第物理学第三版(刘克哲 张承琚)课后习题答案七章

第物理学第三版(刘克哲 张承琚)课后习题答案七章
第物理学第三版(刘克哲 张承琚)课后习题答案七章

[物理学7章习题解答]

7-2 一个运动质点的位移与时间的关系为

m ,

其中x的单位是m,t的单位是s。试求:

(1)周期、角频率、频率、振幅和初相位;

(2) t = 2 s时质点的位移、速度和加速度。

(1)将位移与时间的关系与简谐振动的一般形式

相比较,可以得到

角频率s 1, 频率, 周期, 振幅,

初相位.

(2) t = 2 s时质点的位移

.

t = 2 s时质点的速度

.

t = 2 s时质点的加速度

.

7-3 一个质量为2.5 kg的物体系于水平放置的轻弹簧的一端,弹簧的另一端被固定。若弹簧受10 n的拉力,其伸长量为5.0 cm,求物体的振动周期。

解根据已知条件可以求得弹簧的劲度系数

,

于是,振动系统的角频率为

.

所以,物体的振动周期为

.

7-4求图7-5所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。

解 以平衡位置o 为坐标原点,建立如图7-5所示的坐标系。若物体向右移动了x ,则它所受的力为

.

根据牛顿第二定律,应有

,

改写为

.

所以

,

.

7-5 求图7-6所示振动装置的振动频率,已知物体的质量为m ,两个轻弹簧的劲度系数分别为k 1 和k 2。

解 以平衡位置o 为坐标原点,建立如图7-6所示的坐标系。当物体由原点o 向右移动x 时,弹簧1伸长了

x 1 ,弹簧2伸长了x 2 ,并有

.

物体所受的力为

,

式中k 是两个弹簧串联后的劲度系数。由上式可得

, .

于是,物体所受的力可另写为

,

由上式可得

,

所以

. 图

7-5 图7-6

装置的振动角频率为

,

装置的振动频率为

.

7-6仿照式(7-15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式。

解由教材中的例题7-3,单摆的角位移θ与时间t的关系可以写为

θ = θ0 cos (ω t+?) ,

单摆系统的机械能包括两部分, 一部分是小物体运动的动能

,

另一部分是系统的势能,即单摆与地球所组成的系统的重力势能

.

单摆系统的总能量等于其动能和势能之和,即

,

因为, 所以上式可以化为

.

于是就得到

,

由此可以求得单摆系统中物体的速度为

.

这就是题目所要求推导的单摆系统中物体的速度与角位移的关系式。

7-7 与轻弹簧的一端相接的小球沿x轴作简谐振动,振幅为a,位移与时间的关系可以用余弦函数表示。若在t = 0时,小球的运动状态分别为

(1) x = -a;

(2)过平衡位置,向x轴正方向运动;

(3)过x =处,向x轴负方向运动;

(4)过x =处,向x轴正方向运动。

试确定上述各状态的初相位。

(1)将t = 0和x = a代入

,

,

.

(2)根据以及,可以得到

,

.

由上两式可以解得

.

(3)由和v < 0可以得到

,

.

由上两式可以解得

.

(4)由和v > 0可以得到

,

.

由上两式可以解得

.

7-8 长度为l的弹簧,上端被固定,下端挂一重物后长度变为l + s,并仍在弹性限度之内。若将重物向上托起,使弹簧缩回到原来的长度,然后放手,重物将作上下运动。

(1)证明重物的运动是简谐振动;

(2)求此简谐振动的振幅、角频率和频率;

(3)若从放手时开始计时,求此振动的位移与时间的关系(向下为正)。

(1)以悬挂了重物后的平衡位置o为坐标原点,建立如图7-7所示的坐标系。因为当重物处于坐标原点o时重力与弹力相平衡,即

,

. (1)

当重物向下移动x时,弹簧的形变量为(s + x ),物体的运动方程可以写为

,

将式(1)代入上式,得

,

. (2)

重物的运动满足这样的微分方程式,所以必定是简谐振动。

(2)令

, (3)

方程式(2)的解为

. (4)

振幅可以根据初始条件求得:当t = 0 时,x0 = s,v0 = 0,于是

.

角频率和频率可以根据式(3)求得:

,

.

图7-7

(3)位移与时间的关系:由

, 以及当t = 0 时,x0 = -s,v0 = 0,根据式(4),

可以得到

,

.

由以上两式可解得

.

故有

.

7-9 一个物体放在一块水平木板上,此板在水平方向上以频率ν作简谐振动。若物体与木板之间的静摩擦系数为μ0 ,试求使物体随木板一起振动的最大振幅。

解设物体的质量为m,以平衡位置o为坐标原点建立如图7-8所示的坐标系。

由于物体与木板之间存在静摩擦力,使物体跟随木板一起

在水平方向上作频率为ν的简谐振动。

振动系统的加速度为

,

可见,加速度a的大小正比与振幅a,在最大位移处加速度为最大值

.

最大加速度a max对应于最大振幅a max,而与此最大加速度所对应的力应小于或等于重物与木板之间的最大静摩擦力,物体才能跟随木板一起振动。所以可以列出下面的方程式

,

.

由以上两式可以解得使物体随木板一起振动的最大振幅,为

.

图7-8

7-10 一个物体放在一块水平木板上,此板在竖直方向上以频率 作简谐振动。试求物体和木板一起振动的最大振幅。

解设物体的质量为m,以平衡位置o为坐标原点建立如图7-9所示的坐标系。物体所受的力,有向下的重力m g和向上的支撑力n,

可以列出下面的运动方程

. (1)

由简谐振动

,

可以求得加速度

.

