小学数学《数列规律》练习题(含答案)

合集下载

小学数学《数列规律》练习题(含答案)

小学数学《数列规律》练习题(含答案)

小学数学《数列规律》练习题(含答案)2)1,3,6,10,(),21,28,36,()观察相邻两项的差,发现第1项到第2项差为2,第2项到第3项差为3,第3项到第4项差为4,以此类推,可以得出这是一个等差数列。

所以括号中应填15,45,即10+5=15,36+9=45.3)2,1,3,4,7,(),18,29,47观察数列,发现第1项与第2项之间差为1,第2项与第3项之间差为2,第3项与第4项之间差为1,第4项与第5项之间差为3,以此类推,可以发现这个数列的规律是:奇数项与前一项差为1,偶数项与前一项差为项数。

所以括号中应填11,38,即7+4=11,29+9=38.4)1,3,9,27,(),243观察数列,发现每一项都是前一项乘以3得到的。

所以括号中应填81,即27*3=81.5)1,8,27,64,125,(),343观察数列,发现每一项都是前一项的立方加1得到的。

所以括号中应填216,即125的立方加1等于216.6)1,2,6,24,120,(),5040观察数列,发现每一项都是前一项乘以项数得到的。

所以括号中应填720,即120*6=720.7)2,1,4,3,6,9,8,27,10,()观察数列,发现前两项是倒序排列的,第3项是前两项的平方,第4项是前三项中除去最小值和最大值的数的乘积,第5项是前四项中除去最小值和最大值的数的和,以此类推。

所以括号中应填81,即27*3=81.8)1,1,1,3,5,9,17,()观察数列,发现前三项都是1,从第4项开始,每一项都是前两项之和。

所以括号中应填33,即17+16=33.可以猜想这个数列的规律为:每两项为一组,前一项是奇数,后一项是偶数,每组中的两个数分别是该组中的最方数和最小立方数,即第1组为1和2,第2组为1和4,第3组为3和8,第4组为4和27,因此,括号中应填5和125,即5是第5组中的最方数,125是第5组中的最小立方数。

另一种方法是观察相邻两项的差,可以发现,这个数列的规律为:从第3项开始,每一项都是前面两项的和,即:4=1+3,3=4-1,6=3+3,9=6+3,8=9-1,27=8+19,10=27-17,因此,括号中应填17.这个数列即不是等差数列,也不是等比数列,但是可以发现,从第三项开始每一项都等于前面两项的和,即:4=1+3,3=4-1,6=3+3,9=6+3,8=9-1,27=8+19,10=27-17,因此,括号中应填17.此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍,即:3=1×3,9=3×3,27=9×3,也就是说相邻两项之间的商相等.因此,括号中应填81,即81=27×3,代入后,243也符合规律,即243=81×3.通过观察可以发现:1=1×1×1,8=2×2×2,27=3×3×3,64=4×4×4,125=5×5×5,343=7×7×7,根据这个规律,括号中应填:6×6×6=216.这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积,因此,括号中的数为第6项720,即720=120×6.可以猜想这个数列的规律为:每两项为一组,前一项是奇数,后一项是偶数,每组中的两个数分别是该组中的最方数和最小立方数,即第1组为1和2,第2组为1和4,第3组为3和8,第4组为4和27,因此,括号中应填5和125,即5是第5组中的最方数,125是第5组中的最小立方数。

四年级思维训练4 数列(试卷+解析)

四年级思维训练4 数列(试卷+解析)

