湘教版九年级上册数学期中考试测试卷

合集下载

湘教版九年级上册数学期中考试试卷带答案详解

湘教版九年级上册数学期中考试试卷带答案详解

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列函数关系式中属于反比例函数的是()A .y=3xB .2y -x=C .2y x 3=+D .x+y=52.关于x 的方程3x 2﹣5=2x 的二次项系数和一次项系数分别是()A .3,﹣2B .3,2C .3,5D .5,23.一元二次方程2230x x +-=的根的情况是()A .没有实数根B .有两个相等的实数根C .有两个不相等的实数D .无法确定4.下列四条线段中,不能成比例的是()A .a=3,b=6,c=2,d=4B .a=1,c=d=4C .a=4,b=5,c=8,d=10D .a=2,b=3,c=4,d=55.某商品原价200元,连续两次降价a %后售价为108元,下列所列方程正确的是A .200(1+a %)2=108B .200(1﹣a 2%)=108C .200(1﹣2a %)=108D .200(1﹣a %)2=1086.用配方法解方程2240x x --=时,配方后所得的方程为()A .2(1)5x -=B .2(1)3-=x C .2(1)0x +=D .2(1)5x +=7.若反比例函数y=kx的图象经过点(2,3),则它的图象也一定经过的点是()A .()3,2--B .()2,3-C .()3,2-D .()2,3-8.sin60°的值为()A BC D .129.在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是()AB .3C .43D 10.若△ABC ∽△DEF ,AB :DE =9:4,则△ABC 与△DEF 的面积之比为()A .3:2B .9:4C .4:9D .81:16二、填空题11.己知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2(m 2﹣2m )=______.12.已知△ABC ∽△DEF ,且它们的面积之比为4:9,则它们的相似比为________.13.若23a b =,那么a a b +的值是___________14.若反比例函数2ky x-=的图象位于第二、四象限,则k 的取值范围是__.15.已知正比例函数y =2x 与反比例函数y =2x的图象相交于A ,B 两点,若点A 的坐标为(1,2),则点B 的坐标为_______.16.已知线段c 是线段a 、b 的比例中项,且4a =,9b =,则线段c 的长度为______.17.如图(图象在第二象限....),若点A 在反比例函数(0)k y k x=≠的图象上,AM x ⊥轴于点M ,AMO 的面积为5,则k =__.18.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是_____(填一个即可)三、解答题19.解方程:(1)2410x x -=+(2)()()2322x x x -=-20.如图,在△ABC 中,∠C =90°,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△DEH ∽△BCA .21.如图,有一面积为150平方米的矩形花圃,花圃的一边靠墙(墙长18米),另三边用竹篱笆围成.如果竹篱笆的长为35米,求矩形花圃的长和宽各是多少米?22.如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.23.如图,一次函数y1=kx+b(k≠0)和反比例函数y2=mx(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.24.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.25.如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为点E,连接CE,F为线段CE上一点,且∠DFE=∠A.(1)求证:△DFC∽△CBE;(2)若AD=4,CD=6,DE=3,求DF的长.26.(阅读理解)对于任意正实数a、b,∵)2≥0,∴a﹣+b≥0,∴(只有当a=b时,a+b等于.(1)(获得结论)在、b均为正实数)中,若ab为定值p,则,只有当a=b时,a+b有最小值根据上述内容,回答下列问题:若m>0,只有当m=时,m+4m有最小值.(2)(探索应用)已知点Q(﹣3,﹣4)是双曲线y=kx上一点,过Q作QA⊥x轴于点A,作QB⊥y轴于点B.点P为双曲线y=kx(x>0)上任意一点,连接PA,PB,求四边形AQBP的面积的最小值.