基于MatlabSimulink的永磁同步电机矢量控制原理

合集下载

MatlabSimulink对永磁同步电机(PMSM)_矢量控制原理

MatlabSimulink对永磁同步电机(PMSM)_矢量控制原理

基于Matlab的永磁同步电机矢量控制原理摘要:在现代交流伺服系统中,矢量控制原理以及空间电压矢量脉宽调制(SVPWM)技术使得交流电机能够获得和直流电机相媲美的性能。

永磁同步电机(PMSM)是一个复杂耦合的非线性系统。

关键词:永磁同步电机;电压空间矢量脉宽调制0、引言永磁同步电机(PMSM)是采用高能永磁体为转子,具有低惯性、快响应、高功率密度、低损耗、高效率等优点,成为了高精度、微进给伺服系统的最佳执行机构之一。

永磁同步电机构成的永磁交流伺服系统已经向数字化方向发展。

因此如何建立有效的仿真模型具有十分重要的意义。

对于在Matlab中进行永磁同步电机(PMSM)建模仿真方法的研究已经受到广泛关注。

本文介绍了电压空间矢量脉宽调制原理并给出了坐标变换模块、SVPWM模块以及整个PMSM闭环矢量控制仿真模型,给出了仿真模型结构图和仿真结果。

1、永磁同步电机的数学模型永磁同步电机在d-q轴下的理想电压方程为:(1)(2)(3)(4)(5)(6)(7)式中,ud和uq分别为d、q轴定子电压;id和iq分别为d、q 轴定子电流;和分别为d、q轴定子磁链;ld和lq分别为定子绕组d、q轴电感;r为定子电阻;p为微分符号;lmd为定、转子间的d轴电感;ifd为永磁体的等效d轴励磁电流;pn为极对数;te为电磁转矩;tl为负载转矩;j为转动惯量;b为阻尼系数;为转子角速度。

2、电压空间矢量脉宽调制原理2.1电压空间矢量电机输入三相正弦电压的最终目的是在空间产生圆形旋转磁场,从而产生恒定的电磁转矩。

直接针对这个目标,把逆变器和异步电机视为一体,按照跟踪圆形旋转磁场来控制PWM 电压,这样的控制方法称为“磁链跟踪控制”,磁链的轨迹是靠电压空间矢量相加得到的,所以又称“电压空间矢量PWM控制”。

空间矢量是按电压所加绕组的空间位置来定义的。

在图1中,A、B、C分别表示在空间静止不动的电机定子三相绕组的轴线,它们在空间互差120°,三相定子相电压U A、U B、U C分别加在三相绕组上,可以定义三个电压空间矢量U A、U B、U C,它们的方向始终在各相的轴线上,而大小则随时间按正弦规律变化,时间相位互差120°。

MATLABSIMULINK永磁同步电机矢量控制系统仿真

MATLABSIMULINK永磁同步电机矢量控制系统仿真

MATLABSIMULINK永磁同步电机矢量控制系统仿真一、本文概述随着电机控制技术的快速发展,永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)在工业、交通和能源等领域的应用越来越广泛。