四年级思维训练4数列1.下面是一串有规律的数:9,20,33,48,65,84,…这串数中的第41个数是.2.下面是一串有规律的数:9,22,39,60,85,114,…这串数中的第30个数是.3.2008年在中国北京举办奥运会,已知第一届现在奥运会于1896年在雅典举行,其后每四年举行一次,这样北京奥运会是第届.4.下面是一串有规律的数:1,32,85,2113,5534,…这串数中的第7个数是.5.1+3=2×2;1+3+5=3×3;1+3+5+7=4×4;请问:1+3+5+…+2011=×.6.有一列正整数1、2、3、4、…、9、10、11、12、…,顺次排成123456789101112…,第11个数字是0,第15个数字是2;从第一位到第207位上所有数字和是.7.一群小朋友分一堆糖,第1个小朋友分了1块,第2个小朋友分了2块,第3个小朋友分了3块……,依次类推,后拿糖的小朋友都比他前面的小朋友多拿1块.这群小朋友刚好把这堆糖分光.如果平均分配,每个小朋友刚好分到10块糖.这堆糖共块.8.啤酒节上6个好朋皮A、B、C、D、E和F要比赛喝啤酒.比赛规则很简单,那就是每一个人都必须不断地、尽量地喝.直到不醒省人事为止,看看存倒下之前谁喝得最多.A首先退出这场比赛,他昏睡过去,成为另外五人的笑料.每人喝了3升后,B也倒在桌子下.每人又喝了3升,终于无法站立……,直到F也昏睡过去.一旁的店主替他们计算了一下:这六个人…共喝光了63升啤酒.那么,每个人各喝了几升?9.将连续正整数依下列方式分组:(1),(2,3),(4,5,6),(7,8,9,10),……其中第一组有1个数,第二组有2个数,第三组有3个数,依次类推,……请问在第30组内所有数的总和是多少?10.书店里有一套漫画书共9册,第一册需24元,第二册需23元,第三册需2 2元,依次类推,每一册的售价都比它1前面的一册要少1无.如果哆啦A梦用200元去买这套漫画书,书店老板应找他元.11.甲、乙两人同时从A地出发,其中甲每天走7公里,乙第一天走1公里,第二天走2公里,第三天走3公里,以后每一天比前一天多走1公里,请问,二人经过天所走的路程相同.12.电子跳蚤在一段标有刻度(单位:厘米)的尺上某点K,向右跳所显示的刻度越来越大,第一步从K向左跳1毫米,第二步在向右跳2毫米,第三步在向左跳3毫米,第四步在向右跳4毫米,……,按以上规律跳了100步时,电子跳蚤落在尺上的刻度所表示的数恰好是205毫米,则跳蚤开始时落在尺上点K的刻度是毫米.13.设a1、a2、a3、……、a k是K个互不相等的、大于0的自然数,而且他们的和是2006,那么K的最大值是.14.小明在计算机上从1开始,按自然数的顺序做加减法练习,先将两个数相加再减去一个数;在加两个数,减一个数,……,按这样的规律计算下去,算到第2010个数为止,小明计算最后得到的结果是.15.一串珠子共31个,正中间一个最贵,从一端算起后一个比前一个贵3元,到中间那个为止,从另一端算起后一个比前一个贵4元,到中间那个为止,这串珠子总价值2012元,那么中间的一串珠子价值元?16.2012位同学排成一列依次报数,若某位同学报的是一位数,后面一个同学就报这个同学的2倍,若某位同学报的是两位数,后面的就报其个位数字与5的和.已知第一位同学报1,到了第100位同学,他却把前面同学报的数加上了另一个一位自然数,其他人都没有注意到,仍然按以前的规律继续报数,直到最后一位同学报的数是5,那么第100位同学所报的数是把前一位同学报的数加上了.四年级思维训练4数列参考答案1.下面是一串有规律的数:9,20,33,48,65,84,…这串数中的第41个数是.【答案】2009【分析】根据规律知,20=9+11,33=9+11+13,48=9+11+13+15,因此第41个数应该有41个加数,并且是从9开始的连续奇数,所以第41个数是9+11+13+…+(9+40×2)=2009.2.下面是一串有规律的数:9,22,39,60,85,114,…这串数中的第30个数是.【答案】2010【分析】根据规律知,22=9+13,39=9+13+17,60=9+13+17+21,所以第30个数是9+13+17+…+(9+29×4)=2010.3.2008年在中国北京举办奥运会,已知第一届现在奥运会于1896年在雅典举行,其后每四年举行一次,这样北京奥运会是第届.【答案】29【分析】等差数列求项数,项数=(末项一首项)÷公差+l,(2008-1896)÷4+1=29,这样北京奥运会是第29届.4.下面是一串有规律的数:1,32,85,2113,5534,…这串数中的第7个数是.【答案】377233【分析】把每个数的分子、分母按顺序展开,得到一个类斐波那契数列:1、2、3、5、8、13、21、34、55、89、144、233、377,…233所以这串数的第7个数为3775.1+3=2×2;1+3+5=3×3;1+3+5+7=4×4;请问:1+3+5+…+2011=×.【答案】1006×1006【分析】从1开始连续n个奇数的和为n².(2011-1)÷2+1=1006,所以答案为1006×1006.6.有一列正整数1、2、3、4、…、9、10、11、12、…,顺次排成123456789101112…,第11个数字是0,第15个数字是2;从第一位到第207位上所有数字和是.【答案】921【分析】从1到99共有9+90×2=189(位)数,还有207-189=18(位)数,因此这个207位数是123…99100101102103104105,所有的数字之和为45+55+65+…+135+1×6+1+2+3+4+5=921. 7.一群小朋友分一堆糖,第1个小朋友分了1块,第2个小朋友分了2块,第3个小朋友分了3块……,依次类推,后拿糖的小朋友都比他前面的小朋友多拿1块.这群小朋友刚好把这堆糖分光.如果平均分配,每个小朋友刚好分到10块糖.这堆糖共块.【答案】190【分析】等差数列的平均数就是首项与末项的平均数,例如1到100的平均数(1+2+3+…+100)÷100=(1+100)×100÷2÷100=(1+100)÷2,所以共有10×2—1=19(个)小朋友,因此这堆糖共有19×10=190(块).8.啤酒节上6个好朋皮A、B、C、D、E和F要比赛喝啤酒.比赛规则很简单,那就是每一个人都必须不断地、尽量地喝.直到不醒省人事为止,看看存倒下之前谁喝得最多.A首先退出这场比赛,他昏睡过去,成为另外五人的笑料.每人喝了3升后,B也倒在桌子下.每人又喝了3升,终于无法站立……,直到F也昏睡过去.一旁的店主替他们计算了一下:这六个人…共喝光了6 3升啤酒.那么,每个人各喝了几升?【答案】A喝了3升,B喝了6升,C喝了9升,D喝了12升,E喝了15升,F喝了18升.【分析】第一次六人共喝了63—3×5—3×4—3×3—3×2—3=18(升),所以A喝了18÷6=3(升),B喝了3+3=6(升),C喝了6+3=9(升),D喝了9+3=12(升),E喝了12+3=15(升),F喝了15+3=18(升).9.将连续正整数依下列方式分组:(1),(2,3),(4,5,6),(7,8,9,10),……其中第一组有1个数,第二组有2个数,第三组有3个数,依次类推,……请问在第30组内所有数的总和是多少?【答案】13515【分析】第30组的第一个数是1+1+2+3+…+29=436,因此第30组内所有数之和(436+436+29)×30÷2=13515.10.书店里有一套漫画书共9册,第一册需24元,第二册需23元,第三册需22元,依次类推,每一册的售价都比它1前面的一册要少1无.如果哆啦A梦用200元去买这套漫画书,书店老板应找他元.【答案】20【分析】第九册应为24-8=16(元),九册共需(24+16)×9÷2=180(元),因此书店老板应找他200-180=20(元).11.甲、乙两人同时从A地出发,其中甲每天走7公里,乙第一天走1公里,第二天走2公里,第三天走3公里,以后每一天比前一天多走1公里,请问,二人经过天所走的路程相同.【答案】13【分析】甲n天走的路程为7n乙行天走的路程为(l+n)×n÷27n=(l+n)×n÷2,解得n=13.12.电子跳蚤在一段标有刻度(单位:厘米)的尺上某点K,向右跳所显示的刻度越来越大,第一步从K向左跳1毫米,第二步在向右跳2毫米,第三步在向左跳3毫米,第四步在向右跳4毫米,……,按以上规律跳了100步时,电子跳蚤落在尺上的刻度所表示的数恰好是205毫米,则跳蚤开始时落在尺上点K的刻度是毫米.【答案】155【分析】倒推分析,跳第100步前的刻度是205—100,跳第99步前的刻度是205—100+99,因此跳第一步前的刻度是205-100+99-98+97—…—2+1=205—(100—99)—(98-97)—…一(2-1)=205-50=155,因此电子跳蚤开始时落在尺上的某点K的刻度表示是155毫米.13.设a1、a2、a3、……、a k是K个互不相等的、大于0的自然数,而且他们的和是2006,那么K的最大值是.【答案】62【分析】首先,这列数最好从1开始;其次,将各数从小到大排列,如果相邻两数之间相差越大,后面的数就会增长越快,则k值会越小.要使k值越大,则各数之间的差距要尽量小,那么前面的数是从1开始的连续自煞数.经尝试:(1+62)×62÷2=1953,(1+63)×63÷2=2016可见是最大为62.(例如1+2+3+…+61+115=2006)14.小明在计算机上从1开始,按自然数的顺序做加减法练习,先将两个数相加再减去一个数;在加两个数,减一个数,……,按这样的规律计算下去,算到第2010个数为止,小明计算最后得到的结果是.【答案】672345【分析】1+2-3+4+5-6+…+2008+2009-2010=(3+2007)×669÷2=67234515.一串珠子共31个,正中间一个最贵,从一端算起后一个比前一个贵3元,到中间那个为止,从另一端算起后一个比前一个贵4元,到中间那个为止,这串珠子总价值2012元,那么中间的一串珠子价值元?【答案】92【分析】将所有珠子的价钱都变成和正中间最贵的那个一样.则这串珠子总价钱应该是:2012+(3+6+9+…+45)+(4+8+12+…+60)=2852(元).所以中间的一颗珠子价值是2852÷31=92(元).16.2012位同学排成一列依次报数,若某位同学报的是一位数,后面一个同学就报这个同学的2倍,若某位同学报的是两位数,后面的就报其个位数字与5的和.已知第一位同学报1,到了第100位同学,他却把前面同学报的数加上了另一个一位自然数,其他人都没有注意到,仍然按以前的规律继续报数,直到最后一位同学报的数是5,那么第100位同学所报的数是把前一位同学报的数加上了.【答案】8【分析】首先按照正确的报法找规律:1、2、4、8、16、11、6、12、7、14、9、18、13、8、16、…发现除了前3位同学外,后面同学报的数每10个一周期,(99-3)÷10一9……6,则第99个同学报的是7.根据最后一人报的是5,往前倒推,应该是5、10、5、10、…、正数第100位同学是倒数第奇费数个,按理应该是报5,但7加一个一位自然数不可能是5,所以第100位同学报的数其实是15,是在前一人(第99个人)的基础上加了8.11。

