[理学]流体力学 第4章-基本方程

合集下载

流体力学第4章9

流体力学第4章9

2014-10-1
28
通过流管中有效截面面积为A的流体体积流量和质量流量分 别积分求得,即
qV vdA
qm vdA
在工程计算中为了方便起见,引入平均流速的概念。平均 流速是一个假想的流速,即假定在有效截面上各点都以相 同的平均流速流过,这时通过该有效截面上的体积流量仍
A
A
与各点以真实流速流动时所得到的体积流量相同。
述三点原因,欧拉法在流体力学研究中广泛被采用。当然
拉格朗日法在研究爆炸现象以及计算流体力学的某些问题 中还是方便的。
2014-10-1 11
第二节 流体运动的一些基本概念
一、流动的分类 (1)按照流体性质分为理想流体的流动和粘性流体的流动, 不可压缩流体的流动和可压缩流体的流动。 (2)按照运动状态分为定常流动和非定常流动,有旋流动 和无旋流动,层流流动和紊流流动,亚声速流动和超声速 流动
在流场中的一些点,流体质点不断流过空间点,空间点上 的速度指流体质点正好流过此空间点时的速度。
用欧拉法求流体质点其他物理量的时间变化率也可以采用
下式的形式,即
D( ) ( ) (V )( ) Dt t
式中,括弧内可以代表描述流体运动的任一物理量,如密
D( ) 度、温度、压强,可以是标量,也可以是矢量。 称为 Dt ( ) 全导数, 称为当地导数, (V )( )称为迁移导数。 t
1、系统:包含确定不变的物质的任何集合。 系统以外的一切称为外界。 边界的性质: ① 边界随流体一起运动; ② 边界面的形状和大小可随时间变化; ③ 系统是封闭的,没有质量交换,可以有能 量交换; ④ 边界上受到外界作用在系统上的表面力;
2014-10-1 31
2、控制体:被流体所流过的,相对于某 个坐标系来讲,固定不变的任何体积。 控制面的性质: ① 总是封闭表面; ② 相对于坐标系是固定的; ③ 在控制面上可以有质量、能量交换; ④ 在控制面上受到控制体以外物体加在 控制体内物体上的力;

(完整版)流体力学重点概念总结

(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

流体力学第四章

流体力学第四章

• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。

[理学]流体力学 第4章-基本方程

[理学]流体力学 第4章-基本方程
dt V r,t 应用欧拉输运定理,以控制体为研究对象时角动量守恒方 程可表述为:
控制体净输出
的动量矩流量
控制体内的动 量矩变化率
作用于控制 体的总力矩
(r )
( A)
dA

t

V
(r

)

dV
M
24/57
角动量方程 推导
应力张量就是对称的 zy yz , xz zx , yx xy
7/57
质量守恒定律 推导
质量守恒原理指 物体质量在运动中保 持不变,换言之,物 体质量随时间的变化 率为零。
如右图所示,在 考察的物质系统内, 围绕任意点取一无限 小体积。
图3.2 流动流体的物质体积
8/57
质量守恒定律 推导
对于系统,由质量守恒定律有:
d dV 0
dt V r ,t
取如右图所示系 统,函数 (r, t) 在 整个系统区域上是连 续的、单值的、可微 的。
图3.1 流体实体容积
4/57
输运定理
推导
r,t dV r,t dV
V r,t t
V r ,t t
d
dV
lim
1


r, t t dV r,t dV

0
质量守恒定律的微分形式:

t
div v dV
0
div 0
t
或 grad div 0
t
对不可压缩流体, 0 ,则方程简化为
t
divv 0
11/57
质量守恒定律
柱坐标形式

流体力学中的理论模型

流体力学中的理论模型

流体力学中的理论模型引言流体力学是研究流体运动规律和性质的学科,是物理学的一个重要分支。

在流体力学中,理论模型是研究和解决流体问题的基础。

理论模型的建立可以帮助我们理解和预测流体行为,对于解决实际问题具有重要意义。

本文将介绍流体力学中常用的一些理论模型及其应用。

一、欧拉方程欧拉方程是描述不可压缩流体力学的基本方程之一。

它是从质量守恒和动量守恒的原理出发推导而来。

欧拉方程可以用来描述流体的运动速度和压力分布。

其基本形式如下:$$\\frac{\\partial \\mathbf{v}}{\\partial t} + (\\mathbf{v} \\cdot \abla)\\mathbf{v} = -\\frac{1}{\\rho}\ abla p + \\mathbf{g}$$其中,$\\mathbf{v}$表示速度矢量,t表示时间,$\\rho$表示流体密度,p表示压力,$\\mathbf{g}$表示重力加速度。

欧拉方程的应用非常广泛,例如在航空航天领域中用于计算飞行器的气动力、在水力工程中用于设计水电站的水轮机等。

二、雷诺方程与欧拉方程相对应的是雷诺方程,它是描述可压缩流体力学的基本方程之一。

雷诺方程是通过在欧拉方程中引入粘性效应而得到的。

其基本形式如下:$$\\frac{\\partial \\mathbf{v}}{\\partial t} + (\\mathbf{v} \\cdot \abla)\\mathbf{v} = -\\frac{1}{\\rho}\ abla p + \\mu \ abla^2 \\mathbf{v} +\\mathbf{g}$$其中,$\\mu$表示动力粘度。