矢量控制作为PMSM的一种高效控制策略,能够实现对电机转矩和磁链的精确控制,从而提高电机的动态性能和稳态性能。

然而,在实际应用中,矢量控制系统的设计和调试过程往往复杂且耗时。

因此,利用MATLAB/Simulink进行永磁同步电机矢量控制系统的仿真研究,对于深入理解矢量控制原理、优化控制策略以及提高系统性能具有重要意义。

本文旨在通过MATLAB/Simulink平台,建立永磁同步电机矢量控制系统的仿真模型,并对其进行仿真分析。

本文将对永磁同步电机的基本结构和数学模型进行介绍,为后续仿真模型的建立提供理论基础。

本文将详细阐述矢量控制策略的基本原理和实现方法,包括坐标变换、空间矢量脉宽调制(SVPWM)等关键技术。

在此基础上,本文将利用MATLAB/Simulink中的电机控制库和自定义模块,搭建永磁同步电机矢量控制系统的仿真模型,并对其进行仿真实验。

本文将根据仿真结果,对矢量控制系统的性能进行分析和评价,并提出优化建议。

通过本文的研究,读者可以全面了解永磁同步电机矢量控制系统的基本原理和仿真实现方法,为后续的实际应用提供有益的参考和指导。

本文的研究结果也为永磁同步电机控制技术的发展和应用提供了有益的探索和启示。

二、永磁同步电机数学模型永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高性能的电机,广泛应用于各种工业领域。

为了有效地对其进行控制,我们需要建立其精确的数学模型。

PMSM的数学模型主要包括电气方程、机械方程和磁链方程。

PMSM的电气方程描述了电机的电压、电流和磁链之间的关系。

在dq旋转坐标系下,电气方程可以表示为:V_d &= R_i I_d + \frac{d\Phi_d}{dt} - \omega_e \Phi_q \ V_q &= R_i I_q + \frac{d\Phi_q}{dt} + \omega_e \Phi_d其中,(V_d) 和 (V_q) 分别是d轴和q轴的电压;(I_d) 和 (I_q) 分别是d轴和q轴的电流;(\Phi_d) 和 (\Phi_q) 分别是d轴和q轴的磁链;(R_i) 是定子电阻;(\omega_e) 是电角速度。

永磁同步电动机矢量控制调速系统Simulink仿真

永磁同步电动机矢量控制调速系统Simulink仿真

摘要本文首先简要介绍了正弦波永磁同步电动机(PMSM)的结构特点和数学模型,在此基础上阐述了永磁同步电动机矢量控制的思想和自控变频调速方法。

着重介绍了正弦波脉冲宽度调制(SPWM),电流滞环跟踪PWM(CHBPWM)和电压空间矢量PWM(SVPWM)三种控制技术,并分别给出了基于这三种变频控制技术的永磁同步电动机矢量控制双闭环调速系统的Simulink仿真模型。

应用PID控制器设计方法进行系统参数整定,并进行动态仿真分析校正,最终达到了较为理想的稳、动态性能指标。

其中着重分析了转速微分负反馈在双闭环调速系统中抑制超调、改善动态性能和增强抗扰性能的作用。

关键词:永磁同步电动机矢量控制 SPWM CHBPWM SVPWM 仿真AbstractFirstly,this paper briefly describes the structural features of Sinusoidal Permanent Magnet Synchronous Motor (PMSM) and it’s mathematical model.Then elaborating the theory of the Vector control and the method of Controlled frequency.It presents three control technology of SPWM,CHBPWM and SVPWM.It also gives the simulation model of double closed-loop control system of PMSM.We design the parameters of PID while simulating.Finally,we achieve the ideal performances of the system.It mainly analysises funtion of controlling overshoot and improving performances of the differential negative feedback of speed.Key words:PMSM Vector Control SPWM CHBPWM SVPWM Simulation目录摘要 (I)1 引言 (1)2 永磁同步电动机的数学模型 (1)2.1 永磁同步电动机的简介 (1)2.2 矢量控制原理 (2)2.2.1 矢量控制的基本原理 (2)2.2.2 矢量控制中的坐标变换 (2)2.2.3 矢量控制的磁链定向方式 (3)2.3 永磁同步电动机在dq0坐标系下的数学模型 (3)3 同步电动机变压变频(VVVF)调速系统 (4)3.1 同步电动机变压变频调速的特点及基本类型 (4)3.2 永磁同步电动机自控变频调速系统 (5)4 永磁同步电动机矢量控制调速系统Matlab/Simulink仿真 (6)4.1 基于SPWM技术的PMSM矢量控制调速系统 (6)4.2 基于CHBPWM技术的PMSM矢量控制调速系统 (6)4.2.1 电流滞环跟踪PWM(CHBPWM)控制技术 (6)4.2.2 CHBPWM-PMSM矢量控制调速系统仿真模型 (7)4.2.3 CHBPWM-PMSM矢量控制调速系统性能分析 (9)4.3 基于SVPWM技术的PMSM矢量控制调速系统 (15)4.3.1 电压空间矢量PWM(SVPWM)控制技术 (15)4.3.2 SVPWM-PMSM矢量控制调速系统仿真模型 (20)4.3.3 SVPWM-PMSM矢量控制调速系统性能分析 (21)4.4 本章小结 (22)5 总结与展望 (23)参考文献 (24)永磁同步电动机矢量控制调速系统Simulink仿真1 引言随着技术的飞速发展,人们的生活水平提高,各种自动化调速系统在人们生产生活中的应用不断增多,且使用环境也日益复杂,直流调速系统由于其结构复杂、制造困难、成本高等缺点日渐难以满足各种生产生活的要求。