小学数学《数列规律》练习题(含答案)

小学数学《数列规律》练习题(含答案)

小学数学《数列规律》练习题(含答案)日常生活中,我们经常接触到许多按一定顺序排列的数,如:(1)自然数:1,2,3,4,5,6,7, (1)(2)年份:1990,1991,1992,1993,1994,1995,1996(3)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项是45.根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列.(一)找数列中的规律【例1】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)100,88,76,64,52,(),28(2)1,3,6,10,(),21,28,36,()(3)2,1,3,4,7,(),18,29,47(4)1,3,9,27,(),243(5)1,8,27,64,125,(),343(6)1,2,6,24,120,(),5040(7)2, 1, 4, 3, 6, 9, 8, 27, 10,()(8)1,1,1,3,5,9,17,()分析:(1) 100,88,76,64,52,(),28通过观察不难发现,从第2项开始,每一项都比它前面一项少12,也就是说每相邻两项所得的差都等于12.因此,括号中应填的数是40,即:52-12=40.像(1)这样,相邻两项之间的差是定值,我们把这样的数列叫做等差数列.(2) 1,3,6,10,(),21,28,36,()(方法一)先计算相邻两数的差,有:3-1=2,6-3=3,10-6=4 ,……,28-21=7,36-28=8,……由此可以推知这些差一次为2、3、4、5、6……,所以这列数从小到大地排列规律是相邻两数的差按2、3、4、5、6……增加,括号里应填15,45,即10+5=15,36+9=45.(方法二)继续考察相邻项之间的关系,可以发现:因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即 45=36+9.代入验算,正确.(方法三)这一列数还有如下的规律:第1项:1=1,第2项:3=1+2,第3项:6=1+2+3,第4项:10=1+2+3+4,第6项:21=1+2+3+4+5+6,……即这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,第5项为15,即:15=1+2+3+4+5;第9项为45,即:45=1+2+3+4+5+6+7+8+9.(3) 2,1,3,4,7,(),18,29,47这个数列即不是等差数列,也不是等比数列,但是可以发现,从第三项开始每一项都等于前面两项地和,即:3=1+2,4=1+3,7=3+4,……,47=18+29,所以括号中的数应该是:4+7=11(4) 1,3,9,27,(),243此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3,27=9×3,也就是说相邻两项之间的商相等.因此,括号中应填 81,即81= 27×3,代入后, 243也符合规律,即 243=81×3.像(4)这样,相邻两项之间的商是定值,我们把这样的数列叫做等比数列.(5)1,8,27,64,125,(),343通过观察可以发现: 1=1×1×1,8=2×2×2,27=3×3×3,64=4×4×4,125=5×5×5,343=7×7×7,根据这个规律,括号中应填:6×6×6=216我们把这样的数列叫做立方数列,即每一项等于其项数乘以项数再乘以项数.(6)1,2,6,24,120,(),5040(方法一)这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即720=120×6.(方法二)本题也可以考虑连续自然数,显然:第1项 1=1,第2项2=1×2,第3项6=1×2×3,第4项24=1×2×3×4,……,所以,第6项应为1×2×3×4×5×6=720(7) 2, 1, 4, 3, 6, 9, 8, 27, 10,()。

数列规律三年级奥数题及答案

数列规律三年级奥数题及答案

数列规律三年级奥数题及答案
编者导语:数学竞赛题代表了活的数学。

解竞赛题虽离不开一般的思维规律,离不开数学知识,也有一些使用频率较大的方法和技巧。

希望数学网的三年级奥数题及参考答案:数列规律,可以帮助到你们,一分耕耘一分收获,相信大家通过自己的努力,一定能够取得优异的!!
标有A,B,C,D,E,F,G记号的7盏灯顺次排成一行,每盏灯各安装着一个开关。