参考答案1.B 【分析】根据反比例函数的定义进行判断.【详解】A 、该函数是正比例函数,故本选项错误;B 、该函数符合反比例函数的定义,故本选项正确;C 、该函数是二次函数,故本选项错误;D 、该函数是一次函数,故本选项错误;故选B .【点睛】本题考查了反比例函数的定义,反比例函数的一般形式是y =kx(k≠0).2.A 【详解】解:化为一般式,得3x 2﹣2x ﹣5=0.二次项系数和一次项系数分别是3,﹣2,故选:A .【点睛】本题考查一元二次方程的一般形式.3.C 【分析】分别写出一元二次方程的二次项系数a 、一次项系数b 、常数项c ,并算出根的判别式2=b 4ac -△的大小,即可判断根的情况.【详解】解:一元二次方程为:22x +x-3=0,其中二次项系数a=2,一次项系数b=1,常数项c=-3,根的判别式22=b 4ac=142(3)=250--⨯⨯->△,∴有两个不等的实数根,故选:C .【点睛】本题考察了一元二次函数根的判别式,解题的关键在于求出方程的 ,若 >0,则有两个不等的实数根,若 =0,则有两个相等的实数根,若 <0,则没有实数根.4.D 【详解】解:A 、2×6=3×4,能成比例;B 、,能成比例;C 、4×10=5×8,能成比例;D 、2×5≠3×4,不能成比例.故选:D .5.D 【分析】根据题意可得,原价×(1﹣a %)2=售价,据此列出方程即可.【详解】解:由题意可得:200(1﹣a %)2=108.故选:D .【点睛】本题主要考查列一元二次方程,读懂题意是解题的关键.6.A 【分析】移项后把左边配成完全平方式,右边化为常数.【详解】解:2x 2x 4=0--2x 2x+114=0---2(x 1)=5-,故选:A .【点睛】本题考查了解一元二次方程—配方法:将一元二次方程配成2(x m)=n +的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.A【详解】解:根据题意得k=2×3=6,所以反比例函数解析式为y=6 x,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=6x的图象上.故选A.【点睛】本题考查反比例函数图象上点的坐标特征.8.B【分析】根据特殊角的三角函数值进行回答即可.【详解】解:故选:B.【点睛】本题考查的是特殊角的三角函数值,熟练掌握特殊角的三角函数值是解决本题的关键.9.A【分析】分析:根据∠A的正弦值,以及BC的长可求出斜边AB的长,然后根据勾股定理求AC.【详解】解答:在Rt△ABC中,∵sinA=223 BCAB AB==,∴AB=3,∴根据勾股定理,得故选A.点评:本题考查了利用勾股定理和锐角三角函数的概念解直角三角形.10.D【分析】根据相似三角形的性质计算即可;【详解】∵△ABC ∽△DEF ,且相似比为9:4,∴其面积之比为81:16.故选:D .【点睛】本题主要考查了相似三角形的性质,准确计算是解题的关键.11.6【分析】根据方程的根的定义,将m 代入方程得2m 2m 3=0--,即2m 2m=3-,要求的代数式即为22(m 2m)-,代入即可解答.【详解】解:∵m 是2x 2x 3=0--的一个根,∴2m 2m 3=0--,即2m 2m=3-,∴22(m 2m)=23=6-⨯,故答案为:6.【点睛】本题考查了一元二次方程根的定义和代数求值,运用整体代入的数学思想可以方便解答.12.2:3【详解】因为S △ABC :S △DEF =4:9=223⎛⎫⎪⎝⎭,所以△ABC 与△DEF 的相似比为2:3,故答案为:2:3.13.25【分析】根据23a b =,得出b=32a ,再代入a a b +进行计算即可.【详解】解:∵23 ab=∴b=3 2 a,∴aa b+=3a2aa+=25,故答案为:2 5.【点睛】本题考查了比例的基本性质,熟练掌握代入化简是解题的关键.14.k>2【分析】根据图象在第二、四象限,利用反比例函数的性质可以确定2-k的符号,即可解答.【详解】∵反比例函数y=2kx-的图象在第二、四象限,∴2-k<0,∴k>2.故答案为k>2.【点睛】此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.15.(-1,-2)【分析】联立反比例函数与一次函数的方程,得到2=2xx,解得:1x=1,2x=-1,故B点横坐标为-1,即可求得B点坐标.【详解】解:联立方程组得:2y=xy=2x ⎧⎪⎨⎪⎩,即2=2xx,22x=2,解得:1x=1,2x=-1,又∵A点坐标为(1,2),∴B点横坐标为-1,∴B点坐标为(-1,-2),故答案为:(-1,-2).【点睛】本题主要考察一次函数与反比例函数的综合,解题的关键在于联立反比例函数与一次函数的方程.16.6【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故答案为6.17.