基于MATLAB_Simulink的永磁同步电机矢量控制

基于MATLAB_Simulink的永磁同步电机矢量控制

式中, ω c 为电流控制系统的开环穿越角频率 ; K ip 为电流控制器的比例系数; L 为定子电感。 Jω c K ωp = ω KT
{
1 K ωi = ωω
( 9)
K ωp 为速度控制器比例系数; K wi 为速度控制器积分系数; ω ωc 为速度控制器开环穿越角频率 ( 取值为 ω c 式中, 的几分之一) ; ω ω 为速度控制器的转折角频率( 取值为 ω ω ≤ω c /5 ) 。 K ωp 由式( 8 ) 可计算出 ω r = 1 330 , 取 ω ωr = 300 , ω ω = 20 , 由式 ( 9 ) 可得 PI 速度控制器比例、 积分系数分别为 = 0. 22 , K ωi = 0. 05 。按照上述方法设计出的 PI 速度控制器如图 3 所示。
图3
PI 速度控制器模块
iB 、 i C 经过 clarke 变 图 4 是坐标变换模块结构图。该模块的作用是将从电机定子检测到的三相电流 i A 、 park 变换得到转子电流 i d 、 i q 。相应的坐标变换方程如下: 换、 I d = 2 I a × sin( ωt) + I b × sin ωt - 2 π + I c × sin ωt + 2 π 3 3 3 2π 2π 2 I q = 3 I a × cos( ωt) + I b × cos ωt - 3 + I c × cos ωt + 3 I0 = 1 ( I a + I b + I c ) 3
1
永磁同步电机的数学模型
数学模型是描述实际系统性能和各物理量之间关系的数学表达式 。控制对象的数学模型应当能够准确 反应被控系统的静态和动态特性 , 其准确程度是控制系统动、 静态性能好坏的关键。 对于永磁同步电机这类 强耦合的非线性系统, 它的数学模型是分析电机性能, 实现力矩和转速控制的理论基础。 本文描述了永磁同 [1 - 2 BC ) 下的数学模型 ], 步电动机在三相静止坐标系( A对电机作如下假设: ( 1 ) 忽略铁芯的饱和现象。 ( 2 ) 忽略电机绕组的漏感。 ( 3 ) 转子绕组无阻尼。 ( 4 ) 不计涡流和磁滞损耗。 ( 5 ) 忽略磁场的高次谐波, 定子绕组的电流在气隙中只产生正弦分布的磁势 。 BC ) 下的电压模型为 永磁同步电动机三q + pψ q + ω r ψ f

永磁同步电机矢量控制matlab仿真

永磁同步电机矢量控制matlab仿真

永磁同步电机矢量控制matlab仿真永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)的矢量控制(也称为场向量控制或FOC)是一种先进的控制策略,用于优化电机的性能。

