步进电机与伺服电机的选型

合集下载

伺服电机的选型计算方法

伺服电机的选型计算方法

伺服电机的选型计算方法伺服电机是一种应用于自动控制系统中的电动机,它具有高精度、高速度、高可靠性和高动态性等特点,广泛应用于工业自动化领域。

在进行伺服电机选型计算时,需要考虑以下几个方面:1.负载特性分析:首先需要对负载进行特性分析,包括负载的惯性矩、负载力矩和负载转矩等参数的测量和计算。

负载特性分析是伺服电机选型计算的基础,它直接影响到电机输出的动力和转速。

2.动力需求计算:在进行伺服电机选型计算时,需要考虑到所需的动力大小。

动力大小与负载的力矩和转速有关,可以通过下式计算:动力大小=负载力矩×负载转速动力大小的计算可以参考负载特性分析中得到的参数。

3.转矩需求计算:转矩需求是指伺服电机在运行过程中所需的最大转矩。

转矩需求可以通过下式计算:转矩需求=负载转矩+惯性转矩负载转矩和惯性转矩可以通过负载特性分析中得到的参数进行计算。

4.速度需求计算:速度需求是指伺服电机在运行过程中所需的最大转速。

速度需求可以通过下式计算:速度需求=负载转速+加速度×加速时间负载转速是伺服电机在运行过程中所需的最大转速,加速度是伺服电机在加速阶段的加速度大小,加速时间是加速阶段的时间。

5.动态性能计算:伺服电机的动态性能是指其快速响应的能力,包括动态转矩响应和动态速度响应。

动态性能的计算需要考虑到转矩和速度的波动范围,以及加速度和减速度的大小。

6.选型参数计算:在进行伺服电机选型计算时,还需要考虑到电机的额定功率、额定转矩、额定转速、额定电压和额定电流等参数。

这些参数可以通过上述计算得到,也可以通过伺服电机的性能曲线和规格表进行查询。

总之,伺服电机的选型计算方法需要综合考虑负载特性、动力需求、转矩需求、速度需求和动态性能等方面的因素。

同时,还需要根据具体的应用场景和要求进行合理的选型。

直流电机VS交流电机VS步进电机VS伺服电机_如何正确选择步进电机和伺服电机

直流电机VS交流电机VS步进电机VS伺服电机_如何正确选择步进电机和伺服电机

什么是直流电机,什么是交流电机,什么是步进电机,什么是伺服电机? (1)一般直流电机与直流伺服电机的区别 (2)直流伺服电动机工作原理是什么? (2)伺服马达的工作原理 (4)伺服马达和步进马达的区别 (5)如何正确选择伺服电机和步 (5)1,如何正确选择伺服电机和步进电机? (5)2,选择步进电机还是伺服电机系统? (5)3,如何配用步进电机驱动器? (6)4,2相和5相步进电机有何区别,如何选择? (6)5,何时选用直流伺服系统,它和交流伺服有何区别? (6)6,使用电机时要注意的问题? (7)7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? (7)8,我想通过通讯方式直接控制伺服电机,可以吗? (7)9,用开关电源给步进和直流电机系统供电好不好? (8)10,我想用±10V或4~20mA的直流电压来控制步进电机,可以吗? (8)11,我有一个的伺服电机带编码器反馈,可否用只带测速机口的伺服驱动器控制? (8)12,伺服电机的码盘部分可以拆开吗? (8)13,步进和伺服电机可以拆开检修或改装吗? (8)14,几台伺服电机可以作同步运行吗? (8)15,伺服控制器能够感知外部负载的变化吗? (8)16,可以将国产的驱动器或电机和国外优质的电机或驱动器配用吗? (8)17,使用大于额定电压值的直流电源电压驱动电机安全吗? (8)18,我如何为我的应用选择适当的供电电源? (9)19,对于伺服驱动器我可以选择那种工作方式? (9)20,驱动器和系统如何接地? (10)21,减速器为什么不能和电机正好相配在标准转矩点? (10)22,我如何选择使用行星减速器还是正齿轮减速器? (10)23,何为负载率(duty cycle)? (11)24,标准旋转电机的驱动电路可以用于直线电机吗? (11)25,直线电机是否可以垂直安装,做上下运动? (12)26,在同一个平台上可以安装多个动子吗? (12)27,是否可以将多个无刷电机的动子线圈安装于同一个磁轨道上? (12)28,AMS的直线电机是否可以用于特殊环境,如水溅、真空、洁净室、辐射等环境? (12)29,使用直线电机比滚珠丝杆的线性电机有何优点? (12)30,你们的滑台可以做多个组合一起使用吗? (12)什么是直流电机,什么是交流电机,什么是步进电机,什么是伺服电机?1、什么是直流电机?答:输出或输入为直流电能的旋转电机,称为直流电机2、什么是交流电机答:输出或输入为交流电能的旋转电机,称为交流电机。