-10【分析】根据反比例函数ky=x(k≠0)的比例系数k的几何意义得到:k=OM AM=10⋅,然后根据反比例函数在第二象限,得到满足条件的k的值.【详解】解:∵AMO 1S=AM=52⋅△,∴k=OM AM=10⋅,且反比例函数在第二象限,k<0,∴k=-10,故答案为:-10.【点睛】本题考查了反比例函数ky=x(k≠0)的比例系数k的几何意义:从反比例函数ky=x(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为k,且函数在第一、三象限,k>0,函数在第二、四象限,k<0.18.∠C=∠BAD(答案不唯一)【详解】试题分析:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC 与△DBA 相似.故答案可为:∠C=∠BAD .考点:相似三角形的判定.19.(1)1x 2=-2x 2=-(2)12x 2,x 3==.【分析】(1)将式子配凑成完全平方式,即可求解;(2)移项后提取公因式(x-2)后,即可求解.【详解】解:(1)2x 4x 1=0+-2x 4x+441=0+--2(x+2)5=x 2=,即1x 2=-2x 2=-(2)23(x-2)=x (x-2)⋅(3x-6-x)(x-2)=0(2x-6)(x-2)=0解得:12x =,2x 3=.【点睛】本题主要考察了解一元二次方程,一元二次方程求解的方法主要有直接开平方法、配方法、因式分解和公式法,应根据题目选择合适的方法.20.详见解析.【分析】△DEH 与△ABC 均为直角三角形,可利用等角的余角相等再求出一组锐角对应相等即可.【详解】证明:∵DE ⊥AB ,DF ⊥BC ,∴∠D +∠DHE =∠B +∠BHF =90°而∠BHF =∠DHE ,∴∠D =∠B ,又∵∠DEH =∠C =90°,∴△DEH ∽△BCA .【点睛】此题考查的是相似三角形的判定和互余的性质,掌握有两组对应角相等的两个三角形相似和等角的余角相等是解决此题的关键.21.矩形花圃的长为15米,宽为10米.【分析】先分靠墙的一边为矩形花圃的长、靠墙的一边为矩形花圃的宽两种情况,再分别根据“墙长18米”、“宽小于长”求出x 的取值范围,然后根据面积建立方程,求解即可得.【详解】由题意,分以下两种情况:(1)靠墙的一边为矩形花圃的长设矩形花圃的长为x 米,则宽为352-x 米 墙长18米,且宽小于长18352x x x ≤⎧⎪∴⎨-<⎪⎩解得35183x <≤由矩形的面积公式得:351502x x -⋅=解得15x =或20x =(不符题设,舍去)此时3535151022x --==则矩形花圃的长为15米,宽为10米(2)靠墙的一边为矩形花圃的宽设矩形花圃的长为x 米,则宽为(352)x -米墙长18米,且宽小于长035218352x x x<-≤⎧∴⎨-<⎩解得353532x <<由矩形的面积公式得:(352)150x x -=解得10x =(不符题设,舍去)或152x =(不符题设,舍去)综上,矩形花圃的长为15米,宽为10米.【点睛】本题考查了一元二次方程的实际应用、一元一次不等式组的应用,依据题意,分两种情况讨论,并正确建立不等式组和方程是解题关键.22.(1)6;(2)证明见解析.【解析】试题分析:(1)由平行可得AD AE AB AC =,可求得AC ,且EC=AC-AE ,可求得EC ;(2)由平行可知AD AE AF AB AC AG==,可得出结论.试题解析:(1)∵DE ∥BC ,∴AD AE AB AC =,又13AD AB =,AE=3,∴313AC =,解得AC=9,∴EC=AC-AE=9-3=6;(2)∵DE ∥BC ,EF ∥CG ,∴AD AE AF AB AC AG==,∴AD•AG=AF•AB .考点:平行线分线段成比例.23.(1)y 1=-2x +4,y 2=-6x;(2)x <-1或0<x <3.【分析】(1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x 的取值即可.【详解】解:(1)把点A (﹣1,6)代入反比例函数2m y x=(m≠0)得:m=﹣1×6=﹣6,∴26y x =-.将B (a ,﹣2)代入26y x=-得:62a -=-,a=3,∴B (3,﹣2),将A (﹣1,6),B (3,﹣2)代入一次函数y 1=kx+b 得:632k b k b -+=⎧⎨+=-⎩,∴24k b =-⎧⎨=⎩,∴124y x =-+;(2)由函数图象可得:x <﹣1或0<x <3.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.24.(1)证明见解析;(2)10.