雷诺方程可以用于研究流体的湍流行为和边界层分离等问题。

它在航空航天、汽车工程、海洋工程等领域中都有重要应用。

三、纳维-斯托克斯方程纳维-斯托克斯方程是描述不可压缩流体力学的基本方程。

它是通过在欧拉方程中引入粘性效应并考虑不可压缩条件得到的。

流体力学中的三大基本方程

流体力学中的三大基本方程

dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(

x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。

流体力学的基本方程

流体力学的基本方程

流体速度v、压力p、密度ρ和温度T等的对应表达式为:
流动空间中的流动诸参
因此流动参数构成了场(矢量与标量),就可使用场论这
一有力的数学工具。
欧拉法质点加速度表达式为:
在直角坐标系中:
*
加速度矢量式:
*
用欧拉法描述流体的运动时,加速度由两部分组成:
拉格朗日法和欧拉法的比较
*
欧拉法中a=dv/dt为一阶导数,相应的运动方程是一阶偏微分方程;拉格朗日法中a=∂2r/ ∂ t2为二阶导数,相应的运动方程是二阶偏微分方程。 [例2-1]见书P12-13
欧拉法得到流场,拉格朗日法得不到流场;
*
第二节 流体运动的基本概念
PART ONE
一.定常流动和非定常流动
*
流体运动过程中,若各空间点上对应的物理量不随时间而变化,则称此流动为定常流动,反之为非定常流动。
在定常流动中,流场内物理量不随时间而变化,仅是空间点的函数。
二.均匀流动和非均匀流动
*
流体在运动过程中,若所有物理量皆不依赖于空间坐标,只是时间t的函数,则称此流动为均匀流动,反之为非均匀流动。
三.一维、二维、三维流动
积分以上微分方程,消去时间t,即得迹线方程。
M2
M1
M3
M4
V1
V2
V3
V4
(二)流线 流线是某固定时刻流场中的瞬时曲线,是流场的几何表示,是在同一瞬时形成的曲线,曲线上每一点的切线都与速度矢量相重合。与欧拉法相对应。
给出流场V(x,y,z,t)后,对x,y,z积分上式,即可得到流线方程。
t = 0 时过 M(-1,-1)点的流线:
举 例
t = 0 时过 M(-1,-1): C1 = C2 = 0

流体力学中三大基本方程

流体力学中三大基本方程

( d t) d x d y d zd x d y d z d td x d y d z
t
t
单位时间内,微元体质量增量:
dtdxd/dyt dzdxdydz
t
t
(微团密度在单位时间内的变率及微团体积的乘积)
⑶根据连续性条件:
t x ( x ) y ( y) z ( z) 0
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
dy
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程:
得x方向上的运动微分方程:
d d txd x d y d z p xd x d y d z fx d x d y d z
单位体积流体的运动微分方程:
dx
dt
同理可得在单位时间内沿y,z方向流出 及 流入控制体的质
量差为
vy
d
x
d
yd和z
vz
dxdydz
y
z
故单位时间内流出及流入微元体流体质量总变化为:
x ( x) y ( y) z( z) dxdydz
⑵控制体内质量变化:
因控制体是固定的,质量变化是因密度变化引起的,dt时间内:
pxfx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
同理可得y,z方向上的:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r
rvr

1 r


v

z
vz


0
12/57
第三章 基本方程组
§1 输运定理 §2 质量守恒方程 §3 动量方程 §4 角动量方程 §5 能量守恒方程 §6 初始条件和边界条件
13/57
动量方程 推导
对于系统,由动量守恒定律(牛顿第二定律)有:
d dV F
20/57
柯西方程 直角坐标形式
笛卡儿坐标系下的柯西方程:
x t
x
x x
y
x y
z
x z

gx

1

x x

xy y

xz z

y t
x
y x
y
y y
z
y z

gy

1
第三章 基本方程组
§1 输运定理 §2 质量守恒定律 §3 动量方程 §4 角动量方程 §5 能量守恒原理 §6 初始条件和边界条件
1/57
输运定理
引言
所有的力学定律,都是从系统的观念推导而得的,而以系统为 对象研究流体运动,就必须随时对系统进行跟踪并识别边界,这 在实际流动过程中显然是很困难的。况且,工程上所关心的问题 也不在于跟踪质量确定流体的运动,而在于确定的设备空间中流 体的流动行为。
r
r


