直流伺服电机
直流伺服电机

US r为0时
U SC t
US r为正时
U SC
t
US r为负时
t
调制出正负脉宽一样方波 调制出脉宽较宽的波形
平均电压为0
平均电压为正
调制出脉宽较窄的波形 平均电压为负
第17页/共47页
§6.4 直流伺服电机 (五) 直流进给运动的速度控制(2)PWM调速系统
3) 开关功率放大器
US
主回路:可逆H型双极式PWM
尖脉冲
第12页/共47页
(1)晶闸管调速系统
直流电压
§6.4 直流伺服电机 (五) 直流进给运动的速度控制 (1)晶闸管调速系统
• [总结] 速度控制的原理:
• ①调速:当给定的指令信号增大时,则有较大的偏差信号加到调 节器的输入端,产生前移的触发脉冲,可控硅整流器输出直流电压 提高,电机转速上升。此时测速反馈信号也增大,与大的速度给定 相匹配达到新的平衡,电机以较高的转速运行。
⑤电机正转、反转、停止: 由正、负驱动电压脉冲宽窄而定。 当正脉冲较宽时,既t1> T/2,平均电压为正,电机正转; 当正脉冲较窄时,既t1< T/2 ,平均电压为负,电机反转; 如果正、负脉冲宽度相等,t1=T/2 ,平均电压为零,电机停转。
电枢反电势与转速之间有以下关系:
Ea Ke
(6.3)
Ke─电势常数;ω─电机转速(角速度)。
根据以上各式可以求得:
Ua
Ra
TM
Ke Ke KT 2
第2页/共47页
(6.4)
§6.4 直流伺服电机 (二)一般直流电机的工作特性
当负载转矩为零时:
理
想
(6.5)
空0
Ua
K e
伺服电机的分类及用途

伺服电机的分类及用途伺服电机是一种用于精密控制系统的电机,通过反馈控制系统来实现准确的位置和速度控制。
伺服电机广泛应用于工业自动化、机器人技术、医疗设备、航空航天、自动驾驶、机床加工等领域。
根据不同的控制方式和结构特点,伺服电机可以分为直流伺服电机(DC Servo Motor)、交流伺服电机(AC Servo Motor)和步进伺服电机(Stepper Servo Motor)等不同类型。
1. 直流伺服电机(DC Servo Motor)直流伺服电机是使用直流电源供电的电机,它具有体积小、响应速度快、控制精度高等特点。
直流伺服电机通常采用编码器进行位置反馈,可以实现准确的位置控制。
直流伺服电机广泛应用于工业机械、机器人、印刷设备、纺织设备等领域。
2. 交流伺服电机(AC Servo Motor)交流伺服电机是使用交流电源供电的电机,它具有功率大、扭矩稳定、寿命长等特点。
交流伺服电机通常采用编码器或者回转变压器进行位置反馈,可以实现高速、高精度的位置和速度控制。
交流伺服电机广泛应用于精密机床、印刷设备、包装设备、纺织设备等领域。
3. 步进伺服电机(Stepper Servo Motor)步进伺服电机是通过将步进电机和趋近器(Driver)结合在一起形成的一种特殊类型的电机。
步进伺服电机具有高扭矩、低噪音、低成本等优点,同时可以实现开环或者闭环控制。
步进伺服电机通常采用编码器进行位置反馈,可以实现高精度的位置和速度控制。
步进伺服电机广泛应用于数控机床、纺织设备、包装设备、印刷设备等领域。
除了上述的主要分类之外,还有一些其他类型的伺服电机。
例如,直线伺服电机(Linear Servo Motor)是一种将旋转运动转换为直线运动的电机,广泛应用于激光切割机、激光打标机、注塑机、剪板机等领域。
扭矩伺服电机(Torque Servo Motor)是一种可以提供连续扭矩输出的电机,通常应用于需要大扭矩输出的机械设备。
第一章-直流伺服电机

图1-1 电枢控制原理图
控制方式
2.磁场控制
电枢绕组电压保持不变,变化励磁回路旳电压。若电 动机旳负载转矩不变,当升高励磁电压时,励磁电流 增长,主磁通增长,电机转速就降低;反之,转速升 高。变化励磁电压旳极性,电机转向随之变化。 尽管磁场控制也可到达控制转速大小和旋转方向旳目 旳,但励磁电流和主磁通之间是非线性关系,且伴随 励磁电压旳减小其机械特征变软,调整特征也是非线 性旳,故少用。