现在A,C,D,G这4盏灯亮着,其余3盏灯是灭的。

小方先拉一下A开关,然后拉B,C,…,直到G的开关各一次,接下去再按从A到G顺序拉动开关,并依此循环下去。

他这样拉动了1990次后,亮着的灯是哪几盏?
如果一个灯的开关被拉了2下,那么,这个灯原来是状态,还应该是什么状态,即原来亮着的还亮着,原来不亮的还是不亮。

现在共有7盏灯,每个拉2次的话就是14次。

也就是说,每拉14下,每个灯都和原来的情况一样。

1990/14=142......2,说明,拉1990次就相当于只拉了2次,那么就应该是A和B各被拉了一下。

A原来亮着,现在变灭;B原来不亮,现在变亮。

所以,拉1990次后亮着的灯应该有:B、C、D、G。

小学奥数---简单数列中的规律专项练习30题(有答案)

小学奥数---简单数列中的规律专项练习30题(有答案)

第6讲 简单数列中的规律30题(有答案)1.在数列1×2、2×3、3×4、4×5、…、99×100中,第6个数是( )A . 42B . 56C . 722. 1、3、5、 _________ 、9 (1.2.3)、(2.4.6)、(3.6.9)…第8组的三个数的和是 _________ .3.在下面的横线上填数,使这列数有某种规律.是3、5、7、 _________ 、 _________ 、 _________ ;你所填的数的规律是 _________ .4.根据规律填数或者划出适当的图形.(1)3,20;5,40;7,80; _________ , _________ .(2)4,6,10,16,26, _________ , _________(3)16,25, _________ ,49,64, _________ .(4)□○△→△□○→○△□→ _________ .5.找规律填数:100,81,64,49,36 _________ , _________ ,9.6.按规律在括号里填上适当的数.(1)1、15、3、13、5、11、 _________ 、 _________ .(2)198、297、396、 _________ 、 _________ .(3)21、4、18、5、15、6、 _________ 、 _________ .7.根据规律填数①30,28,26, _________ , _________ , _________ ;②1,3,6, _________ , _________ ;③15,20,25, _________ , _________ , _________ .8.寻找规律:1,4,9,16, _________ , _________ .9.找规律填后面的数:1,4,9,16, _________ ,36, _________ , _________ , _________ . 2,3,5,8, _________ ,21, _________ , _________ .10.(1)1,4,9,16, _________ ,36,49;(2)11.找规律填数:2 5 11 23 47 _________ .5 6 7 774 5 6 5412.按规律填空.(1)1,5,9,_________,17,21,_________,29.(2)2,4,6,10,16,_________,_________.(3)13.找规律填数.(1)5243,2435,4352,_________.(2)987,877,767,_________,_________.(3)2,5,11,23,_________,95.14.下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9 ),(2,8,18),(3,12,27)那么第50个数组内三个数是(_________,_________,_________)15.请认真观察下列数字的排列规律,并填最后一行.11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11_____________________________________________1.16.按规律填数(1)2,8,32,_________,_________(2)1,3,6,10,_________,21,28,36,_________(3)21×9=189321×9=28894321×9=3888954321×9=_________.17.找规律,在括号内填入适当的数.0,1,3,8,21,55,_________,_________.18.按规律填数:1,2,3,6,11,_________,37,68,…19.找规律,在括号内填入适当的数.1,6,7,12,13,18,19,_________,_________.20.找规律填数①2 5 8 11_________17②1 2 4 7 11_________③48 24 12_________ 3④(1,3),(2,6),(3,9),_________,_________.⑤1,2,3,7;2,3,4,14;3,4,5,_________.21.按一定的规律在括号中填上适当的数:(1)1,2,4,8,16,_________,_________,128,256(2)1,9,2,8,3,_________,4,6,5,5(3)1,8,27,64,125,_________,343.22.按规律填数.2、7、17、32、52、_________、107.23.按规律填数.(1)1,4,9,16,_________,36,_________.(2)7,2,5,2,3,2,_________,_________(3)3,8,18,33,53,_________,_________.(4)15,6,13,7,11,8,_________,_________.(5)2,5,11,23,47,_________,_________.24.按规律填数(1)1,4,7,10,_________,_________,19.(2)1,2,2,4,3,8,_________,_________.(3)0,1,4,9,_________,25,_________.(4)0,1,1,2,3,5,8,_________.(5)2,6,18,54,_________,_________.25.找规律:57、69、84、96、_________、114.26.1,1,2,3,5,8,_________,21,_________,….27.观察规律填空.86、70、62、_________、_________、5519、109、1009、_________、_________、_________.28.29._________、_________、72199、73199、_________、_________.30.按规律填数5,11,23,47,_________,…参考答案:1.由题意得:第6个算式是:6×7=42.故选:A.2.(1)5+2=7;要求的数是7;(2)6×8=48;第8组数的和是48.故答案为:7,48.3.由分析得出:3、5、7、9、11、13;所填的数的规律是:按照顺序写奇数.故答案为:9、11、13;按照顺序写奇数.4.(1)7+2=9,80×2=160;(2)16+26=42,26+42=68;(3)25+11=36,64+17=81;(4)□○△故答案为:9,160,42,68,36,81,□○△5.52=5×5=25;42=4×4=16;所以后两个数是25,16.故答案为:25,16.6.(1)5+2=7,11﹣2=9;(2)396+99=495,495+99=594;(3)15﹣3=12,6+1=7.故答案为:7,9;495,594;12,7.7.根据分析,这几个数列分别是:①30,28,26,24,22,20;②1,3,6,10,15;③15,20,25,30,35,40.故答案为:①24,22,20,②10,15,③30,35,408.寻找规律:1,4,9,16,25,36.9.找规律填后面的数:1,4,9,16,25,36,49,64,81.2,3,5,8,13,21,34,55.10.(1)1,4,9,16,25,36,49;(2)第三组是:前三个数是:6,7,8;第四个数是:(6+7)×8=104;第四组是:前三个数是:7,8,9;第四个数是:(7+8)×9=135;故答案为:25;6,7,8,104;7,8,9,13511.47+24×2=47+48=95;故答案为:9512.(1)1,5,9,13,17,21,25,29.(2)2,4,6,10,16,26,42.(3)4×1÷2=2;即:13.(1)把4352最高位上的数字移到最后,就是:3524;这个数是3524;(2)767﹣110=657;657﹣110=547;这两个数是547.(3)23+12×2=23+24=47;故答案为:3524,657,547,47.14.下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9 ),(2,8,18),(3,12,27)那么第50个数组内三个数是(50,200,450)15.1+5=6,5+10=15,10+10=20,10+5=15,5+1=6,故答案为:6,15,20,15,616.按规律填数(1)2,8,32,128,512(2)1,3,6,10,15,21,28,36,45(3)21×9=189321×9=28894321×9=3888954321×9=488889.17.找规律,在括号内填入适当的数.0,1,3,8,21,55,144,377.18.按规律填数:1,2,3,6,11,20,37,68,…19.找规律,在括号内填入适当的数.1,6,7,12,13,18,19,24,25.20.找规律填数①2 5 8 111417②1 2 4 7 1116③48 24 126 3④(1,3),(2,6),(3,9),(4,12),(5,15).⑤1,2,3,7;2,3,4,14;3,4,5,28.21.按一定的规律在括号中填上适当的数:(1)1,2,4,8,16,32,64,128,256(2)1,9,2,8,3,7,4,6,5,5(3)1,8,27,64,125,216,343.22.按规律填数.2、7、17、32、52、77、107.23.按规律填数.(1)1,4,9,16,25,36,49.(2)7,2,5,2,3,2,1,2(3)3,8,18,33,53,78,108.(4)15,6,13,7,11,8,9,9.(5)2,5,11,23,47,95,191.24.按规律填数(1)1,4,7,10,13,16,19.(2)1,2,2,4,3,8,4,16.(3)0,1,4,9,16,25,36.(4)0,1,1,2,3,5,8,13.(5)2,6,18,54,162,486.25.找规律:57、69、84、96、102、114.26.1,1,2,3,5,8,13,21,34,….27.观察规律填空.86、70、62、58、56、5519、109、1009、10009、100009、1000009.28.11+7=18;32+7=39;39+7=46;53+7=60;数轴如下:29.70199、71199、72199、73199、74199、75199.30.24×2=48;48+47=95;要填的数是95.故答案为:95。