【详解】试题分析:(1)先把方程化为一般式:x 2﹣(2k+1)x+4k ﹣2=0,要证明无论k 取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x 1=2,x 2=2k ﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b ,c 的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x 2﹣(2k+1)x+4k ﹣2=0,∵△=(2k+1)2﹣4(4k ﹣2)=(2k ﹣3)2,而(2k ﹣3)2≥0,∴△≥0,所以无论k 取任何实数,方程总有两个实数根;(2)解:x 2﹣(2k+1)x+4k ﹣2=0,整理得(x ﹣2)[x ﹣(2k ﹣1)]=0,∴x 1=2,x 2=2k ﹣1,当a=4为等腰△ABC 的底边,则有b=c ,因为b 、c 恰是这个方程的两根,则2=2k ﹣1,解得k=32,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.25.(1)证明见解析;(2)DF=.【分析】(1)根据平行四边形对边平行的性质,得到∠DCE=∠BEC,结合题目已知∠DFE=∠A,及等角的补角相等,可得∠DFC=∠B,进而证明△DFC∽△CBE;(2)根据平行四边形的性质,及平行线定理,解得∠EDC=90°,由勾股定理计算CE的长,最后根据相似三角形对应边成比例的性质解题即可.【详解】(1)证明:∵四边形ABCD为平行四边形,∴AD//BC,CD//AB,∴∠A+∠B=180°,∠DCE=∠BEC,∵∠DFE=∠A,∴∠DFE+∠B=180°,而∠DFE+∠DFC=180°,∴∠DFC=∠B,而∠DCF=∠CEB,∴△DFC∽△CBE;(2)解:∵四边形ABCD为平行四边形,∴CD//AB,BC=AD=4,∵DE⊥AB,∴DE⊥DC,∴∠EDC=90°,在Rt△DEC中,CE===∵△DFC∽△CBE,∴DF:BC=DC:CE,即DF:4=6:∴DF5.【点睛】本题考查平行四边形的性质、相似三角形的判定与性质、勾股定理、平行线定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.(1)2,4;(2)24.【分析】(1)根据阅材料可得,当m=4m时,m+4m取得最大值,据此即可求解;(2)连接PQ,设P(x,12x),根据根据四边形AQBP的面积=△AQP的面积+△QBP的面积,从而利用x表示出四边形的面积,利用阅读材料中介绍的不等式的性质即可求解.【详解】(1)根据题意得当m=4m时,m=2,此时m+4m=4.故答案是:2,4;(2)连接PQ,设P(x,12x ),∴S四边形AQBP =12×4(x+3)+12×3(12x+4)=2x+18x+12≥12+12=24.∴最小值为24.【点睛】本题考查了反比例函数的性质以及不等式的性质,正确读懂已知中的不等式的性质,表示出四边形AQBP的面积是关键.。

湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似2.一元二次方程221x x-=的常数项为()A.-1B.1C.0D.±13.一次函数y=kx+b与反比例函数y=kx在同一直角坐标系中的大致图象如图所示,则下列判断正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 4.在平面直角坐标系中,反比例函数y=(k<0)图像的两支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是()A.=0B.>0C.<0D.≥0 6.x2-5x-6=0的两根为()A.6和-1B.-6和1C.-2和-3D.2和37.如图,平面直角坐标系中,OB在x轴上,∠ABO=90º,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90º,点O的对应点C恰好落在双曲线y=kx(x>0)上,则k=()A.2B.3C.4D.6 8.解方程2(5x-1)2=3(5x-1)的最适当的方法是()A .直接开平方法.B .配方法C .公式法D .分解因式法9.已知一元二次方程x 2+x ─1=0,下列判断正确的是()A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定10.若1x ,2x 是方程24x =的两根,则12x x +的值是()A .0B .2C .4D .8二、填空题11.已知△ABC 与△DEF 相似且对应的角平分线的比为2:3,则△ABC 与△DEF 的周长比为_____________.12.若点(-2,1)在反比例函数x k y =的图象上,则该函数的图象位于第_______象限.13.