1.2.2 运营特征
(2)电枢电压对机械特征旳影响
n0和Tk都与电枢电压成正比,而斜率k则与电枢电压无关。 相应于不同旳电枢电压能够得到一组相互平行旳机械特征曲线。
直流伺服电动机由放大器供电时, 放大器能够等效为一种电动势源 与其内阻串联。内阻使直流伺服 电动机旳机械特征变软。
图 1-3 不同控制电压时旳机械特征
较小、 电枢电阻 Ra 较大、转动惯量 J 较大
时是这种情况。
图1-6 在 4 e m 时, n、ia 旳过渡过程
过渡过程曲线
(2)
当
4 e
m
时,由
p1,.2
1 2 e
1
1 4 e m
, p1 和
p2
两根是共轭复数。
在过渡过程中,转速和电流随时间旳变化是周期性旳。
由e
La Ra
和m
2JRa 60CeCt
2
可知,电枢
电感 La 较大、 电枢电阻 Ra 较小、转动
惯量 J 较小时,就会出现这种振荡现象。
图1-7 在 4 e m 时, n、ia 旳过渡过程
过渡过程曲线
⑶ 当4 e m 时(多数情况满足这一条件), e 很小能够忽视不计。
于是式
m e
直流伺服电机结构 -回复

直流伺服电机结构-回复直流伺服电机是一种广泛应用于自动化控制系统中的电机。
它具有高精度、高可靠性和快速响应等特点,因此被广泛用于机械工业、机器人技术和自动化设备等领域。
本文将从直流伺服电机的结构开始,逐步详细介绍其原理和工作方式。
一、直流伺服电机的结构直流伺服电机由四个主要部分组成:外壳、转子、定子和传感器。
外壳是电机的保护壳,用于保护内部结构。
转子是电机的旋转部分,由线圈和磁场组成。
定子是电机的静止部分,由绕组和磁铁组成。
传感器用于检测转子的位置和速度,并将信号传递给控制系统。
二、直流伺服电机的原理直流伺服电机的原理基于洛伦兹力和福尔摩斯定律。
当给予电机通电时,电流通过转子的线圈,形成电磁场。
这个电磁场与定子上的磁场相互作用,产生一个力使转子旋转。
根据福尔摩斯定律,当一个导体在磁场中移动时,会感受到一个作用力,这个力称为洛伦兹力。
通过调整电流的方向和大小,可以控制电机的转速和位置。
三、直流伺服电机的工作方式直流伺服电机的工作方式分为两种:开环控制和闭环控制。
1. 开环控制开环控制是指电流直接通过控制信号传递到电机,没有回路来检测电机的运行状态。
在开环控制中,控制系统只根据输入的控制信号来控制电机的转速和位置。
这种方式简单但不够精确,容易受到外部干扰的影响。
2. 闭环控制闭环控制是指通过传感器检测电机的运行状态,并将这些信息反馈给控制系统,控制系统根据反馈信息来调整控制信号,从而实现更精确的控制。
闭环控制可以提高电机的性能和稳定性,并且对外部干扰的抵抗能力更强。
四、直流伺服电机的应用直流伺服电机广泛应用于机械工业、机器人技术和自动化设备等领域。
它们可以用于控制机器人的位置和姿态、驱动自动化设备的运动、控制工业生产线的速度等。
直流伺服电机因为其高精度、高可靠性和快速响应等特性,成为现代自动化系统中不可或缺的组成部分。
五、直流伺服电机的发展趋势随着科技的不断发展,直流伺服电机也在不断进步和改进。
现代直流伺服电机具有更小的体积、更高的效率和更强的控制能力。
直流伺服电机原理

直流伺服电机原理直流伺服电机是一种广泛应用于工业自动化领域的电机,其原理和工作方式具有一定特点和优势。
本文将介绍直流伺服电机的原理及其工作过程。
原理介绍直流伺服电机是一种能够根据外部控制信号调整输出角位置的电机。
其基本原理是利用电磁感应产生的磁场与永久磁铁的磁场相互作用,从而产生转矩。
直流伺服电机通过控制电压大小和方向,可以实现精确的位置控制。
工作过程1.电磁感应原理直流伺服电机的转子上有导线绕组,当通入电流时,导线中会产生磁场。