小学数学奥林匹克辅导及练习找出数列的排列规律(二)(含答案)-.doc

小学数学奥林匹克辅导及练习找出数列的排列规律(二)(含答案)-.doc

找出数列的排列规律(二)这一讲我们利用前面学习的等差数列有关知识和找规律的思想方法,解决数学问题。

(一)例题指导例1. 如果按一定规律排出的加法算式是3+4,5+9,7+14,9+19,11+24,……,那么第10个算式是()+();第80个算式中两个数的和是多少?分析与解:第一个加数如下排列:3,5,7,9,11……,这是一个等差数列,公差是2,第二个加数排列如下:4,9,14,19,24,……,这也是一个等差数列,公差是5。

根据等差数列的通项公式可以分别求出第10个算式的两个加数。

所以第10个算式是。

要求第80个算式的和,只要求出第80个算式的两个加数,再相加即可,当然也可以找一找和的规律。

想一想:第几个加法算式中两个数的和是707?例2. 有一列数:1,2,3,5,8,13,……,这列数中的第200个数是奇数还是偶数?分析与解:要想判断这列数中第200个数是奇还是偶,必须找出这列数中奇、偶数的排列规律。

不难看出,这列数是按照“奇偶奇”的顺序循环重复排列的,即每过3个数循环一次。

那么到第200个数一次循环了66次还余2。

这说明到第200个数时,已做了66次“奇偶奇”的循环,还余下2个数。

也就是说余下的两个数依次为“奇偶”,所以第200个数是偶数。

例3. 下面的算式是按某种规律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……问:(1)第1998个算式是()+();(2)第()个算式的和是2000。

分析与解:(1)第1个加数依次为1、2、3、4,1、2、3、4……每4个数循环一次,重复出现。

,所以第1998个算式的第1个加数是2。

第二个加数依次为1,3,5,7,9,11……是公差为2的等差数列。

根据等差数列的通项公式可求出第1998个算式的第2个加数为,所以第1998个算式是。

(2)由于每个算式的第二个加数都是奇数,所以和是2000的算式的第1个加数一定是奇数,不会是2和4。

三年级上册数学试题-奥数.杂题.数列规律(C级)沪教版(2015)(含答案)

三年级上册数学试题-奥数.杂题.数列规律(C级)沪教版(2015)(含答案)

一、数列的定义按一定次序排列的一列数就叫做数列;数列中每个数都叫做这个数列的项,其中的第一个数称为这个数列的第1项,第2个数称为第2项,第n个数称为第n项。

根据数列中项的个数分类,把项数有限的数列(即有有穷多个项的数列)称为有穷数列;把项数无限的数列(即有无穷多个数的数列)称为无穷数列。

研究数列的目的是为了发现其中的内在规律,以作为解决问题的依据。

【诀窍】1,比较简单的数列,一般从相邻两数的和差积商中找规律,稍复杂的数列,要全方位入手,把数列合理地拆分成为几部分,分别考察,还要把每个数与项数之间联系起来考虑。

2,图形中的数在图形中所处的位置,往往与它们之间的变化规律有关,需要仔细进行分析,才能找到规律;3,由若干数组组成的数列,要分别找出数组中各位商数的规律,然后再按题目要求求解。