当振动达到最高点时,木板的加速度的大小也达到最大值,为

,(2)

负号表示加速度的方向向下。如果这时物体仍不脱离木板,物体就能够跟随木板一起上下振动。将式(2)代入式(1),得

. (3)

物体不脱离木板的条件是

,

取其最小值,并代入式(3),得

,

于是可以求得物体和木板一起振动的最大振幅,为

.

7-11 一个系统作简谐振动,周期为t,初相位为零。问在哪些时刻物体的动能与势能相等?

解初相位为零的简谐振动可以表示为

.

振动系统的动能和势能可分别表示为

,

.

因为

图7-9

,

所以势能可以表示为

.

当时,应有

,

,

.

由上式解得

将代入上式,得

7-12 质量为10 g的物体作简谐振动,其振幅为24 cm,周期为1.0 s,当t = 0时,位移为+24 cm,求:

(1) 时物体的位置以及所受力的大小和方向;

(2)由起始位置运动到x = 12 cm处所需要的最少时间;

(3)在x = 12 cm处物体的速度、动能、势能和总能量。

解首先根据已知条件得出位移与时间关系的具体形式。一般形式为

.

将, , , 各量代入上式,同时,根据时

,求得, ,于是得到简谐振动的具体形式为

.

(1) 物体的位置为

,

所受力的大小为

,

方向沿x轴的反方向。

(2)由起始位置运动到x = 12 cm处所需要的最少时间

,

,

题目要求最少时间,上式中应取正号。所以

.

(3)在x = 12 cm处

,

.

物体的速度为

.

物体的动能为

.

物体的势能为

,

所以物体的总能量

.

7-13 质量为0.10 kg的物体以2.0?10-2m的振幅作简谐振动,其最大加速度为4.0 m?s-2 ,求:

(1)振动周期;

(2)通过平衡位置的动能;

(3)总能量。

(1) 最大加速度与角频率之间有如下关系

,

所以

.

由此可求得振动周期,为

.

(2)到达平衡位置时速率为最大,可以表示为

,

故通过平衡位置时的动能为

.

(3)总能量为

.

7-14一个质点同时参与两个在同一直线上的简谐振动:和

(式中x的单位是m,t的单位是s),求合振动的振幅和初相位。

解已知a1 = 0.05 m、?= π / 3、a2 = 0.06 m和?2 = -2π / 3,故合振动的振幅为

.

合振动的初相位为

,

.

但是?不能取π / 3,这是因为x1和x2是两个相位相反的振动,如果它们的振幅相等,则合振动是静止状态,如果它们的振幅不等,则合振动与振幅较大的那个振动同相位。

在我们的问题中,,所以合振动与x2同相位。于是,在上面的结果中,合振动

得初相位只能取,即

.

7-15 有两个在同一直线上的简谐振动:m和

m,试问:

(1)它们合振动的振幅和初相位各为多大?

(2)若另有一简谐振动m,分别与上两个振动叠加,?为何值时,x1 + x3 的振幅为最大??为何值时,x2+ x3 的振幅为最小?

(1)合振动的振幅为

.

合振动的初相位

,

考虑到x1与x2相位相反,,所以合振动x应与x2同相位,故取

.

(2)当时,合振动的振幅为最大,所以

这时合振动的振幅为

.

当时,合振动的振幅为最小,所以

这时合振动的振幅为

.

7-16 在同一直线上的两个同频率的简谐振动的振幅分别为0.04 m和0.03 m,当它们的合振动振幅为0.06 m时,两个分振动的相位差为多大?

解合振动的振幅平方可以表示为

,

所以

,

.

7-17 一个质量为5.00 kg的物体悬挂在弹簧下端让它在竖直方向上自由振动。在无

阻尼的情况下,其振动周期为;在阻尼振动的情况下,其振动周期为。求阻力系数。

解无阻尼时

.

有阻尼时

.

根据关系式

,

解出β,得

将β代入下式就可求得阻力系数

.

7-21某一声波在空气中的波长为0.30 m,波速为340 m?s-1 。当它进入第二种介质后,波长变为0.81 m。求它在第二种介质中的波速。

解由于波速u、波长λ和波的频率ν之间存在下面的关系

,

当声波从一种介质进入另一种介质时,频率不会改变,所以

.

于是可以求得声波在第二种介质中的波速,为

.

7-22 在同一种介质中传播着两列不同频率的简谐波,它们的波长是否可能相等?为什么?如果这两列波分别在两种介质中传播,它们的波长是否可能相等?为什么?

解根据书中160页波在介质中的传播速率的表达式(7-50)至(7-52),可以看到,波的传播速率是由介质自身的特性所决定。所以,两列不同频率的简谐波在同一种介质中,是以相同的速率传播的。故有

.

可见,频率不同的两列波,其波长不可能相同。

当这两列不同频率的波在不同的介质中传播时,上面的关系式不成立。只要两种介质中的波速之比等于它们的频率之比,两列波的波长才会相等。

7-23 已知平面简谐波的角频率为ω =15.2?102 rad?s-1,振幅为a=1.25?10-2 m,波长为λ = 1.10 m,求波速u,并写出此波的波函数。

解波的频率为

.

波速为

.

所以波函数可以写为

.

7-24 一平面简谐波沿x轴的负方向行进,其振幅为1.00 cm,频率为550 hz,波速为330 m?s-1 ,求波长,并写出此波的波函数。

解波长为

.

波函数为

.

7-25 在平面简谐波传播的波线上有相距3.5 cm的a、b两点,b点的相位比a点落后45?。已知波速为15 cm?s-1 ,试求波的频率和波长。

解设a和b两点的坐标分别为x1和x2,这样两点的相位差可以表示为

,

.

由上式可以求得波长,为

.

波的频率为

.

7-27波源作简谐振动,位移与时间的关系为y = (4.00?10-3 ) cos 240πt m,它所激发的波以30.0 m?s-1 的速率沿一直线传播。求波的周期和波长,并写出波函数。

解设波函数为

.

