A 、C 、D 是错误的.在图二中删除结点b 和c ,得到的子图是不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以答案B 是正确的. 答 B6.图G 如图三所示,以下说法正确的是 ( ) . A .{(a, d )}是割边 B .{(a, d )}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b , d )}是边割集解 割边首先是一条边,{(a, d )}是边集,不可能是割边.在图三中,删除答案B 或D 中的边后,得到的图是还是连通图.因此答案A 、B 、D 是错误的.在图三中,删去(a,d )边和(b, d )边,图就不连通了,而只是删除(a, d )边或(b, d )边,图还是连通的,所以答案C 正确.7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的复习:定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;若在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;若图G 的底图,即在图G 中略去边的方向,得到的无向图是连通的,则称图G 是弱连ο ο ο a bcd图三ο通的.显然,强连通的一定是单向连通和弱连通的,单向连通的一定是弱连通,但其逆均不真.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.单侧连通图判别法:若有向图G中存在一条经过每个结点至少一次的路,则G是单侧连通的。
电子科技大学《图论及其应用》复习总结--第四章欧拉图与哈密尔顿图

电⼦科技⼤学《图论及其应⽤》复习总结--第四章欧拉图与哈密尔顿图第四章欧拉图与哈密尔顿图(⼀)、欧拉图及其性质(1)、问题背景---欧拉与哥尼斯堡七桥问题问题:对于图G,它在什么条件下满⾜从某点出发,经过每条边⼀次且仅⼀次,可以回到出发点?注:⼀笔画----中国古⽼的民间游戏(存在欧拉迹)要求:对于⼀个图G, 笔不离纸, ⼀笔画成.拓展:三笔画:在原图上添加三笔,可使其变为欧拉图。
定义1 对于连通图G,如果G中存在经过每条边的闭迹,则称G为欧拉图,简称G为E图。
欧拉闭迹⼜称为欧拉环游,或欧拉回路。
定理1 下列陈述对于⾮平凡连通图G是等价的:(1) G是欧拉图;(2) G的顶点度数为偶数;(3) G的边集合能划分为圈。
推论1 连通图G是欧拉图当且仅当G的顶点度数为偶。
推论2 连通⾮欧拉图G存在欧拉迹当且仅当G中只有两个顶点度数为奇数。
证明:若G和H是欧拉图,则G×H是欧拉图。
若G是⾮平凡的欧拉图,则G的每个块也是欧拉图。
(⼆)、Fleury算法(欧拉图中求出⼀条具体欧拉环游的⽅法)⽅法是尽可能避割边⾏⾛(三)、中国邮路问题(最优欧拉环游,管梅⾕)定理2 若W是包含图G的每条边⾄少⼀次的闭途径,则W具有最⼩权值当且仅当下列两个条件被满⾜:(1) G的每条边在W中最多重复⼀次;(2) 对于G的每个圈上的边来说,在W中重复的边的总权值不超过该圈⾮重复边总权值。
(四)、哈密尔顿图的概念定义1 :如果经过图G的每个顶点恰好⼀次后能够回到出发点,称这样的图为哈密尔顿图,简称H图。
所经过的闭途径是G的⼀个⽣成圈,称为G的哈密尔顿圈。
定义2: 如果存在经过G的每个顶点恰好⼀次的路,称该路为G的哈密尔顿路,简称H路。
(五)、哈密尔顿图性质与判定1、性质定理【必要条件】;定理1 (必要条件) 若G为H图,则对V(G)的任⼀⾮空顶点⼦集S,有:w(G−S)≤|S|注:不等式为G是H图的必要条件,即不等式不满⾜时,可断定对应图是⾮H、图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 5 2 5
1 2
1 2
4 (A)
3
4 (B)
3
4 (C)
3
4 (D)
3
3.下列图中,既是欧拉图又是哈密尔顿图的是(
)
(A)
(B)
(C)
(D)
4.下列说法中不正确的是(
)
(A)每个连通图至少包含一棵生成树; (B)k 正则偶图(k>0)一定存在完美匹配; (C)平面图 G ≅ (G*) * ,其中 G * 表示 G 的对偶图; (D)完全图 K 2 n 可一因子分解。
(A) (33323); (B) (12222); (C) (5533); (D) (1333). 2. 设 V(G)= {1, 2,3, 4,5} ,E (G ) = {(1, 2), (2,3), (3, 4), (4,5), (5,1)} 则图 G = (V , E ) 的 补图是( )
1 5 2