【注意】通过观察数表中的已知数据,发现规律并进行补填与计算的问题.这里要注意数表结构的差异,它们通常是按行、按列、沿斜线或螺旋线逐步形成的.涉及小数的,或与其他方面知识相综合的数列问题.二、等差数列的定义⑴先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大 3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小 5 ,递减数列⑵首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示;和:一个数列的前n 项的和,常用n S 来表示.三、等差数列的相关公式(1)三个重要的公式①通项公式:递增数列:末项首项(项数1)公差,11n a a n d ()递减数列:末项首项(项数1)公差,11na a n d()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d (),nm ()②项数公式:项数(末项首项)公差+1由通项公式可以得到:11n n a a d () (若1n a a );11n n a a d () (若1n a a ).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145项,每组3个数,所以共45315组,原数列有15组.当然还可以有其他的配组方法.③求和公式:和=(首项末项)项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 123989910011002993985051共50个101()()()()101505050(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101和=1+和倍和即,和(1001)1002101505050(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:①48123236436922091800(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209;②65636153116533233331089(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333.四、图形规律找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化. 对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.注:找规律问题,答案并不唯一,只要言之成理即可!一、图形规律处画出合适的图形。

二上数学每日一练:数列中的规律练习题及答案_2020年综合题版

二上数学每日一练:数列中的规律练习题及答案_2020年综合题版

二上数学每日一练:数列中的规律练习题及答案_2020年综合题版答案解析答案解析答案解析答案解析答案解析2020年二上数学:数的认识及运算_探索规律_数列中的规律练习题
1.
(2020通榆.二上期末) 按规律填数。

(1) 1时半,1时45分,,2时15分,2时半
(2) 12,18,24,,36,
考点: 数列中的规律;时、分的认识及换算;2.
(2020青岛.二上期末) 按规律填数
(1) 14、21、、、42
(2) 54、、36、30、24
考点: 6的乘法口诀及应用;7的乘法口诀及应用;数列中的规律;3.
(2020武城.二上期末) 按规律填数
(1) 7,14,21,,
(2) 64,56,48,,
考点: 数列中的规律;4.
(2020龙华.二上期中) 找规律填数。

(1) 36,,28,,,16。

(2) ,15,,25,,35。

考点: 数列中的规律;5.
(2020兴化.二上期中) 找规律填数。

(1) 3,6,9,,,;
(2) 1,4,9,,,。

考点: 数列中的规律;2020年二上数学:数的认识及运算_
探索规律
_数列中的规律练习题答案
1.
答案:
2.
答案:
3.答案:
4.答案:
5.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学《数列规律》练习题(含答案)日常生活中,我们经常接触到许多按一定顺序排列的数,如:(1)自然数:1,2,3,4,5,6,7, (1)(2)年份:1990,1991,1992,1993,1994,1995,1996(3)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项是45.根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列.(一)找数列中的规律【例1】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)100,88,76,64,52,(),28(2)1,3,6,10,(),21,28,36,()(3)2,1,3,4,7,(),18,29,47(4)1,3,9,27,(),243(5)1,8,27,64,125,(),343(6)1,2,6,24,120,(),5040(7)2, 1, 4, 3, 6, 9, 8, 27, 10,()(8)1,1,1,3,5,9,17,()分析:(1) 100,88,76,64,52,(),28通过观察不难发现,从第2项开始,每一项都比它前面一项少12,也就是说每相邻两项所得的差都等于12.因此,括号中应填的数是40,即:52-12=40.像(1)这样,相邻两项之间的差是定值,我们把这样的数列叫做等差数列.(2) 1,3,6,10,(),21,28,36,()(方法一)先计算相邻两数的差,有:3-1=2,6-3=3,10-6=4 ,……,28-21=7,36-28=8,……由此可以推知这些差一次为2、3、4、5、6……,所以这列数从小到大地排列规律是相邻两数的差按2、3、4、5、6……增加,括号里应填15,45,即10+5=15,36+9=45.(方法二)继续考察相邻项之间的关系,可以发现:因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即 45=36+9.代入验算,正确.(方法三)这一列数还有如下的规律:第1项:1=1,第2项:3=1+2,第3项:6=1+2+3,第4项:10=1+2+3+4,第6项:21=1+2+3+4+5+6,……即这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,第5项为15,即:15=1+2+3+4+5;第9项为45,即:45=1+2+3+4+5+6+7+8+9.(3) 2,1,3,4,7,(),18,29,47这个数列即不是等差数列,也不是等比数列,但是可以发现,从第三项开始每一项都等于前面两项地和,即:3=1+2,4=1+3,7=3+4,……,47=18+29,所以括号中的数应该是:4+7=11(4) 1,3,9,27,(),243此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3,27=9×3,也就是说相邻两项之间的商相等.因此,括号中应填 81,即81= 27×3,代入后, 243也符合规律,即 243=81×3.像(4)这样,相邻两项之间的商是定值,我们把这样的数列叫做等比数列.(5)1,8,27,64,125,(),343通过观察可以发现: 1=1×1×1,8=2×2×2,27=3×3×3,64=4×4×4,125=5×5×5,343=7×7×7,根据这个规律,括号中应填:6×6×6=216我们把这样的数列叫做立方数列,即每一项等于其项数乘以项数再乘以项数.(6)1,2,6,24,120,(),5040(方法一)这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即720=120×6.(方法二)本题也可以考虑连续自然数,显然:第1项 1=1,第2项2=1×2,第3项6=1×2×3,第4项24=1×2×3×4,……,所以,第6项应为1×2×3×4×5×6=720(7) 2, 1, 4, 3, 6, 9, 8, 27, 10,()。