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=______.14.根据反比例函数2y x=-的图象(请先在草稿纸上画图象)回答问题,当函数值为正时,x 取值范围是_______15.如上图,反比例函数k y x=的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为____.16.某种商品原价是121元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为____.17.如图,在ABC 中,D 、E 分别是AC 、AB 边上的点,AED C ∠=∠,6AB =,4AD =,5AC =,则AE =________.18.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .19.在△ABC 中,15AB cm =,20BC cm =,30AC cm =,另一个与它相似的△A B C '''的最短边长为45cm ,则△A B C '''的周长为________.三、解答题20.解方程:(x -5)(x -6)=x -521.若关于x 的一元二次方程x2+4x+2k=0有两个实数根,求k 的取值范围及k 的非负整数值.22.如图,BE 是△ABC 中∠ABC 的平分线.DE ∥BC ,若AE =3,AD =4,AC =5,求DE 的长.23.已知图中的曲线函数5m y x-=(m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数2y x =图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.24.已知:正比例函数y=k 1x 的图象与反比例函数xk y 2(x>0)的图象交于点M (a,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,求这两个函数的解析式.25.一块正方形的铁皮,在它的四角各截去边长为4㎝的小正方形,折成一个无盖的长方体盒子,它的容积是400㎝3,求原铁皮的边长.26.某城市居民最低生活保障在2012年是每月240元,经过连续两年的增加,到2014年将提高到每月345.6元,则该城市两年来最低生活保障的平均增长率是多少?27.如图,在直角梯形ABCD 中,AB ∥DC ,∠D=90o ,AC ⊥BC ,AB=10cm,BC=6cm ,(1)求证:△ACD ∽△BAC ;(2)求DC 的长;28.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (﹣2,0),与反比例函数在第一象限内的图象的交于点B (2,n ),连接BO ,若S △AOB =4.(1)求该反比例函数的解析式和直线AB 的解析式;(2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.参考答案1.D .【解析】试题分析:A 、锐角三角形的三个内角都小于90°,但不一定都对应相等,故A 选项错误;B 、直角三角形的直角对应相等,但两组锐角不一定对应相等,故B 选项错误;C 、等腰三角形的顶角和底角不一定对应相等,故C 选项错误;D 、所有的等边三角形三个内角都对应相等(都是60°),所以它们都相似,故D 选项正确;故选:D .考点:相似三角形的判定.2.A【解析】试题分析:因为一元二次方程221x x -=可化为2210x x --=,所以常数项为-1,故选A .考点:一元二次方程的常数项3.B .【解析】试题分析:∵一次函数y=kx+b的图象经过一、三、四象限,∴k>0,b<0又∵比例函数y=kx图象经过一、三象限,∴k>0,b<0故选B.考点:反比例函数与一次函数的交点问题.4.B【解析】试题分析:∵反比例函数y=(k<0),∴图象的两支分别在第二、四象限.故选B.考点:反比例函数的性质.5.B【详解】试题分析:∵一元二次方程有两个不相等的实数根,∴△=b2-4ac>0.故选B.考点:根的判别式.6.A【分析】把方程左边的式子进行分解因式,利用因式分解法求解.【详解】x2-5x-6=0(x-6)(x+1)=0解得x=6或-1.故选A7.B.【解析】试题分析:∵点A 的坐标为(1,2).Rt △AOB 绕点A 逆时针旋转90°,∴OB+AD=3,AB-CD=1,故C (3,1),将C (3,1)代入y=k x中,得k=3×1=3.故选B.考点:反比例函数综合题.8.D【详解】解:方程可化为[2(5x-1)-3](5x-1)=0,即(10x-5)(5x-1)=0,根据分析可知分解因式法最为合适.