已知, , , 根据这些数据可以分别求得波的周期和波长。

波的频率为

.

波的周期和波长分别为

,

.

于是,波函数可以表示为

.

7-29沿绳子行进的横波波函数为,式中长度的单位是cm,时间的单位是s。试求:

(1)波的振幅、频率、传播速率和波长;

(2)绳上某质点的最大横向振动速率。

解波函数可写为

,

其中

.

(1)由已知条件可以得到

,

,

,

.

(2)绳上质点的横向速率为

,

所以

.

7-30 证明公式。

解根据

和,

所以可以将波速的表达式作如下的演化

,

故有

.

7-31用横波的波动方程和纵波的波动方程证明横波的波

速和纵波的波速分别为和。

解将平面简谐波波函数

分别对x和t求二阶偏导数:

, (1)

.(2)

将以上两式同时代入纵波波动方程[即教材中第167页式(7-62)],得

,

所以

.

将式(1)和式(2)同时代入横波波动方程[即教材中第169页式(7-64)],得

,

所以

.

7-32在某温度下测得水中的声速为1.46?103 m?s-1 ,求水的体变模量。

解已知水中的声速为u = 1.46?103 m?s-1,水的密度为,将这些数据代入下式

,

就可以求得水的体变模量,得

.

7-33 频率为300 hz、波速为330 m?s-1的平面简谐声波在直径为16.0 cm的管道中传播,能流密度为10.0?10-3j?s-1 ?m-2 。求:

(1)平均能量密度;

(2)最大能量密度;

(3)两相邻同相位波面之间的总能量。

(1)平均能量密度:根据

,

将已知量和代入上式,就可以求得平均能量密度,得

.

(2)最大能量密度w max:

.

(3)两相邻同相位波面之间的总能量w:将已知量

,

,

代入下式得

.

7-34p和q是两个以相同相位、相同频率和相同振幅在振动并处于同一介质中的相干波源,其频率为ν、波长为λ,p和q相距3λ/ 2。r为p、q连线延长线上的任意一点,试求:

(1)自p 发出的波在r 点引起的振动与自q 发出的波在r 点引起的振动的相位差;

(2) r 点的合振动的振幅。 解

(1)建立如图7-10所示的坐标系,p 、q 和r 的坐标分别为x 1、x 2和x ,p 和q 的振动分别为

.

p 点和q 点在r 点引起的振动分别为

.

两者在r 点的相位差为

.

两者在r 点的相位差也可以写为

可见,p 点和q 点在r 点引起的振动相位是相反的,相位差为

(2) r 点的合振动的振幅为

.

可见,r 点是静止不动的。实际上,由于在δ?的上述表达式中不含x ,所以在x 轴上、q 点右侧的各点都是静止不动的。

7-35 弦线上的驻波相邻波节的距离为65 cm ,弦的振动频率为2.3?102 hz ,求波的传播速率u 和波长λ。

解 因为相邻波节的距离为半波长,所以

.

波速为

.

7-36 在某一参考系中,波源和观察者都是静止的,但传播波的介质相对于参考系是运动的。假设发生了多普勒效应,问接收到的波长和频率如何变化?

解 在这种情况下,接收到的频率为

图7-10

,

同时,因为,所以,即没有多普勒效应。

7-37 火车汽笛的频率为 ,当火车以速率v通过车站上的静止观察者身边时,观察者所接收到的笛声频率的变化为多大?已知声速为u。

解火车远去时,观察者所接收到的笛声频率为

,

火车迎面驶来时,观察者所接收到的笛声频率为

.

观察者所接收到的笛声频率的变化为

.

油层物理学最全习题集

第一节天然气的高压物理性质 一、名词解释。 1.天然气视分子量(gas apparent molecular weight): (gas relative density ): 2.天然气的相对密度g 3.天然气的压缩因子Z(gas compressibility factor): 4.对应状态原理(correlation state principle) : 5.天然气压缩系数Cg(gas compressive coefficient): 6.天然气体积系数Bg(gas formation volume factor): 二.判断题。 1.体系压力愈高,则天然气体积系数愈小。()2.烃类体系温度愈高,则天然气压缩因子愈小。()3.体系压力越大,天然气等温压缩率越大。()4.当二者组分相似,分子量相近时,天然气的粘度增加。()5.压力不变时,随着温度的增加,天然气的粘度增加。()6.天然气水合物形成的有利条件是低温低压。()7.温度不变时,压力增加,天然气体积系数减小。()8.温度不变时,压力增加,天然气分子量变大。()9. 当压缩因子为1时,实际气体则成为理想气体。()三.选择题。

1.理想气体的压缩系数与下列因素有关 A.压力 B.温度 C.体积 D.组成( ) 2.在相同温度下,随着压力的增加,天然气压缩因子在低压区间将在高压区间将 A.上升,上升 B.上升,下降 C.下降,上升 D.下降,下降( ) 3.对于单组分烃,在相同温度下,若C原子数愈少,则其饱和蒸气压愈其 挥发性愈 A.大,强 B.小,弱 C.小,强 D.大,弱( ) 4.地层中天然气的密度地面天然气的密度。 A.小于 B.等于 C.大于 D.视情况定( ) 5.通常用来计算天然气体积系数的公式为 A.Bg=Cg(273+t)/293P B.Bg=V 地下/ V 地面 C.Bg=Z(273+t)/293P D.Bg= V地面/ V地下( ) 6.天然气压缩因子Z>1说明天然气比理想气体压缩,Z<1说明天然气比理想气体。 A.易于,难于 B.易于,易于 C.难于,难于 D.难于,易于( ) 7.两种天然气A和B,在相同的P-T条件下,A比B更易于压缩,则 C gA C gA , ,Z A Z B A.大于,大于 B.大于,小于 C.小于,大于 D.小于,小于( )四.问答题。