这个磁场与永久磁铁之间的相互作用产生了转矩,从而驱动电机运转。
2.控制回路直流伺服电机通常配备有控制回路,用于接收外部控制信号并调整电机的转速和位置。
控制回路可以根据不同的控制算法来实现位置闭环或速度闭环控制,以保证电机的准确性和稳定性。
3.编码器反馈为了实现更精确的位置控制,直流伺服电机通常会配备编码器模块,用于实时反馈电机的位置信息。
控制回路通过读取编码器信号,可以及时调整电机的输出,实现精确的位置控制。
4.功率驱动电机通常需要配备功率驱动模块,用于根据控制信号调整电机的电压和电流输入。
功率驱动模块可以根据电机的负载情况和运行要求来动态调整电机的输出功率,以确保电机的稳定性和可靠性。
应用领域直流伺服电机广泛应用于机械臂、自动化设备、数控机床等领域,其高精度、高效率的特点使其成为自动化领域的重要组成部分。
通过合理的控制和设计,直流伺服电机可以实现机械系统的高速、高精度运动,大大提高生产效率和产品质量。
总的来说,直流伺服电机通过电磁感应原理、控制回路、编码器反馈和功率驱动等模块的相互配合,实现了高精度、高效率的位置控制,为工业自动化带来了重大的便利和优势。
直流伺服电机工作原理

高精度控制,低噪音,高效率, 宽调速范围,良好的动态响应特 性。
发展历程及应用领域
发展历程
直流伺服电机经历了从模拟控制到数 字控制的发展过程,随着电力电子技 术和控制理论的不断进步,直流伺服 电机的性能得到了显著提高。
应用领域
广泛应用于工业自动化、机器人、数 控机床、航空航天等领域,是实现高 精度位置控制、速度控制和力矩控制 的关键执行元件。
可能是电源电压不足、电机内部故障等原 因导致。解决方案包括检查电源电压、更 换故障部件等。
动态响应差
可能是转动惯量不匹配、控制器参数设置 不合理等原因导致。解决方案包括调整转 动惯量、优化控制器参数等。
06
直流伺服电机选型、安装与调试指南
选型原则和建议
负载特性匹配
01
根据实际应用需求,选择扭矩、转速和功率等参数与负载特性
模糊控制
利用模糊数学理论,将人的经验知识转化为控制规则,实 现对电机的智能化控制。具有鲁棒性强、适应性好、能够 处理不确定性问题等优点。
神经网络控制
通过训练神经网络模型来学习电机的动态特性和控制规律 ,实现对电机的自适应控制。具有自学习能力强、能够处 理非线性问题等优点。
典型驱动控制技术应用案例
机器人关节驱动
工作原理详解
详细阐述了直流伺服电机的工作原理,包括电机结构、磁 场分布、电枢反应、控制策略等方面的内容。
控制方法探讨
探讨了直流伺服电机的控制方法,包括开环控制、闭环控 制、PWM控制等,以及各种控制方法的优缺点。
实际应用案例分析
通过实际案例,分析了直流伺服电机在机器人、自动化设 备、航空航天等领域的应用,加深了学员对理论知识的理 解。
行业发展趋势预测
智能化发展
伺服电机的种类特点及应用

伺服电机的种类特点及应用伺服电机是一种能够根据控制信号准确地控制角度、位置或速度的电动机。
它通过内置的位置、速度或力传感器以及反馈控制系统,可以实现精确定位、快速响应和稳定控制。
伺服电机在工业自动化、机器人、航空航天、医疗设备等领域有着广泛的应用。
根据不同的控制方式和结构特点,伺服电机可以分为直流伺服电机、交流伺服电机和步进伺服电机。
1. 直流伺服电机直流伺服电机是最常见和应用最广泛的伺服电机之一。
它具有结构简单、响应速度快、转矩规模广等特点。
直流伺服电机通常由直流电机、编码器、功率放大器等组成。
它可以通过调整功率放大器的电压或电流,实现对电机转矩的精确控制。
直流伺服电机被广泛应用于工业自动化、机器人、航空航天等领域。
2. 交流伺服电机交流伺服电机是一种使用交流电作为动力源,通过电子器件来控制电机的转速和位置的伺服电机。
它具有高效能、性能稳定等特点。
交流伺服电机通常由交流电机、编码器、位置控制器等组成。