姓 名
学 院
则它的边数为____; 4.下边赋权图中,最小生成树的权值之和为_______;
7 1 2 1 4 2 3 3 6 2 5 7 4 2 1 3 6
5. 若 G = K n ,则 G 的谱 spec(G ) = _______; 6. 5 个顶点的不同构的树的棵数为_______; 7. 5 阶度极大非哈密尔顿图族是_______; 8. G 为具有二分类(X,Y)的偶图,则 G 包含饱和 X 的每个顶点的匹 配的充分必要条件是______ 9. 3 阶以上的极大平面图每个面的次数为_______;3 阶以上的极大外 平面图的每个内部面的次数为_______; 10. n 方体的点色数为_______;边色数为_______。 二.单项选择(每题 3 分,共 12 分) 1.下面给出的序列中,不是某图的度序列的是( )
n(n − 1) 条。(5 分) 4
七、 设 T 为一棵非平凡树, 度为 i 的顶点记为 ni , 则 n1 = 2 + n3 + 2n 4 + + (k − 2)n k 。 (10 分) 八、证明:阶数为 8 的简单偶图至多有 16 条边(5 分) 九、设图 G 有 10 个 4 度顶点和 8 个 5 度顶点,其余顶点度数均为 7。求 7 度顶点的最大数 量,使得 G 保持其可平面性(10 分) 十、求图 G 的色多项式(10 分)
1 证明(1) 证明 G 中任何两个不相邻顶点的度数之 (n − 1)(n − 2) + 2 , 2 1 和大于等于 n。 (2)给出一个图, 使它具有 n 个顶点, m = (n − 1)(n − 2) + 1 2 m=
条边,但不是哈密尔顿图。
七、(10 分)今有赵、钱、孙、李、周五位教师,要承担语文、数学、 物理、化学、英语五门课程。已知赵熟悉数学、物理、化学三门课程, 钱熟悉语文、数学、物理、英语四门课程,孙、李、周都只熟悉数学 和物理两门课程。 问能否安排他们 5 人每人只上一门自己所熟悉的课 程,使得每门课程都有人教,说明理由
三、 (10 分)设图 G 的阶为 14,边数为 27,G 中每个顶点的度只可能 为 3,4 或 5,且 G 有 6 个度为 4 的顶点。问 G 中有多少度为 3 的顶 点?多少度为 5 的顶点?
四,(10)证明:每棵非平凡树至少有两片树叶(10 分)
五.(10 分) 今有 a,b,c,d,e,f,g 七个人围圆桌开会,已知:a 会讲 英语,b 会讲英语和汉语,c 会讲英语、意大利语和俄语,d 会讲日 语和汉语,e 会讲德语和意大利语,f 会讲法语、日语和俄语,g 会 讲法语与德语。 给出一种排座方法, 使每个人能够和他身边的人交流 (用图论方法求解) 。
则由 v 2 到 v5 的途径长度为 2 的条数为 _________ 。 6 、若 K n 为欧拉图,则 n= _________ ;若 K n 仅存在欧拉迹而不存在欧拉回路,则 n= _________ 。 7、无向完全图 K n (n 为奇数),共有 _________ 条没有公共边的哈密尔顿圈。 8 、设 G 是具有二分类 ( X , Y ) 的偶图,则 G 包含饱和 X 的每个顶点的匹配当且仅当
………以……………内……………答…… ………题……………无……………效……………………
电子科技大学研究生试卷
(考试时间: 课程名称 图论及其应用 教师 教学方式 讲授 考核方式: 至 ,共__2_小时) 学时 50 学分 成绩
考核日期_2008__年___月____日 (学生填写)
一.填空题(每题 2 分,共 20 分) 1.若 n 阶单图 G 的最大度是 ∆ ,则其补图的最小度 δ (G ) =_____; 2.若图 G1 = (n1 , m1 ) , G2 = (n2 , m2 ) ,则它们的联图 G = G1 ∨ G2 的顶点 数=_____;边数=_____; 3.G 是一个完全 l 部图, ni 是第 i 部的的顶点数 i=1,2,3,…, l 。
2006 研究生图论期末试题(120 分钟)
一、填空题(15 分,每空 1 分) 1、若两个图的顶点与顶点之间,边与边之间都存在 _________ 对应,而且它们的关联关 系也保持其 _________ 关系,则这两个图同构。 2、完全图 K 4 的生成树的数目为 _________ ;阶为 6 的不同构的树有 _________ 棵。 3、设无向图 G 有 12 条边,已知 G 中度为 3 的结点有 6 个,其余结点的度数均小于 3,则
迈阿密:亚特兰大,丹佛,路易维尔,纳什维尔 纳什维尔:亚特兰大,波士顿,丹佛,迈阿密 (要求用图论方法求解)
九.(8 分)求下图 G 的色多项式 Pk(G).