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

物理学第三版(刘克哲 张承琚)课后习题答案第六章

[物理学6章习题解答] 6-1 有一个长方体形的水库,长200 m ,宽150 m , 水深10 m ,求水对水库底面和侧面的压力。 解 水对水库底面的压力为 侧面的压力应如下求得:在侧面上建立如图5-9所示的坐标系,在y 处取侧面窄条d y ,此侧面窄条所受的压力为 , 整个侧面所受的压力可以表示为 . 对于h = 10 m 、l = 200 m 的侧面: . 对于h = 10 m 、l = 150 m 的侧面: . 侧面的总压力为 . 6-3 在5.0?103 s 的时间内通过管子截面的二氧化碳气体(看作为理想流体)的质量为0.51 kg 。已知该气体的密度为7.5 kg ?m -3 ,管子的直径为2.0 cm ,求二氧化碳气体在管子里的平均流速。 解 单位时间内流过管子截面的二氧化碳气体的体积,即流量为 , 平均流速为 . 图5-9

6-4 当水从水笼头缓慢流出而自由下落时,水流随位置的下 降而变细,何故?如果水笼头管口的内直径为d ,水流出的速率 为v 0 ,求在水笼头出口以下h 处水流的直径。 解 当水从水笼头缓慢流出时,可以认为是定常流动,遵从 连续性方程,即流速与流管的截面积成反比,所以水流随位置的 下降而变细,如图5-10所示。 可以认为水从笼头流出后各处都是大气压,伯努利方程可以 写为 , 改写为 , (1) . 这表示水流随位置的下降,流速逐渐增大。整个水流可以认为是一个大流管,h 1处的流量应等于h 2处的流量,即 . (2) 由于 , 所以必定有 , 这表示水流随位置的下降而变细。 根据题意, , ,h 2处的流速为v 2,代入式(1),得 , 即 .(3) 将式(3)代入式(2),得 , 式中d 1 = d ,d 2就是在水笼头出口以下h 处水流的直径。上式可化为 . 图5-10

油层物理(第二册)课后习题答案

第一章 储层岩石的物理特性 24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。 Log d i W Wi 图1-1 两岩样的粒度组成累积分布曲线 答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。一般储油砂岩颗粒的大小均在1~之间。 粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。上升段直线越陡,则说明岩石越均匀。该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。 曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。 30、 孔隙度的一般变化范围是多少常用测定孔隙度的方法有哪些影响孔隙度 大小的因素有哪些 答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。 3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。间接测定法影响因素多,误差较大。实验室内通过常规岩心分析法可以较精确地测定岩心的孔隙度。 # 4)对于一般的碎屑岩 (如砂岩),由于它是由母岩经破碎、搬运、胶结和压实而成,因此碎屑颗粒的矿物成分、排列方式、分选程度、胶结物类型和数量以

中国石油大学(华东)油层物理课后题问题详解

简要说明为什么油水过渡带比油气过渡带宽?为什么油越稠,油水过渡带越 宽? 答:过渡带的高度取决于最细的毛细管中的油(或水)柱的上升高度。由于 油藏中的油气界面张力受温度、压力和油中溶解气的影响,油气界面张力很 小,故毛管力很小,油气过渡带高度就很小。因为油水界面张力大于油气界 面张力,故油水过渡带的毛管力比油气过渡带的大,而且水油的密度差小于 油的密度,所以油水过渡带比油气过渡带宽,且油越稠,水油密度差越小, 油水过渡带越宽 四、简答题 1、简要说明油水过渡带含水饱和度的变化规律,并说明为什么油越稠油水过渡带越宽? 由于地层中孔隙毛管的直径大小是不一样的,因此油水界面不是平面,而是一个过渡带。从地层底层到顶层,油水的分布一般为:纯水区——油水过渡区——纯油区。由下而上,含水饱和度逐渐降低。 由式:,在PcR 一定时,油水的密度差越小,油水的过渡带将越宽。油越稠,油水密度 差越小,所以油越稠,油水过渡带越宽。 来源于骄者拽鹏 习题1 1.将气体混合物的质量组成换算为物质的量的组成。气体混合物的质量组成如下: %404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。 解:按照理想气体计算: 2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。

解: 3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C , %83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。若地层压力为15MPa , 地层温度为50C O 。求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。 解: (1)视相对分子质量 836.16)(==∑i i g M y M (2)相对密度 580552029 836 16..M M a g g == = γ (3)压缩因子

物理学第三版(刘克哲 张承琚)课后习题答案第十一章

[物理学11章习题解答] 11-1 如果导线中的电流强度为8.2 a ,问在15 s 内有多少电子通过导线的横截面? 解 设在t 秒内通过导线横截面的电子数为n ,则电流可以表示为 , 所以 . 11-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。在一个氢气放电管中,如果在3 s 内有2.8?1018 个电子和1.0?1018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。 解 放电管中的电流是由电子和质子共同提供的,所以 . 电流的流向与质子运动的方向相同。 11-3 两段横截面不同的同种导体串联在一起,如图11-7所示,两端施加的电势差为u 。问: (1)通过两导体的电流是否相同? (2)两导体内的电流密度是否相同? (3)两导体内的电场强度是否相同? (4)如果两导体的长度相同,两导体的电阻之比等于什么? (5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关系,以及两导体有相同电阻时的长度之比。 解 (1)通过两导体的电流相同, 。 (2)两导体的电流密度不相同,因为 , 又因为 , 所以 . 这表示截面积较小的导体电流密度较大。 图11-7

(3)根据电导率的定义 , 在两种导体内的电场强度之比为 . 上面已经得到,故有 . 这表示截面积较小的导体中电场强度较大。 (4)根据公式 , 可以得到 , 这表示,两导体的电阻与它们的横截面积成反比。 (5)已知,容易得到其他各量的比例关系 , , , . 若,则两导体的长度之比为 . 11-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为σ的材料。已知σ是随电场而变化的,且可以表示为σ = ke,其中k为常量。现在两球壳之间维持电压u,求两球壳间的电流。 解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为i,则 . 又因为 , 所以