步进电机和伺服电机怎么选(性能优势对比-选用原则)

步进电机和伺服电机怎么选(性能优势对比-选用原则)

步进电机和伺服电机怎么选(性能优势对比/选用原则)本文首先介绍了步进电机和伺服电机的性能比较,其次介绍了伺服电机对比步进电机的优势,最后阐述了电机的选用原则以及如何正确选择伺服电机和步进电机,具体的跟随小编一起来了解一下。

什么是伺服和步进电机?伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。

分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。

伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。

步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。

在目前国内的数字控制系统中,步进电机的应用十分广泛。

随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。

为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。

虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。

现就二者的使用性能作一比较。

步进电机和伺服电机的性能比较_哪个好一、控制精度不同两相混合式步进电机步距角一般为 3.6、1.8,五相混合式步进电机步距角一般为0.72 、0.36。

也有一些高性能的步进电机步距角更小。

如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为 1.8、0.9、0.72、0.36、0.18、0.09、0.072、0.036,兼容了两相和五相混合式步进电机的步距角。

如何正确选择步进电机和伺服电机

如何正确选择步进电机和伺服电机

如何正确选择步进电机和伺服电机近期有许多人询问我,问我步进电机不知道怎么选择,我做了简洁的一下几个方法,盼望对大家有关心。

一、首先,确定步进电机拖动负载所需的扭矩最简洁的方法是在负载轴上增加一个杠杆,用弹簧秤拉动杠杆,拉力乘以臂的长度就是负载力矩。

也可以依据负载特性进行理论计算。

由于步进电机是掌握型电机,目前常用的步进电机最大转矩不超过45nm。

扭矩越大,成本就越高。

假如您选择的电机扭矩大于或超过此范围,您可以考虑添加和安装减速装置。

二、确定步进电机的最大运行速度。

在步进电机的选择中,速度指标是特别重要的。

步进电机的特点是随着电机转速的增加,转矩减小。

其下降速度与很多参数有关,如:驱动器的驱动电压、电机的相电流、电机的相电感、电机的尺寸等。

一般规律是:驱动电压越高,转矩下降越慢;电机相电流越大,转矩下降越慢。

在设计方案中,电动机的转速应掌握在1500转/分或1000转/分。

当然,这不是标准。

可以参考〈矩-频特性〉。

三、依据最大负载转矩和最大转速这两个重要指标,参照“转矩频率特性”,我们可以选择适合自己的步进电机。

假如您认为您选择的电机太大,可以考虑增加和减速装置,这样可以节约成本,使您的设计更加敏捷。

为了选择合适的减速比,应综合考虑转矩与转速的关系,选择最佳方案。

四、最终,应考虑肯定数量(如30%)的转矩裕度和转速裕度。

五、应尽量选用混合式步进电机,其性能要高于反射式步进电机。

六、尽可能选择细分驱动器,使驱动器在细分状态下工作。

七、在选择时,不要犯只看电机转矩的错误,即电机转矩越大越好,应与转速指标一并考虑。

八、当速度要求较高时,可选用驱动电压较高的驱动器。

九、没有详细要求选择两相或三相,只要步距角能满意使用要求。

如何正确选择步进电机和伺服电机

如何正确选择步进电机和伺服电机

步进电机和伺服电机的区别与正确选择在行走定位系统中,常用的电机就是步进电机和伺服电机两种,其中步进电机主要有2相、5相和微步进几种,伺服电机主要有交流伺服电机和直流伺服电机,以及有刷和无刷电机的分类。