分析:通过观察发现,前面的方法都不适用于这个数列,但是如果隔着看这个数列中的一些数是非常有规律的,如:3,8,13,18,而他们恰好是第一项、第三项、第五项、第七项,所以不妨把数列分为奇数项(即第1,3,5,7,9项)和偶数项(即第2,4,6,8项)来考虑,把数列按奇数和偶数项重新分组排列如下:把数列分为奇、偶项:偶数项:2,4,6,8,10奇数项:1,3,9,27,().所以,偶数项为等差数列,奇数项为等比数列,括号中应填81(81=27×3).像这样的数列,每个数列中都含有两个系列,这两个系列的规律各不相同,类似这样的数列,称为双系列数列或双重数列.(8) 1,1,1,3,5,9,17,()可以发现, 3=1+1+1,5=1+1+3,9=1+3+5,从第四个数起,每一个数都等于前三个数的和,可知需填补的数字为: 5+9+17=31 , 9+17+31=57本题考虑的是相邻四个数的直接关系,这一类题都是考虑后面一个数字与前面几个数字地共同关系,由于前面几个数字可以进行的运算方式有很多,所以这种题型的变化方式也很多.【例2】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)4+2,5+8,6+14,7+20,(),……(2)(1,2,100),(2,4,90),(3,8,80),(4,16,70),()(3)1×3,2×2,1×1,2×3,1×2,2×1,1×3,()分析:(1)4+2,5+8,6+14,7+20,(),……这排加法算式,前面一个数构成数列:4,5,6,7,……;后一个数构成数列:2,8,14,20,…….对于数列4,5,6,7,……,由观察得知,第2项等于第1项加上1,第3项等于第1项加上2,第4项等于第1项加上3,……,所以第5项等于第1项加上4,即4+4=8.同理,数列:2,8,14,20,……,第2项等于第1项加上1×6,第3项等于第1项加上2×6,第4项等于第1项加上3×6,……,所以第5项等于第1项加上4×6,即2+4×6=26.所以,括号里应填8+26.(2)(1,2,100),(2,4,90),(3,8,80),(4,16,70),()观察这个数列中每一组中对应位置上的数字,可以得到如下规律:每组第一个是1、2、3、4、......这是一个自然数列,第二个是2、4、8、16、......,这是一个等比数列,第三个100、90、80、70......,这是一个递减的等差数列;所以,第5组中的数应该是:5,16×2,70-10,即第五组的括号中应填(5,32,60).(3)1×3,2×2,1×1,2×3,1×2,2×1,1×3,()这是一排乘法算式,观察可以发现,前面一个数的规律是:1,2,1,2,1,2,1……;后一个数的规律是:3,2,1,3,2,1,3,……,对于第一个数列,是由1、2两个数字循环组成的,所以第八项应为2;对于第二个数列,是由3、2、1循环组成的,所以第八项的第二个数字应为2.所以,括号里应填2×2.【例3】建筑工人将一堆木头堆成如图的形状,你知道如果按这样的方法堆木头,一共堆15层的话,第15层有多少根?分析:通过观察这堆木头可以发现,最上面的一层有1根木头,第二层有2根,第三层有3根,第四层有4根,……我们可以将这道题转化一下,有一组数:1,2,3,4,5,6,……问第十五层有多少根,也就是求这组数中第十五个数是什么,通过我们刚刚学过的我们知道,这是一个等差数列,第十五项为15,也就是第十五层有15根木头.[拓展]小海喜欢收集小木棒,并将它们按下图的形状摆放在书桌上,最底下一层小海摆放了27根小木棍,接着摆放了26根,以此类推,到最后小海发现最上面一层只放了3根小木棒后就没有了,你知道小海一共收集了多少根小木棒吗?分析:通过读题我们知道,小海的这堆小木棒摆放有一定的规律:第一层:3,第二层:4,第三层:5,第四层:6,……,最后一层:27,通过观察可以得出,这一列数构成等差数列,问小海一共有多少小木棒,也就是将每层小木棒的数目加起来的和,即:3+4+5+6+7+8+9+10+11+…+25+26+27=(27+3)+(26+4)+……+(16+14)+15=30×12+15=375,所以,小海一共收集了375根小木棒.【例4】 下面的各算式是按规律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是2008?分析:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数. 因为2008是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为2008-1=2007,2007是第(2007+1)÷2=1004项,而数字1始终是奇数项,两者不符, 所以这个算式是3+2005=2008,是(2005+1)÷2=1003个算式.[拓展]观察下面的算式:4×2,5×4,6×6,4×8,5×10,6×12,4×14,5×16,……其中第多少个算式的结果是2008?分析:每个式子都是两个数相乘,第一个数是4、5、6的循环,第二个数是从2开始的连续偶数.因为2008只能被4整除,所以第一个数只能是4,2008÷4=502,所以第二个数是502,502是第502÷2=251项,所以2008是第251个算式的结果.(二)特殊数列中的规律【例5】 仔细观察下面的数表,找出规律,然后补填出空缺的数字.(1)?94655751987239436(2)520181194712()61010682分析:(1)通过观察前两个三角形中的数,可以发现:39=(3+4+6)×3,57=(2+8+9)×3,即中间数= 周围三数之和×3,所以第三个三角形最中间的数应为:(5+6+4)×3=45,最后一个三角形中要填地数为51÷3-(7+9)=1.(2)这个数表的规律是:第二行的数等于相应的第三行的数与第一行的数的差的2倍.即:8=2×(6—2),10=2×(10—5),4=2×(9—7),18=2×(20—11).因此,括号内填12.[拓展]表1、表2是按同一规律排列的两个方格表.那么表2方格中应填的数是多少?分析:从表1的行与列两个方面寻找填数的规律,从24=4×6可得,第一行最左边的数等于其余两数的乘积,第一列最上面的数等于其余两数的乘积;从4=2+2,6=2+4可得,第二行最左边的数等于其余两数的和,第二列最上面的数等于其余两数的和;从6=4+2,4=2+2可得,第三行、第三列的规律与第二行、第二列相同,根据这一规律,可得“?”处应填3(5-2=3).【例6】 右图中各个数之间存在着某种关系.请按照这一关系求出数a 和b .分析:图中5个圆、10个数字,其中5个数字是只属于某一个圆本身的,5个数字是每两个圆相重叠的公共区域的,观察发现:10+20=15×2,20+40=30×2,也就是说两圆重叠部分的公共区域的数字2倍,正好等于两圆独有数字之和,所以,a=2×17-10=24,b=(16+40)÷2=28.最后验算一下:20×2-16=24,符合.[拓展]下图中各个数之间存在着某种关系.