油层物理复习题答案

《油层物理》综合复习资料 一、名词解释 1、相对渗透率:同一岩石中,当多相流体共存时,岩石对每一相流体的有效渗透率与岩石绝对渗透率的比值。 2、润湿反转:由于表面活性剂的吸附,而造成的岩石润湿性改变的现象。 3、泡点:指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。 4. 流度比:驱替液流度与被驱替液流度之比。 5、有效孔隙度:岩石在一定的压差作用下,被油、气、水饱和且连通的孔隙体积与岩石外表体积的比值。 6、天然气的压缩因子:在一定温度和压力条件下,一定质量气体实际占有的体积与在相同条件下理想气体占有的体积之比。 7、气体滑动效应:在岩石孔道中,气体的流动不同于液体。对液体来讲,在孔道中心的液体分子比靠近孔道壁表面的分子流速要高;而且,越靠近孔道壁表面,分子流速越低;气体则不同,靠近孔壁表面的气体分子与孔道中心的分子流速几乎没有什么差别。Klinbenberg把气体在岩石中的这种渗流特性称之为滑动效应,亦称Klinkenberg效应。 8、毛管力:毛细管中弯液面两侧两相流体的压力差。 9、润湿:指液体在分子力作用下在固体表面的流散现象。 10、洗油效率:在波及范围内驱替出的原油体积与工作剂的波及体积之比。 11、束缚水饱和度:分布和残存在岩石颗粒接触处角隅和微细孔隙中或吸附在岩石骨架颗粒表面的不可能流动水的体积占岩石孔隙体积的百分数称为束缚水饱和度。 12、地层油的两相体积系数:油藏压力低于饱和压力时,在给定压力下地层油和其释放出气体的总体积与它在地面脱气后的体积之比。 13、吸附:溶质在相界面浓度和相内部浓度不同的现象。 二、填空题 1、1、润湿的实质是_固体界面能的减小。 2、天然气的相对密度定义为:标准状态下,天然气的密度与干燥空气的密度之比。 3、地层油的溶解气油比随轻组分含量的增加而增加,随温度的增加而减少;当压力小于泡点压力时,随压力的增加而增加;当压力高于泡点压力时,随压力的增加而不变。 4、常用的岩石的粒度组成的分析方法有:筛析法和沉降法。 5、地层水依照苏林分类法可分为氯化钙、氯化镁、碳酸氢钠和硫酸钠四种类型。 6、砂岩粒度组成的累计分布曲线越陡,频率分布曲线尖峰越高,表示粒度组成越均匀; 7、灰质胶结物的特点是遇酸反应;泥质胶结物的特点是遇水膨胀,分散或絮凝;硫酸盐胶结物的特点是_高温脱水。 8、天然气的体积系数远远小于1。 9、同一岩石中各相流体的饱和度之和总是等于1。 10、对于常规油气藏,一般,地层流体的B o>1,B w≈1,B g<< 1 11、地层油与地面油的最大区别是高温、高压、溶解了大量的天然气。 12、油气分离从分离原理上通常分为接触分离和微分分离两种方式。 13、吸附活性物质引起的固体表面润湿反转的程度与固体表面性质、活性物质的性质、活性物质的浓度等因素有关。

物理学第三版 刘克哲12章习题解答

[物理学12章习题解答] 12-7 在磁感应强度大小为b = 0.50 t 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图12-11所示。如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。若棒的运动速率v = 4.0 m ?s -1 ,试求: (1)导体棒内的非静电性电场k ; (2)导体棒内的静电场e ; (3)导体棒内的动生电动势ε的大小和方向; (4)导体棒两端的电势差。 解 (1)根据动生电动势的表达式 , 由于( )的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。于是可得 . 另外,动生电动势可以用非静电性电场表示为 . 以上两式联立可解得导体棒内的非静电性电场,为 , 方向沿棒由下向上。 (2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即 , 所以,e 的方向沿棒由上向下,大小为 . (3)上面已经得到 , 方向沿棒由下向上。 (4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即 , 棒的上端为正,下端为负。 图12-11

12-8 如图12-12所表示,处于匀强磁场中的导体回路 abcd ,其边ab 可以滑动。若磁感应强度的大小为b = 0.5 t ,电 阻为r = 0.2 ω,ab 边长为 l = 0.5 m ,ab 边向右平移的速率为v = 4 m ?s -1 ,求: (1)作用于ab 边上的外力; (2)外力所消耗的功率; (3)感应电流消耗在电阻r 上的功率。 解 (1)当将ab 向右拉动时,ab 中会有电流通过,流向为从b 到a 。ab 中一旦出现电流,就将受到安培力f 的作用,安培力的方向为由右向左。所以,要使ab 向右移动,必须对ab 施加由左向右的力的作用,这就是外力f 外 。 在被拉动时,ab 中产生的动生电动势为 , 电流为 . ab 所受安培力的大小为 , 安培力的方向为由右向左。外力的大小为 , 外力的方向为由左向右。 (2)外力所消耗的功率为 . (3)感应电流消耗在电阻r 上的功率为 . 可见,外力对电路消耗的能量全部以热能的方式释放出来。 12-9 有一半径为r 的金属圆环,电阻为r ,置于磁感应强度为b 的匀强磁场中。初始时刻环面与b 垂直,后将圆环以匀角速度ω绕通过环心并处于环面内的轴线旋转 π/ 2。求: (1)在旋转过程中环内通过的电量; (2)环中的电流; (3)外力所作的功。 图12-12