这种控制方法通过独立控制电机的磁通和转矩分量,实现了对电机的高性能控制。

在MATLAB中,你可以使用Simulink和SimPowerSystems库来模拟永磁同步电机的矢量控制。

以下是一个基本的步骤指南:1.建立电机模型:使用SimPowerSystems库中的Permanent Magnet SynchronousMachine模型。

你需要为电机提供适当的参数,如额定功率、额定电压、额定电流、极对数、转子惯量等。

2.建立控制器模型:矢量控制的核心是Park变换和反Park变换,用于将电机的定子电流从abc坐标系变换到dq旋转坐标系,以及从dq坐标系变换回abc坐标系。

你需要建立这些变换的模型,并设计一个适当的控制器(如PI控制器)来控制dq轴电流。

3.建立逆变器模型:使用SimPowerSystems库中的PWM Inverter模型。

这个模型将控制器的输出(dq轴电压参考值)转换为逆变器的开关信号。

4.连接模型:将电机、控制器和逆变器连接起来,形成一个闭环控制系统。

你还需要添加一个适当的负载模型来模拟电机的实际工作环境。

5.设置仿真参数并运行仿真:在Simulink的仿真设置中,你需要设置仿真时间、步长等参数。

然后,你可以运行仿真并观察结果。

6.分析结果:你可以使用Scope或其他分析工具来查看电机的转速、定子电流、电磁转矩等性能指标。

这些指标可以帮助你评估控制算法的有效性。

请注意,这只是一个基本的指南,具体的实现细节可能会因你的应用需求和电机参数而有所不同。

在进行仿真之前,建议你仔细阅读相关的文献和教程,以便更好地理解永磁同步电机的矢量控制原理。

matlab_simulink_永磁同步电机_概述及解释说明

matlab_simulink_永磁同步电机_概述及解释说明

matlab simulink 永磁同步电机概述及解释说明1. 引言1.1 概述在电力传动领域中,永磁同步电机已成为一种重要的电机类型。

相比于传统的感应电机和直流电机,永磁同步电机具有高效率、高功率密度和较低的维护成本等优势。

随着现代工业对能源效率和环境保护的日益重视,永磁同步电机在工业应用中得到了广泛的推广和应用。

本文将介绍永磁同步电机及其与Matlab Simulink的结合。

首先,我们将简要介绍Matlab Simulink软件以及其在工程领域中的应用。

接下来,我们将详细介绍永磁同步电机的基本原理、结构特点以及在工业中的实际应用情况。

然后,我们将重点讲解如何使用Matlab Simulink建模永磁同步电机,并通过仿真设计过程详解该方法的具体操作步骤。

最后,我们将分析仿真结果,评估永磁同步电机性能以及控制策略调整优化方法论述与解释。

1.2 文章结构本文共分为五个部分:引言、Matlab Simulink简介、永磁同步电机简介、Matlab Simulink建模永磁同步电机原理及方法解析以及结论与展望。

在引言部分,我们将概述本文的主要内容和结构安排,为读者提供一个整体的框架。

接下来的各个部分将逐一介绍Matlab Simulink软件、永磁同步电机以及它们之间的关联,并详细解释如何使用Matlab Simulink建模永磁同步电机以及评估其性能和优化控制策略。

最后,我们将总结全文观点并对未来永磁同步电机建模与控制策略设计进行展望。

1.3 目的本文的目的是介绍Matlab Simulink和永磁同步电机,并阐述它们之间的关系。

通过对Matlab Simulink建模永磁同步电机过程的详细解释,读者可以了解到使用该软件进行系统建模和仿真的好处,并且理解永磁同步电机在工业中的应用情况以及其优势和局限性。

此外,我们还将分享一些调整优化方法,帮助读者评估永磁同步电机性能并设计出更高效的控制策略。

通过本文的阅读,读者将对Matlab Simulink和永磁同步电机有更深入的了解,并对未来的相关研究和应用有所展望。

[西沙河畔的芦苇]基于MatlabSimulink的永磁同步电机调速系统设计与仿真

[西沙河畔的芦苇]基于MatlabSimulink的永磁同步电机调速系统设计与仿真

交流调速系统课程设计报告基于Matlab/Simulink的永磁同步电机矢量控制系统的设计与仿真学院:年级:班级:电姓名:学号:基于Matlab/Simulink的永磁同步电机矢量控制系统的设计与仿真Simulation and Design on the Vector Control System of PMSMBased on Matlab/Simulink摘要在现代化工业生产中,电机及其控制系统占有着举足轻重的地位。