2相、5相和微步步进电机主要是驱动器所表现出来解析度不同, 2相步进系统电机每转最细可分为400 格, 五相则为1000 格, 微步进则可从200 ~ 5000(或以上)格, 表现出来的特性以微步进最好, 加减速时间较短, 动态惯性较低.AC 和DC 伺服电机主要的分别为DC伺服比AC伺服电机多了一个碳刷, 会有维护上的问题, 而AC 伺服电机因没有碳刷, 所以后续并不会有太大维护上的问题. 所以基本上来说AC伺服系统是较DC 伺服系统为优, 但DC 伺服系统主要的优势则是价位上比AC 伺服系统较便宜. 而此两种系统的控制精度皆为相同.以下为伺服电机与步进电机的特征介绍步进电机:◎特征●具保持力由于步进电机在激磁状态停止时,具有很大的保持力,因此即使不使用机械式刹车亦可以保持停止位置(具有激磁状态停止时,与电机电流成比例的保持力)。

在停电时步进电机不具有保持力,因此停电时若需有保持力,请使用附电磁刹车机种。

藉由电机的高精度加工,可实现步进电机高精度定位功能。

解析度是取决于电机的构造,一般的HYPRID型5相步进电机为1步级0.72°精度是取决于电机的加工精度而定,无负载时的停止精度误差为±3分(±0.05°)。

● 角度控制、速度控制简单步进电机为与输入的脉波成正比,一次以一步级角运转(0.72度)。

●高转矩,高响应性步进电机虽然体积小但在低速运转时皆可获得高转矩输出。

因此在加速性、响应性、频繁的起动及停止皆可发挥很大的威力。

●高分解能、高精度定位5相步进电机在全步级时0.72°(1回转500分割),半步级时0.36°(1回转1000分割)。

伺服电机选型指南

伺服电机选型指南

伺服电机选型指南伺服电机是一种能够精准控制位置、速度和加速度的电动机,广泛应用于机器人、自动化设备、数控机床、医疗设备等领域。

选型合适的伺服电机对于机械设备的性能和稳定性有着重要的影响。

本文将从电机的参数、性能、适用环境等方面介绍伺服电机的选型指南。

一、电机参数1.功率:功率是电机输出能力的重要指标,根据设备的工作负载和所需功率大小选择合适的电机功率。

一般来说,电机的额定功率应大于设备最大负载功率的1.2倍左右。

2.转矩:电机转矩是指电机输出的扭矩大小,与设备的负载特性密切相关。

根据设备所需的最大转矩选择合适的电机转矩。

一般来说,电机的额定转矩应大于设备最大负载转矩的1.2倍左右。

3.转速:电机转速是指电机输出的转速大小,与设备运动速度有关。

根据设备所需的最大转速选择合适的电机转速。

一般来说,电机的额定转速应大于设备最大运动速度的1.2倍左右。

4.控制精度:伺服电机能够实现更高的控制精度和位置重复性,根据设备所需的控制精度选择合适的伺服电机。

一般来说,控制精度为±0.01°的伺服电机可以满足大多数应用的需求。

二、电机性能1.动态响应:动态响应是指伺服电机在响应控制指令时的速度和加速度特性。

对于需要快速响应和高加速度的应用,选择具有较好动态响应性能的伺服电机。

2.脉冲宽度调制(PWM)频率:PWM频率决定了电机控制的精度和稳定性,一般来说,选择具有较高PWM频率的伺服电机可以实现更精准的控制效果。

3.调速范围:伺服电机的调速范围指的是从最低转速到最高转速的比值,较大的调速范围能够满足更广泛的应用需求。

4.效率:电机的效率是指电机输出功率与输入功率之比,高效率的电机能够降低能源消耗和热量排放。

三、适用环境1.温度:伺服电机的工作温度范围应与设备所处环境温度相匹配,一般来说,工作温度范围为-20°C到40°C的伺服电机可以适应大多数应用环境。

2.湿度:对于湿度较高的工作环境,选择具有较高防潮性能的伺服电机。

伺服电机分类与选型流程

伺服电机分类与选型流程

伺服电机分类与选型流程伺服电机是一种能够根据控制信号来驱动机械系统运动的电机。

它具有高精度、高控制性能和高可靠性的特点,广泛应用于工业自动化控制、仪器仪表和机器人等领域。

根据应用场景的不同,伺服电机可以分为直流伺服电机和交流伺服电机两大类,每一类又有其各自的特点和选型要点。

一、直流伺服电机的分类与选型流程:1.分类:直流伺服电机根据电源电压的不同可以分为低压直流伺服电机(12V、24V)和高压直流伺服电机(48V、60V、72V等)。