图G
电子科技大学研究生试卷
(考试时间: 课程名称 图论及其应用 教师 教学方式 讲授 考核方式: 至 ,共__2_小时) 学时 60 学分 成绩
六. (10 分)设 l 是赋权完全偶图 G=(V,E)的可行顶点标号, 若标号对 应的相等子图 Gl 含完美匹配 M * ,则 M * 是 G 的最优匹配。
七.(10 分) 求证:在 n 阶简单平面图 G 中有 φ ≤ 2n − 4 ,这里 φ 是 G 的面数。
八、(10 分)来自亚特兰大,波士顿,芝加哥,丹佛,路易维尔,迈 阿密, 以及纳什维尔的 7 支垒球队受邀请参加比赛, 其中每支队都被 安排与一些其它队比赛(安排如下所示)。 每支队同一天最多进行一场 比赛。建立一个具有最少天数的比赛时间表。 亚特兰大:波士顿,芝加哥,迈阿密,纳什维尔 波士顿:亚特兰大,芝加哥,纳什维尔 芝加哥:亚特兰大,波士顿,丹佛,路易维尔 丹佛:芝加哥,路易维尔,迈阿密,纳什维尔 路易维尔:芝加哥,丹佛,迈阿密
四, 用图论的方法证明:任何一个人群中至少有两个人认识的朋友 数相同(10 分)
五.(10 分)
设 G 为 n 阶简单无向图,n>2 且 n 为奇数,G 与 G 的补
图 G 中度数为奇数的顶点个数是否相等?证明你的结论
六 . (10 分 ) 设 G 是 具 有 n 个 顶 点 的 无 向 简 单 图 , 其 边 数
_________ ,对所有 S ⊆ X 。
9、在有 6 个点。12 条边的简单连通平面图中,每个面均由 _________ 条边组成。 10、彼德森图的点色数为 _________ ;边色数为 _________ ;点独立数为 _________ 。 二、单选或多选题(15 分,每题 3 分) 1、设 V = { 1,2,3,4,5}, E = {(1,2), (2,3), (3,4), (4,5), (5,1)}, 则图 G =< V , E > 的补图是( ).
考核日期_2009__年___月____日 (学生填写)
一.填空题(每题 2 分,共 20 分) 1.若自补图 G 的顶点数是 10,则 G 的边数 m(G ) =_____; 2.若图 G1 = (n1 , m1 ) ,G2 = (n2 , m2 ) ,则它们的积图 G = G1 × G2 的顶点数 =_____;边数=_____; 3.具有 m 条边的简单图的子图个数为____;
(A) (11123); (B) (22222); (C) (3333); (D) (1333). 2. 下列图中,是欧拉图的是( )
A
B
C
D
3. 下列图中,不是哈密尔顿图的是(
)
A
B
C
D
4. 下列图中,是可平面图的图的是(
)
A
B
C
D
5.下列图中,不是偶图的是( )
A
B
C
D
三、 (8 分)画出具有 7 个顶点的所有非同构的树
v1 2 a 8 v2 1 v3 6 7 4
1 3
v4 9 v5 6 4 2 v6 b
2 2 9
图G
五、给出一个同构函数证明 G1 ≅ G 2 (10 分)
a 1 i f e d G1 h c b g 3 8 4 9 G2 7 2 5 6
六、若图 G 为自补图,那么,它的阶 n 一定能够表示为 4k 或者 4k + 1 的形式,其中 k 为非 负整数。而且,图 G 的边有
1 5
2
4
3 G
…………………… 密……………封……………线……………以……………内……………答…… ………题……………无……………效……………………
电子科技大学研究生试卷
(考试时间: 课程名称 图论及其应用 教师 教学方式 讲授 考核方式: 至 ,共_____小时) 学时 60 学分 成绩
考核日期_2007__年___月____日 (学生填写)
G 中至少有 _________ 个结点。
4、具有 5 个结点的自补图的个数有 _________ 。
0 1 5、已知图 G 的邻接矩阵 A(G ) = 0 1 0