具有更高的运行精度,更大的调速范围,更短的调节时间的电机控制系统的开发是现代化工业控制领域的热门研究方向。

而永磁同步电机因其自身优良的特性,逐渐成为了工业控制中电机伺服系统中的主流电机,因此研究设计出能够适应现代化工业控制要求的永磁同步电机的控制系统有着越来越重要的意义。

本课题以电机的矢量控制算法为理论基础,研究了永磁同步电机的组成原理和数学模型,分析了电机的矢量控制系统的基本原理与控制策略,论述了永磁同步电机矢量控制系统实现的可行性,之后对电机的变频驱动技术SVPWM作了比较详尽的论述。

在控制系统的实际设计与搭建阶段,课题介绍了控制系统的主要电路,包括功率驱动电路,供电电路与电源电路以及传感器电路等等,在系统的软件设计中,描述了软件系统主要部分的程序流程,重点介绍了系统的中断流程,SVPWM的生成与输出,电机的启动与定位的PI算法和调节算法的软件实现,最后给出了永磁同步电机矢量控制系统软件实现的总体程序流程。

在课题的最后,对控制系统做了比较全面的运行仿真,测量了电机控制系统的输出波形和调整过程波形,对系统的性能做出了分析与评价,控制系统在经过调试以后,成功实现了电机矢量控制算法,有着良好的转矩与速度响应,调整精度高,运行比较稳定,基本达到了课题预期的效果。

关键词:永磁同步电机,矢量控制系统SVPWM,Matlab/SimulinkAbstractIn the modem industrial production, the electric motor and its control system occupy a prominent position. To develop a motor’s control system that has a higher running precision, larger speed-regulating range, and shorter adjusting time is a popular research direction in the modem industrial control system, and the Permanent Magnet Synchronous Motor(PMSM) is gradually becoming the essential motor for the motor servo system because of excellent characteristics itself, so the research and design on the control system of PMSM which can adapt requirements for modern industrial control has more and more practical significance.This paper takes the vector control algorithm of motor as the theoretical foundation. First,it studies the PMSM’s composing principle and mathematical model, then analyses the basic principle and control strategy of vector control, and discusses the feasibility for the vector control system of PMSM, and then it makes a detailed treatise on SVPWM technique to drive the motor with frequency conversion.At the stage of actual designing and establishing for the control system , the paper introduces the main electric circuit of control system, including the power driving circuit, the power supply circuit and the sensor circuit etc., then it describes the main program flow of software system, and the points introduced are the interruption’s flow of system, the generation and output of SVPWM, the starting and position fixing algorithm of motor and PI adjustment with software implementation, in the last it shows the total software program flow for vector control system of PMSM.At the last part of paper, it takes an overall debugging for the control system, and measures many outputting and adjusting process wave forms and then it makes an analysis and evaluation on the performance of system. The control system succeeds to carry out the vector control algorithm on PMSM, and it can exhibits speed and torque response well. The system has a high adjusting precision and circulates stably, so it achieves the expectative effect basically.Key Words:PMSM; vector control system; SVPWM; Matlab/Simulink目录摘要 (I)Abstract (II)1 绪论 (1)1.1 电机现代控制技术的发展概况 (1)1.2 同步电机的分类与特点 (2)1.3 同步电机的调速控制系统 (4)1.4 现代电力电子技术的发展 (6)1.5 PWM技术的应用 (7)1.6 本论文的研究背景与主要内容 (8)2 永磁同步电机的原理与数学模型 (10)2.1 永磁同步电机组成与原理 (10)2.2 永磁同步电机的数学模型 (12)3 永磁同步电机矢量控制系统原理与实现 (15)3.1 电机矢量控制系统的基本思想 (15)3.2 电机矢量控制中的坐标变换 (15)3.2.1 矢量控制系统中的三种坐标系 (15)3.2.2 三相定子坐标系与两相定子坐标系变换(3s-2s) (17)3.2.3 两相定子坐标系与两相旋转坐标系变换(2s-2r) (18)3.2.4 两相定子坐标系与两相转子旋转坐标系的变换(2t-2s) (19)3.3 电压空间矢量的实现 (20)4 永磁同步电机直接转矩控制仿真 (24)4.1 仿真软件 (24)4.2 仿真模型 (24)4.2.1 定子电流转换模块 (25)4.2.2 定子电压转换模块 (25)4.2.3 定子磁链计算模块 (26)4.2.4 电磁转矩计算模块 (26)4.2.5 磁链位置判断模块 (26)4.2.6 开关表模块 (27)4.3 仿真结果分析 (27)5 结论 (30)参考文献 (31)1绪论1.1电机现代控制技术的发展概况电机现代控制技术是实现高性能伺服驱动的核心技术,也是先进的工业控制技术最具代表性的标志之一。