故选D .9.B【解析】根据题意得:△=2141(1)-⨯⨯-=5>0,故有两个不相等的实数根.10.A【分析】先把化成一元二次方程的一般形式,然后根据根与系数的关系求解即可.【详解】∵24x =,∴240x -=,∴12x x +=-0=01.故选A.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=.11.2:3.【解析】试题分析:由于相似三角形的对应角平分线和周长的比都等于相似比,由此可求出两三角形的周长比.试题解析:∵△ABC与△DEF相似且对应角平分线的比为2:3,∴它们的相似比为2:3;故△ABC与△DEF的周长比为2:3.考点:相似三角形的性质.12.二、四【解析】试题分析:先根据函数的解析式确定k=xy=-2,再根据函数图象与系数的特点进行解答.试题解析:∵点(-2,1)在反比例函数y=kx的图象上,∴k=(-2)×1=-2<0,∴该函数的图象位于第二、四象限.考点:反比例函数图象上点的坐标特征.13.9.【解析】试题分析:根据平行线分线段成比例定理得出AD AEBD EC=,得出CE的长度即可得出AC的长.试题解析:∵DE∥BC,∴AD AE BD EC=,∵AD=2,AE=3,BD=4,∴234EC =,∴CE=6,∴AC=AE+EC=3+6=9.考点:平行线分线段成比例.14.x<0.【解析】试题分析:此题只需找到x轴上方的图象所对应的自变量的取值即可.试题解析:由函数图象易得在x轴上方的函数图象所对应的值为:x<0.考点:反比例函数的图象.15.(-1,-2)(答案不唯一).【详解】试题分析:根据“第一象限内的图象经过点A (1,2)”先求出函数解析式,给x 一个值负数,求出y 值即可得到坐标.试题解析:∵图象经过点A (1,2),∴21k =解得k=2,∴函数解析式为y=2x ,当x=-1时,y=21-=-2,∴P 点坐标为(-1,-2)(答案不唯一).考点:反比例函数图象上点的坐标特征.16.121(1-x )2=100.【详解】试题分析:等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=100.试题解析:第一次降价后的价格为121×(1-x ),那么第二次降价后的价格为121×(1-x )×(1-x ),∴可列方程为121(1-x )2=100.考点:由实际问题抽象出一元二次方程.17.103【分析】根据有两角相等的三角形相似先证明△AED ∽△ACB ,再利用相似三角形的对应边的比相等,即可求出AE 的长.【详解】在△AED和△ACB中,∵∠A=∠A,∠AED=∠C,∴△AED∽△ACB,∴AE AD AC AB=,∵AB=6,AD=4,AC=5,∴4 56 AE=,∴AE=10 3.故答案为10 3.【点睛】本题考查了相似三角形的判定与性质,利用有两角相等的三角形相似证明△AED∽△ACB 是解决本题的关键.18.4【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.19.195cm.【解析】因为△ABC∽△,所以.又因为在△ABC中,边最短,所以,所以,所以△的周长为20.x1=5,x2=7.【解析】试题分析:先移项得到(x-5)(x-6)-(x-5)=0,然后利用因式分解法解方程.试题解析:(x-5)(x-6)-(x-5)=0,(x-5)(x-6-1)=0,x-5=0或x-6-1=0,所以x1=5,x2=7.考点:解一元二次方程-因式分解法.21.k≤2.0,1,2.【详解】试题分析:根据关于x的一元二次方程x2+4x+2k=0有两个实数根,则根的判别式△=b2-4ac≥0,建立关于k的不等式,求出k的取值范围后,再确定k的非负整数值.试题解析:∵关于x的一元二次方程x2+4x+2k=0有两个实数根,∴△=42﹣4×1×2k=16﹣8k≥0,解得k≤2.∴k的非负整数值为0,1,2.考点:一元二次方程的根的判别式.22.8 3.【详解】试题分析:先根据平行线的性质及角平分线的性质求出△BDE是等腰三角形,即BD=DE,再根据△ADE∽△ABC即可求出BD的长,进而求出DE的长.试题解析:∵BE是△ABC中∠ABC的平分线,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD=DE ,∵DE ∥BC ,AE=3,AD=4,AC=5,∴△ADE ∽△ABC ,AD AE AB AC=,即AD AE AD BD AC=+,4345BD =+,解得BD=83.∴DE=BD=83.考点:1.相似三角形的判定与性质;2.角平分线的定义;3.平行线的性质.23.(1)m >5;(2)y=8x.【解析】试题分析:(1)曲线函数5m y x-=(m 为常数)图象的一支.