西南石油大学油层物理习题答案

第一章 储层岩石的物理特性 24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。 ∑Log d i W Wi 图1-1 两岩样的粒度组成累积分布曲线 答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。一般储油砂岩颗粒的大小均在1~0.01mm 之间。 粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。上升段直线越陡,则说明岩石越均匀。该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。 曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。 30、度的一般变化范围是多少,Φa 、Φe 、Φf 的关系怎样?常用测定孔隙度的方 法有哪些?影响孔隙度大小的因素有哪些? 答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。 2)由绝对孔隙度a φ、有效孔隙度e φ及流动孔隙度ff φ的定义可知:它们之间的关系应该是a φ>e φ>ff φ。 3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。间接测定法影响因素多,误差较大。实验室内通过常规岩心

物理学第三版刘克哲张承琚课后习题答案第十章

[物理学10章习题解答] 10-3两个相同的小球质量都是m,并带有等量同号电荷q,各用长为l的丝线悬挂于同一点。由于电荷的斥力作用,使小球处于图10-9所示的位置。如果θ角很小,试证明两个小球的间距x可近似地表示为 . 解小球在三个力的共同作用下达到平衡,这三个力分别 是重力m g、绳子的张力t和库仑力f。于是可以列出下面的 方程式 ,(1) 图10-9 ,(2) (3) 因为θ角很小,所以 , . 利用这个近似关系可以得到 ,(4) . (5) 将式(5)代入式(4),得 , 由上式可以解得 . 得证。 10-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大? 解在上题的结果中,将q解出,再将已知数据代入,可得

. 10-5氢原子由一个质子和一个电子组成。根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29?10-11m。质子的质量m = 1.67?10-27kg,电子的质量m = 9.11?10-31kg,它们的电量为±e =1.60?10-19c。 (1)求电子所受的库仑力; (2)电子所受库仑力是质子对它的万有引力的多少倍? (3)求电子绕核运动的速率。 解 (1)电子与质子之间的库仑力为 . (2)电子与质子之间的万有引力为 . 所以 . (3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以 , 从上式解出电子绕核运动的速率,为 . 10-6 边长为a的立方体,每一个顶角上放一个电荷q。 (1)证明任一顶角上的电荷所受合力的大小为 . (2) f的方向如何? 解立方体每个顶角上放一个电荷q,由于对称性,每个 电荷的受力情况均相同。对于任一顶角上的电荷,例如b 角图10-10 上的q b,它所受到的力、和大小也是相等的,即 .

油层物理习题 有答案 第二章

第二章油层物理选择题 2-1石油是()。 A.单质物质; B.化合物; C.混合物; D.不能确定 答案为C。 2-2 对于单组分烃,在相同温度下,若C原子数愈少,则其饱和蒸汽压愈(),其挥发性愈()。 A.大,强 B.大,弱 C.小,强 D.小,弱 答案为A 2-3 对于双组分烃体系,若较重组分含量愈高,则相图位置愈();临界点位置愈偏()。 A.高左; B.低,左; C.高,左; D.低,右 答案为D 2-4 多级脱气过程,各相组成将()发生变化,体系组成将()发生变化。 A.要,要; B.要,不 C.不,要; D.不,不。 答案为A 2-5 一次脱气与多级脱气相比,前者的分离气密度较(),前者的脱气油密度较()。 A.大,大; B.大,小; C.小,大; D.小,小 答案为A 2-6 单组分气体的溶解度与压力(),其溶解系数与压力()。 A.有关,有关; B.有关,无关; C.无关,有关; D.无关,无关。 答案为B 2-7 就其在相同条件下的溶解能力而言,CO 2、N 2 、CH 4 三者的强弱顺序为: >N 2>CH 4 ; >CH 4 >CO 2 >CO 2 >N 2 >CH 4 >N 2 答案为D 2-8 若在某平衡条件下,乙烷的平衡常数为2,此时其在液相中的摩尔分数为20%,则其在气相中的摩尔分数为()。

% % % % 答案为C 2-9 理想气体的压缩系数仅与()有关。 A.压力; B.温度; C.体积 D.组成 答案为A 2-10 在相同温度下,随压力增加,天然气的压缩因子在低压区间将(),在高压区间将()。 A.上升,上升; B.上升,下降; C.下降,上升; D.下降,下降。 答案为C 2-11 天然气的体积系数恒()1,地层油的体积系数恒()1。 A.大于,大于; B.大于,小于; C.小于,大于; D.小于,小于。 答案为C 2-12 天然气的压缩系数将随压力增加而(),随温度增加而()。 A.上升,下降; B.下降;上升 C.上升,上升 D.下降,下降答案为B 2-13 形成天然气水化物的有利条件是()。 A.高温高压; B.高温低压; C.低温高压; D.低温低压 答案为D 2-14 若地面原油中重质组分含量愈高,则其相对密度愈(),其API度愈()。 A.大,大; B.大,小; C.小,大; D.小,小 答案为B 2-15在饱和压力下,地层油的单相体积系数最(),地层油的粘度最()。A.大,大; B.大,小; C.小,大; D.小,小 答案为B 2-16地层油的压缩系数将随压力增加而(),随温度增加而()。 A.上升,上升; B.上升,下降; C.下降,上升; D.下降,下降