基于MATLAB永磁同步电动机矢量控制系统的仿真研究

基于MATLAB永磁同步电动机矢量控制系统的仿真研究

基于MATLAB永磁同步电动机矢量控制系统的仿真研究永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)是一种应用广泛的高性能电机。

在工业领域,PMSM通常采用矢量控制方法来实现精确的速度和位置控制。

本文基于MATLAB对PMSM矢量控制系统进行仿真研究,探讨其工作原理及性能。

首先,PMSM的矢量控制系统由控制器、电机和传感器三部分组成。

其中,控制器根据电机的反馈信号和期望输出来计算电机的控制信号。

传感器用于测量电机的转速、位置和电流等参数,反馈给控制器。

通过调节控制信号,控制器可以实现电机的速度和位置控制。

在PMSM的矢量控制系统中,通常采用dq轴矢量控制方法,将三相电流转换为直流参考轴和旋转参考轴的dq坐标系,进而对电机进行控制。

其次,本文利用MATLAB软件对PMSM矢量控制系统进行了仿真实验。

首先,建立了PMSM电机的数学模型,包括电机的动态方程、反电动势方程和电流方程。

然后,在MATLAB环境中编写程序,实现电机模型的数值求解和控制算法的计算。

通过调节控制参数,可以对电机的速度和位置进行精确控制,并实时监测电机的工作状态。

在仿真实验中,通过改变电机的负载情况、工作电压和控制参数等条件,分析了PMSM矢量控制系统的性能。

实验结果表明,当负载增加时,电机的转动惯量增大,控制系统的响应时间变长,但依然可以实现精确的速度和位置控制。

当电机的工作电压增加时,电机的输出功率和转速增大,但也会产生更大的电流和损耗。

当控制参数的比例增益和积分时间常数变化时,系统的稳定性和动态性能均会受到影响,需要进行合理的调节。

总结起来,本文基于MATLAB对PMSM矢量控制系统进行了仿真研究,探讨了其控制原理和性能。

通过仿真实验,可以深入理解PMSM矢量控制系统的工作原理,优化系统的参数和性能,并为实际应用提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[1] 刘永飘,钟彦儒,徐艳平.永磁交流伺服系统矢量控制仿真[J].电气传动自动化 2006,28 (1):18-21.
[2] 孙亚树,周新云,李正明. 空间矢量 PWM 的 SIMULINK 仿真[J]. 农机化研究,2003, 4(2):105-106.
[3] 熊 健. 空间矢量脉宽调制的调制波分析[J]. 电气自动化,2002,(2):7-9. [4] 李永东. 交流电机数字控制系统[M]. 北京:机械工业出版社.2002. [5] 舒志兵, 等.交流伺服运动控制系统[M].北京:清华大学出版社.2006. [6] 范影乐. Matlab 仿真应用详解(第 2 版)[M]. 北京:人民邮电出版社
本文通过对电压空间矢量控制原理及算法的分析,得到了永磁同步电机的数学模型,运 用 Matlab/Simulink 软件,构建了永磁同步电机控制系统的模型,通过仿真结果可以看到系 统能平稳运行,具有良好的静、动态特性,仿真结果符合永磁同步电机的运行特性,也为实 际伺服系统的设计和调试提供了新的思路。 参考文献