2.选型流程:(1)确定应用场景:根据具体应用的需要,确定伺服电机的功率、扭矩和转速等参数。

(2)验证电源电压:根据选定的电机功率和转速要求,验证电源电压是否能够满足电机的工作要求。

如果电源电压不足,则需要使用电源升压器或者选择合适的电压级别的伺服电机。

(3)确定电机型号:根据电机的工作要求,包括负载特性、控制要求和环境要求等,确定合适的电机型号。

(4)选取驱动器:根据电机的功率和控制要求,选取合适的驱动器。

驱动器的选择要考虑到驱动器的保护功能、通信接口和控制算法等因素。

(5)试运行与调试:在选定的电机和驱动器之间进行试运行和调试,验证系统的性能和稳定性。

二、交流伺服电机的分类与选型流程:1.分类:交流伺服电机根据电机的控制方式可以分为位置控制型和矢量控制型。

位置控制型伺服电机根据电机转子结构的不同可以分为无刷交流伺服电机(BLAC)和有刷交流伺服电机(BLDC);矢量控制型伺服电机则可以分为感应交流伺服电机(IM)和永磁同步交流伺服电机(PMSM)。

2.选型流程:(1)确定应用场景:根据具体应用的需要,确定伺服电机的功率、扭矩和转速等参数。

(2)验证电源电压:根据选定的电机功率和转速要求,验证电源电压是否能够满足电机的工作要求。

如果电源电压不足,则需要使用电源升压器或者选择合适的电压级别的伺服电机。

(3)确定电机型号:根据电机的工作要求,包括负载特性、控制要求和环境要求等,确定合适的电机型号。

伺服电机的选型及计算教程【老师附干货】

伺服电机的选型及计算教程【老师附干货】

以下为伺服电机的选型及计算教程,一起来看看吧!一、伺服电机的选型步骤:每种型号伺服电机的规格项内均有额定转矩、最大转矩及伺服电机惯量等参数各参数与负载转矩及负载惯量间必定有相关联系存在,选用伺服电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、机构的重量;机构的运动方式(水平、垂直旋转)等;运动条件与伺服电机输出功率无直接关系,但是一般伺服电机输出功率越高,相对输出转矩也会越高。