大学物理期末考试试题

西安工业大学试题纸 1.若质点的运动方程为:()2r 52/2t t i t j =+-+(SI ),则质点的v = 。 2. 一个轴光滑的定滑轮的转动惯量为2/2MR ,则要使其获得β的角加速度,需要施加的合外力矩的大小为 。 3.刚体的转动惯量取决于刚体的质量、质量的空间分布和 。 4.一物体沿x 轴运动,受到F =3t (N)的作用,则在前1秒内F 对物体的冲量是 (Ns )。 5. 一个质点的动量增量与参照系 。(填“有关”、“无关”) 6. 由力对物体的做功定义可知道功是个过程量,试回答:在保守力场中,当始末位置确定以后,场力做功与路径 。(填“有关”、“无关”) 7.狭义相对论理论中有2个基本原理(假设),一个是相对性原理,另一个是 原理。 8.在一个惯性系下,1、2分别代表一对因果事件的因事件和果事件,则在另一个惯性系下,1事件的发生 2事件的发生(填“早于”、“晚于”)。 9. 一个粒子的固有质量为m 0,当其相对于某惯性系以0.8c 运动时的质量m = ;其动能为 。 10. 波长为λ,周期为T 的一平面简谐波在介质中传播。有A 、B 两个介质质点相距为L ,则A 、B 两个质点的振动相位差=?φ____;振动在A 、B 之间传播所需的时间为_ 。 11. 已知平面简谐波方程为cos()y A Bt Cx =-,式中A 、B 、C 为正值恒量,则波的频率为 ;波长为 ;波沿x 轴的 向传播(填“正”、“负”)。 12.惠更斯原理和波动的叠加原理是研究波动学的基本原理,对于两列波动的干涉而言,产生稳定的干涉现象需要三个基本条件:相同或者相近的振动方向,稳定的位相差,以及 。 13. 已知一个简谐振动的振动方程为10.06cos(10/5)()X t SI π=+,现在另有一简谐振动,其振动方程为20.07cos(10)X t =+Φ,则Φ= 时,它们的合振动振幅最 大;Φ= 时,它们的合振动振幅最小。 14. 平衡态下温度为T 的1mol 单原子分子气体的内能为 。 15. 平衡态下理想气体(分子数密度为n ,分子质量为m ,分子速率为v )的统计压强P= ;从统计角度来看,对压强和温度这些状态量而言, 是理想气体分子热运动激烈程度的标志。

油层物理课后习题问题详解

第一章 1.将气体混合物的质量组成换算为物质的量的组成。气体混合物的质量组成如下: %404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。 解:按照理想气体计算: 2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。 解: 3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C , %83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。若地层压力为15MPa , 地层温度为50C O 。求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。 解:

(1)视相对分子质量 836.16)(==∑i i g M y M (2)相对密度 580552029 836 16..M M a g g == = γ (3)压缩因子 244.3624.415=== c r p p p 648.102 .19627350=+==c r T T T (4)地下密度 )(=) (3/95.11127350008314.084.0836.1615m kg ZRT pM V m g g +???=== ρ

(5)体积系数 )/(10255.6202735027315101325.084.0333m m T T p p Z p nRT p ZnRT V V B sc sc sc sc gsc gf g 标-?=++??=??=== (6)等温压缩系数 3.244 1.648 0.52 []) (== 1068.0648 .1624.452 .0-???= MPa T P T C C r c r gr g (7)粘度 16.836 50 0.0117

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

物理学第三版(刘克哲 张承琚)课后习题答案第第1章

[第1章习题解答] 1-3 如题1-3图所示,汽车从A 地出发,向北行驶60 km 到达B 地,然后向东行驶60 km 到达c 地,最后向东北行驶50km 到达D 地。求汽车行驶的总路程和总位移。 解 汽车行驶的总路程为 S=AB 十BC 十CD =(60十60十50)km =170 km ; 汽车的总位移的大小为 Δr=AB/Cos45°十CD =(84.9十50)km =135km , 位移的方向沿东北方向,与CD 方向一致。 1-4 现有一矢量R 是时阃t 的函数,问dt R d dt R d 与在一般情况下是否相 等?为什么? 解: dt R d dt R d 与在一般情况下是不相等的。因为前者是对矢量R 的绝 对值(大小或长度)求导,表示矢量R 的太小随时间的变化率;而后者是对矢量R 的大小和方向两者同时求导,再取绝对值,表示矢量R 大小随时问的变化和矢量R 方向随时同的变化两部分的绝对值。如果矢量R 方向不变,只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L 运动,其位置与时间的关系为r =6t 2-2t 3,r 和t 的单位分别是米和秒。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度,

(3)第三秒末和第四秒末的加速度。 解:取直线L 的正方向为x 轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x 轴的正方向,若为负值,表示该速度或加速度沿x 轴的反方向。 (1)第二秒内的平均速度 11121220.41 2) 26()1624(--?=?----=--= s m s m t t x x v ; (2)第三秒末的速度 因为2612t t dt dx v -== ,将t=3 s 代入,就求得第三秒末的速度为 v 3=18m ·s -1; 用同样的方法可以求得第口秒末的速度为 V 4=48m s -1; (3)第三秒末的加速度 因为t dt x d 1212a 22-==,将 t=3 s 代入,就求得第三秒末的加速度为 a 3= -24m ·s -2; 用同样的方法可“求得第四秒末的加速度为 a 4= -36m ·s -2 1-6 一质点作直线运动,速度和加速度的大小分别为dt d v s =和dt d v a =,试证明: (1)vdv=ads : (2)当a 为常量时,式v 2=v 02+2a(s-s 0)成立。 解

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

第物理学第三版(刘克哲 张承琚)课后习题答案七章

[物理学7章习题解答] 7-2 一个运动质点的位移与时间的关系为 m , 其中x的单位是m,t的单位是s。试求: (1)周期、角频率、频率、振幅和初相位; (2) t = 2 s时质点的位移、速度和加速度。 解 (1)将位移与时间的关系与简谐振动的一般形式 相比较,可以得到 角频率s 1, 频率, 周期, 振幅, 初相位. (2) t = 2 s时质点的位移 . t = 2 s时质点的速度 . t = 2 s时质点的加速度 . 7-3 一个质量为2.5 kg的物体系于水平放置的轻弹簧的一端,弹簧的另一端被固定。若弹簧受10 n的拉力,其伸长量为5.0 cm,求物体的振动周期。 解根据已知条件可以求得弹簧的劲度系数 , 于是,振动系统的角频率为 . 所以,物体的振动周期为 . 7-4求图7-5所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。