图 2 三相 PWM 逆变器 逆变器共有 8 种工作状态,即 001、010、011、100、101、110、111、000。将其中 6 个非零的开关状态相电压值代入式(1.2),可得到 6 个空间电压矢量,如图 3 所示。
图 3 基本空间电压矢量 2.2 零矢量的作用 在非零矢量作用的同时,插入零矢量的作用,让电机的磁链端点“走走停停”,这样可改 变磁链运行速度,使磁链轨迹近似为一个圆形,从而实现恒磁通变频调速。改变非零矢量的 作用时间与总的作用时间的比值,就改变了输出电压的频率,也改变了输出电压的幅值。 3.3 空间电压矢量控制算法 上面我们提到,控制过程包括非零矢量和零矢量的作用,非零矢量用来控制磁通的轨迹, 而利用零矢量改变磁通的运行速度。 现在以 U1、U2 作用区间为例,根据电压和时间乘积平衡原理,可以得到任意一个参考 电压矢量 Ur。
矢量控制的基本思想是在磁场定向坐标上,将电流矢量分解成两个相互垂直,彼此独立 的矢量 id(产生磁通的励磁电流分量)和 iq(产生转矩的转矩电流分量),也就是说,控制 id 和 iq 便可以控制电动机的转矩。
按转子磁链定向的控制方法(id=0)就是使定子电流矢量位于 q 轴,而无 d 轴分量。此时 转矩 Te 和 iq 呈线性关系(由上转矩方程),因此,只要对 iq 进行控制,就可以达到控制转 矩的目的。既定子电流全部用来产生转矩,此时,PMSM 的电压方程可写为:
电机输入三相正弦电压的最终目的是在空间产生圆形旋转磁场,从而产生恒定的电磁转 矩。直接针对这个目标,把逆变器和异步电机视为一体,按照跟踪圆形旋转磁场来控制 PWM 电压,这样的控制方法称为“磁链跟踪控制”,磁链的轨迹是靠电压空间矢量相加得到的,所 以又称“电压空间矢量 PWM 控制”。
空间矢量是按电压所加绕组的空间位置来定义的。在图 1 中,A、B、C 分别表示在空 间静止不动的电机定子三相绕组的轴线,它们在空间互差 120°,三相定子相电压 UA、UB、
基于 Matlab 的永磁同步电机矢量控制原理
摘 要:在现代交流伺服系统中,矢量控制原理以及空间电压矢量脉宽调 制(SVPWM)技术使得交流电机能够获得和直流电机相媲美的性能。永磁同步电机(PMSM) 是一个复杂耦合的非线性系统。 关键词: 永磁同步电机; 电压空间矢量脉宽调制 0、引言
永磁同步电机(PMSM)是采用高能永磁体为转子,具有低惯性、快响应、高功率密度、 低损耗、高效率等优点,成为了高精度、微进给伺服系统的最佳执行机构之一 。永磁同步 电机构成的永磁交流伺服系统已经向数字化方向发展。因此如何建立有效的仿真模型具有十 分重要的意义。对于在 Matlab 中进行永磁同步电机(PMSM)建模仿真方法的研究已经受 到广泛关注。
矢量控制中用到的变换有:将三相平面坐标系向两相平面直角坐标系的转换(Clarke 变换)和将两相静止直角坐标系向两相旋转直角坐标系的变换(Park 变换)。坐标变换矩 阵的 Matlab 实现如图 5 和图 6 所示
1 PMSM 数学模型 永磁同步电机的矢量控制基于电机的 dqO 坐标系统。在建立数学模型前,可先作以下几
本文介绍了电压空间矢量脉宽调制原理并给出了坐标变换模块、SVPWM 模块以及整个 PMSM 闭环矢量控制仿真模型,给出了仿真模型结构图和仿真结果。 1、 永磁同步电机的数学模型
永磁同步电机在 d-q 轴下的理想电压方程为:
(1)
(2)