它可以通过位置控制器控制电机的输出位置、并通过编码器进行位置反馈,实现高精度的位置控制。
交流伺服电机被广泛应用于工业自动化、机器人、数控机床等领域。
步进伺服电机是一种通过控制信号使电机按固定的步距转动的伺服电机。
它具有结构简单、定位精度高、价格低廉等特点。
步进伺服电机通常由步进电机、驱动器、编码器等组成。
它不需要反馈传感器就能够实现准确定位控制,并且能够在断电后保持当前位置。
步进伺服电机被广泛应用于数控机床、印刷机械、标志设备等需要精确定位的领域。
除了上述分类外,还可以根据控制方式将伺服电机分为位置伺服电机、速度伺服电机和力矩伺服电机。
1. 位置伺服电机位置伺服电机是一种能够精确控制电机位置的伺服电机。
通过位置反馈传感器,可以实时监测电机位置,并通过控制器对电机的控制信号进行调节,使电机按照预定位置运动。
位置伺服电机广泛应用于需要精确定位的场合,如机床、自动化生产线等。
2. 速度伺服电机速度伺服电机是一种能够精确控制电机转速的伺服电机。
第6章 直流伺服电动机

第6章 直流伺服电动机
根据转矩平衡方程式,当负载转矩不变时,电磁
转矩T=CTΦIa不变;又If不变,Φ不变,所以电枢电流Ia 也不变。再由电动机电压平衡方程式Ea=Ua-IaRa可以看
出,由于IaRa不变,感应电势Ea将随Ua的降低而减小;
又Φ不变,故转速要相应减小。若电压改变后的感应电 势、转速、 电流用Ea′、n′、Ia′表示,则Ua′=55 V时的
第6章 直流伺服电动机
第6章 直流伺服电动机
1 直流电动机的工作原理 2 电磁转矩和转矩平衡方程式
3 直流电动机的反电势和电压平衡方程式
4 直流电动机的使用 5 直流伺服电动机及其控制方法 6 直流伺服电动机的稳态特性
第6章 直流伺服电动机
7 直流伺服电动机在过渡过程中的工作状态 8 直流伺服电动机的过渡过程
的方向一致时, 数值为正; 反之, 数值为负。
第6章 直流伺服电动机
由于现在主要研究电机的工作状态, 为了分析简 便, 可先不考虑放大器的内阻, 这时电枢回路的电压 平衡方程式为 Ua1 =Ea1 +Ia1 Ra 式中, Ua1 >Ea1 。
第6章 直流伺服电动机
负载为常数时的调节特性
仍以直流电动机带动天线旋转为例来说明电动机的 调节特性。 在不刮风或风力很小时, 电动机的负载转矩主要是 动摩擦转矩TL加上电机本身的阻转矩T0。 在转速比较低的条件下, 可以认为
动摩擦转矩和转速无关,是不变的。 因此, 总阻转矩Ts 是一个常数。
负载转动惯量的影响当电机在系统中带动负载时其转动惯量应该包括负载通过传动比折合到电动机轴上的转动惯量j放大器内阻的影响当电机是由直流放大器提供控制信号时如同在分析放大器内阻对机械特性的影响一样这时电枢回路的电阻中应包括放大器的内阻r即总的电枢回路电阻为r这样一来电机机电时间常数表示式32可以看出负载惯量越大或放大器内阻越大则机电时间常数亦越大过渡过程的时间就越长
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ce:与电机结构有关的常数 :磁通 n:电动机转速
13
单位: (韦伯),n(转/每分),E(伏)
2. 电枢绕组中电压的平衡关系 因为E与通入的电流方向相反,所以叫反电势。 Ra + + U E I a Ra Ia M E U U:外加电压 Ra:绕组电阻 – –
以上两公式反映的概念: (1)电枢反电动势的大小和磁通、转速成正比,若想 改变E,只能改变 或 n。 E Cen (2)若忽略绕组中的电阻Ra,则 U E CeΦn, 可见,当外加电压一定时,电机转速和磁通成反 比,通过改变 可调速。 14
1、电枢中的感应电动势 电枢通入电流后,产生电磁转矩,使电机在磁 场中转动起来。通电线圈在磁场中转动,又会在线 圈中产生感应电动势(用E表示)。
电刷
+ U –
换向片