解 以平衡位置o 为坐标原点,建立如图7-5所示的坐标系。若物体向右移动了x ,则它所受的力为 . 根据牛顿第二定律,应有 , 改写为 . 所以 , . 7-5 求图7-6所示振动装置的振动频率,已知物体的质量为m ,两个轻弹簧的劲度系数分别为k 1 和k 2。 解 以平衡位置o 为坐标原点,建立如图7-6所示的坐标系。当物体由原点o 向右移动x 时,弹簧1伸长了 x 1 ,弹簧2伸长了x 2 ,并有 . 物体所受的力为 , 式中k 是两个弹簧串联后的劲度系数。由上式可得 , . 于是,物体所受的力可另写为 , 由上式可得 , 所以 . 图 7-5 图7-6

油层物理杨胜来主编习题集答案电子版.doc

第一章储层流体的物理性质二. 计算题 1.(1)该天然气的视分子量M=18.39 该天然气的比重γg=0.634 (2)1mol该天然气在此温度压力下所占体积: V≈2.76×10-4(m3) 2.(1)m≈69.73×103(g) (2)ρ≈0.0180×106(g/m3)=0.0180(g/cm3) 3. Z=0.86 4. Bg=0.00523 5. Ng=21048.85×104(m3) 6. (1)Cg=0.125(1/Mpa) (2)Cg=0.0335(1/Mpa) 7. Z=0.84 8. Vg地面=26.273(标准米3) 9. ρg=0.2333(g/cm3) 10. ρg=0.249(g/cm3) 11. Ppc=3.87344(MPa) Pc1﹥Ppc﹥Pc2 12. (1)Z≈0.82 (2)Bg=0.0103 (3)Vg =103(m3) 地下 (4)Cg=0.1364(1/Mpa) (5)μg=0.0138(mpa﹒s) 13. Rs CO2=65(标准米3/米3) Rs CH4=19(标准米3/米3) Rs N2=4.4(标准米3/米3) 14.Rs=106.86(标准米3/米3) 15.(1)Rsi=100(标准米3/米3) (2)Pb=20(MPa) (3)Rs=60(标准米3/米3)

析出气ΔRs=40(标准米3/米3) 16. V/Vb=0.9762 17. γo=0.704(g/cm 3) 18. γo=0.675(g/cm 3) 19. Bo=1.295 20. Bt=1.283 21. Rs=71.3(Nm 3/m 3) Bo=1.317 Bg=0.00785 Bt=1.457 Z=0.854 22. P=20.684Mpa 下: Co=1.422×10—3 (1/Mpa) Bo=1.383 P=17.237Mpa 下: Bo=1.390 Bt=1.390 Rs=89.068(Nm 3/m 3) P=13.790Mpa 下: Bo=1.315 Bt=1.458 Rs=71.186(Nm 3/m 3) Bg=7.962×10—3 Z=0.878 23. 可采出油的地面体积 No=32400(m 3) 24. )/1(10034.32C 4Mpa -?= 若只有气体及束缚水 )/1(10603.169Cg 4Mpa -?= 26. Pb=23.324(Mpa )

油层物理部分练习题(附带答案)

第一章油藏流体的界面张力 一.名词解释 1.自由表面能(free surface energy):表面层分子力场的不平衡使得这些表面分子储存了多余的能量,这种能量称为自由表面能 2.吸附(adsorption):溶解于某一相中的物质,自发地聚集到两相界面层并急剧减低该界面的表面张力的现象称为吸附 3.界面张力(interfacial tension):也叫液体的表面张力,就是液体与空气间的界面张力。在数值上与比界面能相等。固体表面与空气的界面之间的界面张力,就是固体表面的自由能。 4.表面活性剂(surface active agent):指加入少量能使其溶液体系的界面状态发生明显变化的物质 二.判断题,正确的在括号内画√,错误的在括号内画× 1.表面层溶质的浓度较相内大时称正吸附。(√) 2.随界面两侧物质密度差增大,表面张力随之下降。(×) 3.表面活性剂的浓度愈高,则表面张力愈大。(√) 4.油藏条件下的油气表面张力一定小于地面条件。(√) 5.从严格定义上讲,界面并不一定是表面。(√) 6. 界面两侧物质的极性差越大,界面张力越小。(×) 三.选择题 1.若水中无机盐含量增加,则油水表面张力将,若水中表面活性物质含量增加,则油水界面张力将。 A.增加,增加 B.增加,减小 C.减小,增加 D.减小,减小( B )

2.随体系压力增加,油气表面张力将,油水表面张力将。 A.上升,上升 B.上升,下降 C.下降,上升 D.下降,下降( D ) 3.随表面活性物质浓度增加,表面张力,比吸附将。 A.上升,上升 B.上升,下降 C.下降,上升 D.下降,下降( C ) 4.在吉布斯吸附现象中,当表面活度 0,比吸附G 0,该吸附现象称 为正吸附。 A.大于,大于 B.大于,小于 C.小于,大于 D.小于,小于( C ) 4、溶解气:气体溶解度越大,界面张力越小。 2.何为表面张力?油藏流体的表面张力随地层压力,温度及天然气在原油(或水)中的溶解度的变化规律如何? 表面张力:液体表面任意二相邻部分之间垂直于它们的单位长度分界线相互作用的拉力。 变化规律:油藏流体表面张力随地层压力增大,温度升高而减小。天然气在原油中溶解度越大,油藏流体表面张力越小。 3.就你所知,测定液面表面张力的方法有哪些? 1、悬滴法 2、吊片法(又称悬片法、吊板法) 3、旋转液滴法

相关文档
最新文档