1 r
r
r
zr z

z
t
r
z
r

r
z
z
z
z
gz

1 1 r rz 1 z
ห้องสมุดไป่ตู้ r r r
z
z
该偏微分方程组就是所谓的流体运动的应力形式的动量方程, 代入不同流体的本构方程就可以得到不同流体的运动方程。
输入控制体 动量流量
作用于控制 体的合力
控制体净输出 的动量流量
14/57
动量方程 推导
外力
体积力 表面力
单位质量上的体积力 单位面积上的表面力
应力矢量 应力张量 矩阵形式
r,t,n T r,tn
应力张量和方 向矢量缩并得
应力矢量

x y


Txx Tyx
dt
V

2 2

dV

V
g dV

TdA
qdA
( A)
( A)
V r ,t
V
dV l dA (Vdt) dA
lim 1 dV vdA
t 0 t V
A
d dV dV dA
dt V
V t
( A)
5/57
输运定理
推导
控制体内函数变化量等于同一空间内函数的时间不均匀性引 起的变化量与控制体界面上由于对流引起的函数变化量之和。这 就是著名的输运定理,是由欧拉首先提出的。
(切应力张量第一下标表示作 用面法向,第二下标表示力的 方向)。
16/57
z
动量方程 推导
dz
o
dy
dx
xA
Txxnx Txyny Txznz i
Tyxnx Tyyny Tyznz j
By
Tzxnx Tzyny Tzznz k
法向应力: 法向
z Tzx
Txy Tyy
Txz

Tyz
nx
ny

Tzy
Tzz

nz
15/57
动量方程 推导
在笛卡儿坐标系中, 应力向量的各分量为:
Txxnx Txyny Txznz i Tyxnx Tyyny Tyznz j Tzxnx Tzyny Tzznz k
xz

y
z

zz
表面力合力
div g div T
t
(应力张量的散度表示流
体应力状态的不均匀性)
单位体积内总的动量变化率等于作用在物体上的外力之和。
19/57
动量方程
柯西形式
div g div T
2. 控制体:在空间上体积固定不变的连续、封闭区域。 特点:(1)控制体的边界相应于坐标系是固定不变的; (2)控制面上不仅可以有力的作用和能量交换,而 且可以有质量的交换。
3/57
输运定理
推导
为了将系统分析法转换成控制体积分析法,我们必须将数学导 式转换成针对某一特定的区域(而非个别的质点)来作,此变换称 为雷诺输运定理(Reynolds transport theorem),该定理可应用在任一 基本定律上。
7/57
质量守恒定律 推导
质量守恒原理指 物体质量在运动中保 持不变,换言之,物 体质量随时间的变化 率为零。
如右图所示,在 考察的物质系统内, 围绕任意点取一无限 小体积。
图3.2 流动流体的物质体积
8/57
质量守恒定律 推导
对于系统,由质量守恒定律有:
d dV 0
dt V r ,t
在工程流体力学中,更多的是采用以控制体为对象,而如何 将基于系统的基本原理表达成适用于控制体的形式,这就是输运 定理所要解决的问题。
2/57
输运定理
概念
1.系统: 系统是一团确定不变的物质的集合。 特点:(1)系统边界随流体一起运动,其形状、大小可随 时间变化; (2)系统可以通过边界与外界发生力的作用和能量 交换,但不发生质量交换,即系统的质量是不 变的。
r
r

r r
z
z

g

1

1 r2
r
r 2 r
1 r
z z
r t
r
r r
r
r
2 r
z
r z

gr

1

1 r
r

0
质量守恒定律的微分形式:

t
div v dV
0
div 0
t
或 grad div 0
t
对不可压缩流体, 0 ,则方程简化为
t
divv 0
11/57
质量守恒定律
柱坐标形式
直角坐标系中质量守恒方程为:
dV
dA
gdV
TdA
V t
( A)
V
( A)
散度定理

V

t

div

dV

g
V

div
T dV



x x yx
z x
x y y y z y
dt V r,t 应用欧拉输运定理,以控制体为研究对象时角动量守恒方 程可表述为:
控制体净输出
的动量矩流量
控制体内的动 量矩变化率
作用于控制 体的总力矩
(r )
( A)
dA

t

V
(r

)

dV
M
24/57
角动量方程 推导
应力张量就是对称的 zy yz , xz zx , yx xy
取如右图所示系 统,函数 (r, t) 在 整个系统区域上是连 续的、单值的、可微 的。
图3.1 流体实体容积
4/57
输运定理
推导
r,t dV r,t dV
V r,t t
V r ,t t
d
dV
lim
1


r, t t dV r,t dV
22/57
第三章 基本方程组
§1 输运定理 §2 质量守恒方程 §3 动量方程 §4 角动量方程 §5 能量守恒方程 §6 初始条件和边界条件
23/57
角动量方程 推导
角动量守恒原理是指一定体积V 流体的角动量变化率等于作
用在该流体上的所有外力矩之和。
对于系统,由角动量守恒定律有:
d (r )dV M

yx x

y y

yz z

z t
x
z x
y
z y
z
z z

gz

1

zx x
zy y
z z

21/57
柯西方程 柱坐标形式
柱坐标系下柯西方程:

t
r
dt V r,t
d dV dV dA
dt V
V t
( A)
应用欧拉输运定理,以控制体为研究对象时动量守恒方程

V


t

dV


( A)
( dA)


F
dt dA dt
( A)
控制体内的
动量变化率
输出控制体 动量流量
dt V
t0 t V r ,t t
V r ,t

dV
lim r, t t r, t dV dV
V r ,t tt 0
t
V t
r, t dV r, t dV r, t dV
V r ,t t
25/57
第三章 基本方程组
相关文档
最新文档