N
F E I
I
E F
S
12
电刷
+ U
–
换向片
N
F E I I E F
S
根据右手定则知,E 和原通入的电流方向相反,其 大小为:
E Cen
n Ua TR s a 2 Ce CeCt
制电压从0到Ua0一段范围内,电机不转动,故把此区域称 为电动机的死区。
32
(1) Ua0和k1的物理意义 斜率k1: k1 1
C e
是由电机本身参数决定的常数,
与负载无关。
33
(2)总阻转矩对调节特性的影响 总阻转矩Ts变化时, U a0 Ts ,斜率k1保持不变。
U a I a Ra n CeΦ
降低。电枢电压等于零时,电机
不转。电枢电压改变极性时,电 机反转。
图1-1 电枢控制原理图 22
2.磁场控制
U a I a Ra n CeΦ
电枢绕组电压保持不变,改变励磁回路的电压。若
电动机的负载转矩不变,当升高励磁电压时,励磁电流 增加,主磁通增加,电机转速就降低;反之,转速升高。 改变励磁电压的极性,电机转向随之改变。 尽管磁场控制也可达到控制转速大小和旋转方向的
励磁的定义:磁极上的线圈通以直流电 产生磁通,称为励磁。
5
旋转方向
线圈中电流流动方向 换相器
线圈 磁极
6
根据励磁线圈和转子绕组的联接关系,励磁式的 直流电机又可细分为:
他励电动机:励磁线圈与转子电枢的电源分开。 并励电动机:励磁线圈与转子电枢并联到同一电源上。 串励电动机:励磁线圈与转子电枢串联接到同一电源上。 复励电动机:励磁线圈与转子电枢的联接有串有并,接在 同一电源上。
四. 电磁转矩 1、电磁转矩
Te CtΦI a
Ct:与线圈的结构有关的常数 (与线圈大小,磁极的对数等有关)
:线圈所处位置的磁通
Ia:电枢绕组中的电流 单位: (韦伯),Ia(安培),T(牛顿米) 由转矩公式可知: (1)产生转矩的条件:必须有励磁磁通和电枢电流。 (2)改变电机旋转的方向:改变电枢电流的方向或者 改变磁通的方向。
If Uf
Ia
M U U 他励
If
M
U
M
U
M
并励
串励
复励7Βιβλιοθήκη 二、 工作原理电刷
+
U –
换向片
N I I S
直流电源
电刷
换向器
线圈
8
电刷
+
N
F
I I
U –
换向片
F
S
换向器作用: 将外部直流电 转换成内部的 交流电,以保 持转矩方向不 变。
注意:换向片和电源固定联接,线圈无论怎样转 动,总是上半边的电流向里,下半边的电流向外。 电刷压在换向片上。 由左手定则,通电线圈在磁场的作用下, 使线圈逆时针旋转。
Ua0 –始动电压 K1 – 特性斜率
图1-4
直流伺服电动机的调节特性
31
(1) Ua0和k1的物理意义 始动电压Ua0: Ua0是电动机处在待动而又未动临界状态时的 控制电压。 ,当n=0时,便可求得 U a U a0 Ra Ts C t 由于 U a0 Ts ,即负载转矩越大,始动电压越高。而且控 由
因此对应于不同的总阻转矩 Ts1、Ts2、Ts3
可以得到一组相互平行的调节特性。
,
图1-5
不同负载时的调节特性
34
3.直流伺服电动机低速运转的不稳定性
当电动机转速很低时,转速就不均匀,出现时快、时慢,
甚至暂时停一下的现象,这种现象称为直流伺服电动机低
速运转的不稳定性。 (1)低速运转的不稳定的原因 电枢齿槽的影响 低速时,反电动势的平均值很小,因而电枢齿槽
第1章 直流伺服电动机
1.1 概述 1.2 直流伺服电动机的控制方式和运行特性 1.3 直流伺服电动机的动态特性 1.4 特种直流伺服电动机 1.5 直线直流电动机
1
1.1概述
1. 伺服电动机的概念
伺服电动机又称为执行电动机,其功能是把输入的 电压信号变换成转轴的角位移或角速度输出。 2. 伺服电动机的分类 直流伺服电动机
15
2、转矩平衡关系 电磁转矩Te为驱动转矩,在电机运行时,必须和外 加负载和空载损耗的阻转矩相平衡,即
Te TL T0