(3)
(4)
(5)
(6)
(7) 式中,ud 和 uq 分别为 d、q 轴定子电压;id 和 iq 分别为 d、q 轴定子电流;和分别为 d、 q 轴定子磁链;ld 和 lq 分别为定子绕组 d、q 轴电感;r 为定子电阻;p 为微分符号;lmd 为定、转子间的 d 轴电感;ifd 为永磁体的等效 d 轴励磁电流;pn 为极对数;te 为电磁转矩; tl 为负载转矩;j 为转动惯量;b 为阻尼系数;为转子角速度。 2、 电压空间矢量脉宽调制原理 2.1 电压空间矢量
图 4 U1 和 U2 合成机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流
电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产 生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电 动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。
通过上面的简化过程可以看出,只要准确地检测出转子空间位置的 θ 角,并通过控制逆 变器使三相定子的合成电流(磁动势)位于 q 轴上,那么,通过控制定子电流的幅值,就能很 好地控制电磁转矩。此时对 PMSM 的控制,就类似于对直流电机的控制。 2.2 矢量控制调速系统的控制组成
在电机起动时,就应当通过软件进行系统初始定位,以获得转子的实际位置,这是永磁 同步电机实现矢量控制的必要条件。首先,应通过转子位置传感器检测出转子角位置 ωr, 同时计算出转子的速度 n,然后检测定子(任两相)电流并经矢量变换,以得到检测值 id 和 iq, 然后分别经 PI 调节器输出交直流轴电压值 ud 和 uq,再经过坐标变换后生成电压值 uα 和 uβ,最后利用 SVPWM 方法输出 6 脉冲逆变器驱动控制信号。 6、结束语
UC 分别加在三相绕组上,可以定义三个电压空间矢量 UA、UB、UC,它们的方向始终在各 相的轴线上,而大小则随时间按正弦规律变化,时间相位互差 120°。
图 1 三相电压矢量 将图 1 的平面看成是一个复平面,则
(1.1) 三相合成的空间电压矢量 U 可写为
由于
(1.2) 都是正弦量,利用欧拉公式可得
(1.3)
我们可以看到三相电压空间矢量的合成空间矢量 是一个旋转空间矢量,它的幅值是每 相电压值的 1.5 倍,其旋转的角速度等于正弦电压量的角频率。
磁链和电流空间矢量
电压平衡方程的矢量表示
(1.4) 在转速不太低时,RI 较小,故
(1.5) 式(1.5)表明:电压矢量的大小等于磁链的变化率,而电压矢量的方向就是磁链运动 的方向。 在调速系统中,电机由三相 PWM 逆变器供电,如图 2 所示。为使电机对称工作,必须 三相同时供电,即在任一时刻一定有处于不同桥臂下的三个器件同时导通,而相应桥臂的另 三个功率器件则处于关断状态。
点假设:即忽略铁心饱和,不计涡流及磁滞损耗,转子上没有阻尼绕组,永磁材料的电导率 为零,电机电流为对称的三相正弦电流。在上述假设的基础上,运用坐标变换理论,便可得 到 dqO 轴下 PMSM 数学模型。
该模型的电压、磁链、电磁转矩和功率方程(即派克方程)如下:
2 矢量控制系统 2.1 矢量控制基本原理
相关文档
最新文档