因此不但机构重量会影响伺服电机的选用,运动条件也会改变伺服电机的选用。

惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的伺服电机输出转矩。

选用伺服电机规格时,依下列步骤进行。

(1)明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

(2)依据运行条件要求选用合适的负载惯量计算公式计算出机构的负载惯量。

(3)依据负载惯量与伺服电机惯量选出适当的假选定伺服电机规格。

(4)结合初选的伺服电机惯量与负载惯量,计算出加速转矩及减速转矩。

(5)依据负载重量、配置方式、摩擦系数、运行效效率计算出负载转矩。

(6)初选伺服电机的最大输出转矩必须大于加速转矩+负载转矩;如不符合条件,必须选用其他型号计算验证直至符符合要求。

(7)依据负载转矩、加速转矩、减速转矩及保持转矩计算出连续瞬时转矩。

(8)初选伺服电机的额定转矩必须大于连续瞬时转矩,如,如果不符合条件,必须选用其他型号计算验证直至符合要求。

(9)完成选定。

二、最简单伺服电机选型计算方式:伺服电机选择的时候,首先一个要考虑的就是功率的选择。

一般应注意以下两点:1、如果电机功率选得过小。

就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。

2、如果电机功率选得过大。

就会出现“大马拉小车“现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。

而且还会造成电能浪费。

也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较:P=:F*V/100(其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s)此外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驱动器的供电电压
供电电压是判断驱动器升速能力的标志,常规电压供给有: 24VDC、40VDC、80VDC、110VDC。
驱动器的细分
细分是控制精度的标志,通过增大细分能改善精度。细分 能增加电机平稳性,通常步进电机都能低频振动的特点,通 过加大细分能改善,使电机运行非常平稳。
2、伺服驱动器
负载/电机惯量比; 转速; 转矩; 短时间特性(加减速转矩); 连续特性(连续实效负载转矩);
步进电机与伺服电机及 其驱动器的选型
讲师:许汉建
控制电机
一、概述 二、步进电机 1、结构 2、工作方式 3、选型要点 三、伺服电机 1、交流伺服电动机 2、直流伺服电动机 3、选型要点 四、步进电机与伺服电机的区别 五、驱动器的选型要点
一、概述
控制电机:主要用来完成信息的传递与交 换,而不是进行能量转换。 如:步进电机将电脉冲信号转换为角位
移或 线位移; 伺服电机将电压信号转换为转矩或 转速、运行可靠、耗电少等。
二、步进电机
步进电机将电脉冲信号转换为角位移或线位 移;
1、结构
步进电机分为反应式、永 磁式与混合式三种; 三相反应式步进电机由定 子与转子两个部分构成。 如右图中,定子由6个磁 极,两个相对的磁极组成 一相;转子上有均匀分布 的4个齿。
绝缘 输入频率 脉冲形式
步进电机 脉冲序列 集电极开路 光耦合器 0~100kHz 正转脉冲/反转脉冲 命令符号/命令脉冲
伺服电机
脉冲序列
差动
光耦合器
0~1MHz 正转脉冲/反转脉冲 命令符号/命令脉冲
90度相差2信号
2、步进电机与伺服电机的旋转原理区别
步进电机:以步距角计算旋转角度 (360度/500=0.72度) 伺服系统:连续旋转(分辨率:360 度/131072=0.00275度)
THANKS !
3、步进电机与伺服电机的性能比较
1、控制精度不同; 2、低频特性不同; 3、矩频特性不同; 4、过载能力不同; 5、运行性能不同; 6、速度响应性能不同;
五、驱动器的选型要点
1、步进驱动器
驱动器的电流
电流是判断驱动器能力的大小,是选择驱动器的重要指标 之一,通常最大电流要大于电机的标称电流,通常驱动器有: 2.0A、3.5A、6.0A、8.0A等规格。
三、伺服电机
1、交流伺服电机
交流伺服电机就是一台两相交流异步电机,它的 定子上装有空间互差90度的两个绕组:励磁绕组 和控制绕组,其结构如图所示:
2、直流伺服电机
直流伺服电机的结构与直流电动机基本相同。只 是为减小转动惯量,电机做得细长一些,工作原 理也与直流电机相同。 供电方式:他励供电,励磁绕组和电枢分别由两 个独立的电源供电。
3、选型要点
3、电流的选择 静力矩一样的电机,由于电流参数不同,其运行特性差
别很大,可依据矩频特性曲线图,判断电机的电流(参考 驱动电源、及驱动电压)
4、力矩与功率换算 步进电机一般在较大范围内调速使用、其功率是变化的, 一般只用力矩来衡量,力矩与功率换算如下: P= Ω·M Ω=2π·n/60 P=2πnM/60 其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n 为每分钟转速,M为力矩单位为牛顿·米 P=2πfM/400(半步工作) 其中f为每秒脉冲数(简称PPS
2、工作方式
步进电机的工作方式可分为:三相单 二拍、三相单双六拍、三相双三拍等。
3、选型要点
1、步距角的选择 电机的步距角取决于负载精度的要求,将负载的最小分
辨率(当量)换算到电机轴上,每个当量电机应走多少角 度(包括减速)。电机的步距角应等于或小于此角度。目 前市场上步进电机的步距角一般有0.36度/0.72度(五相电 机)、0.9度/1.8度(二、四相电机)、1.5度/3度(三相电 机)等。
4、选型要点
1、计算负载惯量,惯量的匹配,越小越好,这 样对精度和响应速度好。
2、电机轴上负载力矩的折算和加减速力矩的计 算。
3、转速和编码器分辨率的确认;
4、电缆选择,编码器电缆双绞屏蔽的,对于绝 对值编码器是6芯,增量式是4芯。
四、步进电机与伺服电机的 区别
1、步进电机与伺服电机的区别
项目 位置命令 输入脉冲序列
2、静力矩的选择 步进电机的动态力矩一下子很难确定,我们往往先确定 电机的静力矩。静力矩选择的依据是电机工作的负载,而 负载可分为惯性负载和摩擦负载二种。单一的惯性负载和 单一的摩擦负载是不存在的。直接起动时(一般由低速) 时二种负载均要考虑,加速起动时主要考虑惯性负载,恒 速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩 擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度 便能确定下来(几何尺寸)
相关文档
最新文档