TL: 负载转矩 T0 :空载转矩
转矩平衡过程:当负载转矩(TL)发生变化时, 通过电机转速、电动势、电枢电流的变化,电磁 转矩自动调整,以实现新的平衡。
16
例: 设外加电枢电压 U 一定,Te=TL+ T0(平衡),这时, 若TL突然增加,则调整过程为: TL T e n Ia
(2)解决的措施 稳速控制电路:使转速平稳。
直流力矩电动机: 低速稳定性好。
36
1.3 直流伺服电动机的动态特性
动态特性是指在电枢控制条件下,在电枢绕组上加阶跃 电压时,电机转速n和电枢电流ia随时间变化的规律。产生
过渡过程的原因是电机中存在机械惯性和电磁惯性。
1.3.1过渡过程中的电机方程 电压平衡方程式 转矩平衡方程式
9
电刷
+ U
N
F E
I I
E F
–
换向片
S
由右手定则,线圈在磁场中旋转,将在线圈中 产生感应电动势,感应电动势的方向与电流的 方向相反。
10
直流发电机
用右手定则判
感应电动势Ea的方向
E + Ia
N
E
电枢绕组
U
– 感应电动势 S 输出电压
电阻Ra
E Cen
U E I a Ra
11
三.电枢电动势及电压平衡关系
26
1.2.2 运行特性
(1)n0、Te、k的物理意义 堵转转矩Tk:Tk是转速n=0时的电磁转矩。
27
1.2.2 运行特性
(1)n0、Te、k的物理意义
n Ua TR e a 2 n0 kTe Ce Ce C t
机械特性的斜率k :斜率k前面的负号表示直线是下倾
的。斜率k的大小直接表示了电动机电磁转矩变化所引
起的转速变化程度。斜率k大,转矩变化时转速变化大, 机械特性软。反之,斜率k小,机械特性就硬。
28
(2)电枢电压对机械特性的影响
n0和Tk都与电枢电压成正比,而斜率k则与电枢电压无关。
对应于不同的电枢电压可以得到一组相互平行的机械特性曲 线。
Ua Te Ra n n0 kTe 2 Ce Ce C t
T (t ) J dt
由
2 n 60
和
T (t ) C t ia
可得
ia
T (t ) J d 2J dn C t C t dt 60C t dt
1 C e
把ia和 ea Ce n 代入 L dia i R e U,两边乘以得 a a a a a dt
La dia ia Ra ea U a dt
T (t ) Ts J
d dt
其中
ea Ce n
T (t ) C t ia
37
由于在小功率的随动系统中,选择电动机时总是使电动机 的额定转矩远大于轴上的总阻转矩。为了推导方便,可以 先假定 。 d Ts 0 ,这样
U a I a Ra n Ce
。
得
Ua Te Ra n n0 kTe 2 Ce Ce C t
Ua n0 Ce
k ,为理想空载转速; Ra C e C t 2
,为直线的斜率。
24
1.2.2 运行特性
Ua Te Ra n n0 kTe 2 Ce Ce C t
机械特性为一直线 n0 -- 理想空载转速 TK-- 堵转转矩
k Δn ΔT
--直线斜率
图1-2
直流伺服电动机的机械特性
25
1.2.2 运行特性
(1)n0、Te、k的物理意义
理想空载转速n0:n0是电磁转矩Te=0时的转速,由 于电机空载时Te=T0,电机的空载转速低于理想空 载转速。
Ua Te Ra n n0 kTe 2 Ce Ce C t
直流伺服电动机由放大器供
电时,放大器可以等效为一
个电动势源与其内阻串联。 内阻使直流伺服电动机的机
械特性变软。
图1-3
不同控制电压时的机械特性
29
2. 调节特性 调节特性是指负载转矩不变时,电机转速与电枢电压 之间的函数关系,即 Te Ts TL T0 c时,n f (U a ) 由
调速。
20
直流伺服电动机的控制方式: 把控制信号作为电枢电压 Ua来控制电动机的转 速,叫电枢控制。 把控制信号加在励磁绕组上,通过控制磁通
来控制电动机的转速,叫磁场控制。