请按照这一关系求出数a 和b分析:仔细观察图形,圆内一个五角星,将圆分成11块,观察发现,42+6+12=60=20×3,33+6+21=60=20×3,从而得出规律,a=(12+6+21)÷3=13,b=16×3-(33+6)=9,代入验算,6+9+42=57=19×3.【例7】 先观察下面各算式,再按规律填数.(1)1×9+2=11 (2) 21×9=18912×9+3=111 321×9=2889 123×9+4=1111 4321×9=38889 12345×9+6=_________ 54321×9=( ) 1234567×9+____=___________ 654321×9=( )分析:(1)在这一组算式中,得数都是由若干个“1”组成的.1的个数恰好是后面的加数.如1×9+2,后面的加数是2,结果中也就有2个1.根据这一规律,12345×9+6的结果是由6个1组成,即111111.最后一个算式应当是1234567×9+8=11111111.(2)通过观察可以看出这是一组排列有序的数字“梯田”,一层一层有规律的向下延伸.乘号前面是21、321、4321,乘号后面都是9,相乘的答案的最高位分别是1、2、3,而位数分别是三位数、四位数、五位数.由此可得:54321×9的最高位是4,位数是5+1=6,个位上都是9,其余各位都是8;654321×9的最高位是5,个位是9,其余各位都是8,位数是6+1=7.所以,54321×9=488889,654321×9=5888889.(三) 数阵中数列的规律【例8】 用数字摆成右面的三角形,请你仔细观察后回答下面的问题:(1) 这个三角阵的排列有何规律? (2) 根据找出的规律写出三角阵的第6行、第7行. (3) 推断第10行的各数之和是多少?2040301615201017b a分析:(1)首先可以看出,这个三角阵的两边全由1组成;其次,这个三角阵中,第一行由1个数组成,第2行有两个数…第几行就由几个数组成;最后,也是最重要的一点是:三角阵中的每一个数(两边上的数1除外),都等于上一行中与它相邻的两数之和.如:2=1+1,3=2+1,4=3+1, 6=3+3.(2)根据由(1)得出的规律,可以发现,这个三角阵中第6行的数为1,5,10,10,5,1;第7行的数为1,6,15,20,15,6,1.(3)要求第10行的各数之和,我们不妨先来看看开始的几行数. 第一行 1=1第二行 1+1=21第三行 1+2+1=22第四行 1+3+3+1=23第五行 1+4+6+4+1=24第六行 1+5+10+10+5+1=25其中,n2表示n个2相乘,即n 2222⨯⨯⨯个 ,n为自然数通过观察可以看出,每一行中n2中的n都等于行数减去1,至此,我们可以推断,第10行各数之和为29=512.[小知识]本题中的数表就是著名的杨辉三角,这个数表在组合论中将得到广泛的应用.杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和. 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页. 杨辉,字谦光,北宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.[拓展]右图是按一定的规律排列的数学三角形,请问第10行第三个数是多少?分析:仔细观察左起第一个数的变化规律:第一行第一个数:1,第二行第一个数:1+1,第三行第一个数:1+1+2,第四行第一个数:1+1+2+3,第五行第一个数:1+1+2+3+4,所以第十行左起第一个数是:1+1+2+3+4+5+6+7+8+9=46这个数字三角形的每一行都是等差数列(第一行除外),所以,第10行第三个数是48.【例9】 自然数如下表的规律排列(1) 求上起第10行,左起第7个数. (2) 87在上起第几行,左起第几列?分析:(1)注意观察这个数表第一列数的排列规律,这些数是:1,4,9,16,25,…,这些数有一个共同特点,它们是每一行序数自己与自己相乘的积,所以,第10行左起第一个数是:10×10=100,而且从第三行开始,每一行的前几个数字都依次递减,所以第10行左起第7个数是:100-6=94.(2)注意数阵中几个数的变化规律是按从上到下拐弯向左的方向依次增加1,因为87=9×9+6,,所以,87在第6行左起第1个数后面9个,也就是第6行左起第10个.[巩固]自然数按-定的规律排列如下:从排列规律可知,99排在第行第列.分析:观察图表可知:第 1行的数字:1=1×1,4=2×2,9=3×3,16=4×4,25=5×5,……,所以第1行第10列是10×10=100.因为从第三列开始,每一列的前几个数字都依次递减,100的下面一行是99,所以99在第 2行第 10列.【例10】毕达哥拉斯是个大数学家,有一次他正要出门拜访朋友,发现一个仆人不干活,躲在门外玩,于是,毕达哥拉斯命令这个仆人:“你看对面神庙共有七根柱子,现在你从左到右开始数,然后返回来接着数,我回来的时候你要告诉我第5000根柱子是哪一根!”这个仆人很聪明,他用不到一分钟的时间就得到了答案,你能做到吗?分析:转化为数学模型如下:A B C D E F G12345671312111098141516171819 (20)考虑到数表中的数呈S形排列,我们不妨把每两行分为一组,除去1,每组12个数,则按照组中数字从小到大的顺序,它们所在的列分别为B、C、D、E、F、G、F、E、D、C、B、A.因此,我们只要考察5000是第几组中的第几个数就可以了,因为5000是除去1后的第4999个数,4999÷13=384…7,即5000是第385组中的第7个数,所以,第5000根柱子位于F位置,是从左到右的第6根.[巩固]按图所示的顺序数数,问当数到1500时,应数到第几列?分析:(方法一)把数表中的每两行分为一组,则第一组有9个数,其余各组都只有8个数.有:(1500-9)÷8=186……3,所以,1500位于第188组的第3个数,即1500位于第④列.(方法二)考虑除以8所得的余数.第①列除以8余1,第②列除以8余2或是8的倍数,第③列除以8余3或7,第④列除以8余4或6,第⑤列除以8余5;而1500÷8=187……4,则1500位于第④列. 当数到2007时,它在哪一列呢?分析:(方法1)(2007—9)÷8=249……6,2007位于第251组的第6个数,2007位于第③列.(方法2)2007÷8=250……7,则2007位于第③列,[拓展]从1开始的自然数按图所示的规则排列,并用一个平行四边形框出九个数,能否使这九个数的和等于(1)2008;(2)2007;(3)1989.若能办到,请写出平行四边形框内的最大数和最小数;若不能办到,说明理由.分析:先来看这九个数的和有什么规律.仔细观察,容易发现:12+28=2×20,13+27=2×20,14+26=2×20,19+21= 2 × 20,即: 20是框中九个数的平均数.因此,框中九个数的和等于20与9的乘积.事实上,由于数表排列的规律性,对于任意由这样的平行四边形框出的九个数来说,都有这样的规律,即这九个数的和等于平行四边形正中间的数乘以9。

相关文档
最新文档