在第一象限,则比例系数m-5一定大于0,即可求得m 的范围;(2)把A 的坐标代入正比例函数解析式,即可求得A 的坐标,再代入反比例函数解析式即可求得反比例函数解析式.试题解析:(1)根据题意得:m-5>0,解得:m >5;(2)根据题意得:n=4,把(2,4)代入函数5m y x -=,得到:4=52m -;解得:m-5=8.则反比例函数的解析式是y=8x.考点:反比例函数与一次函数的交点问题.视频24.正比例函数的解析式是x y 41=,反比例函数的解析式是xy 4=【解析】解:∵MN ⊥x 轴,点M (a ,1)∴S △OMN=a 21=2∴a=4∴M(4,1)∵正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M (4,1)∴11解得k k 25.18cm .【详解】试题分析:先设原正方形铁皮的边长为x ,然后根据题意列出方程4(x-8)2=400,再解方程即可求解.试题解析:设原正方形铁皮的边长为xcm则由题意可得4(x-8)2=400解得x 1=18,x 2=-2(不合题意,舍去).答:原正方形铁皮的边长为18cm .考点:一元二次方程的应用.26.20%.【详解】试题分析:设该城市两年来最低生活保障的平均年增长率是x ,根据最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元,可列出方程求解.试题解析:设该城市两年来最低生活保障的平均年增长率是x ,240(1+x )2=345.6,1+x=±1.2,x=20%或x=-220%(舍去).答:该城市两年来最低生活保障的平均增长率是20%.考点:一元二次方程的应用.27.(1)证明见解析;(2)6.4cm .【解析】试题分析:(1)由CD ∥AB ,得∠DCA=∠CAB ,加上一组直角,即可证得所求的三角形相似.(2)在Rt △ABC 中,由勾股定理可求得AC 的长,根据(1)题所得相似三角形的比例线段,即可求出DC 的长.试题解析:(1)∵CD ∥AB ,∴∠BAC=∠DCA又∵AC ⊥BC ,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD ∽△BAC .(2)Rt △ABC 中,,∵△ACD ∽△BAC ,∴DC AC AC AB=,即8810DC =,解得:DC=6.4cm .考点:1.勾股定理;2.相似三角形的判定与性质.28.(1)8y x =;y=x+2;(2)2.【分析】(1)先由A (﹣2,0),得OA=2,点B (2,n ),S △AOB =4,得12OA•n=4,n=4,则点B 的坐标是(2,4),把点B (2,4)代入反比例函数的解析式为()m y m 0x =≠,可得反比例函数的解析式为:8y x=;再把A (﹣2,0)、B (2,4)代入直线AB 的解析式为y=kx+b 可得直线AB 的解析式为y=x+2.(2)把x=0代入直线AB 的解析式y=x+2得y=2,即OC=2,可得S △OCB =12OC×2=12×2×2=2.【详解】解:(1)由A (﹣2,0),得OA=2;∵点B (2,n )在第一象限内,S △AOB =4,∴12OA•n=4.∴n=4.∴点B 的坐标是(2,4).设该反比例函数的解析式为()m y m 0x=≠,将点B的坐标代入,得m 42 =,∴m=8.∴反比例函数的解析式为:8 yx =.设直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得2k b0{2k b4-+=+=,解得,k1{b2==.∴直线AB的解析式为y=x+2.(2)在y=x+2中,令x=0,得y=2,∴点C的坐标是(0,2).∴OC=2.∴S△OCB =12OC×2=12×2×2=2.。

湘教版九年级上册数学期中考试试卷及答案解析

湘教版九年级上册数学期中考试试卷及答案解析

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.一元二次方程20y y -=的根是()A .y =1B .y =0C .y 1=0,y 2=1-D .y 1=0,y 2=12.若反比例函数ky x=的图象经过点(2,1)--,则该反比例函数的图象在()A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3.一元二次方程x 2﹣2x+1=0的根的情况为()A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根4.已知△ABC ∽△A ′B ′C ′且12AB A B =′′,则S △A ′B ′C ′∶S △ABC 为()A .1∶2B .2∶1C .1∶4D .4∶15.某养殖户的养殖成本逐年增长,第一年的养殖成本为12万元,第3年的养殖成本为16万元.设养殖成本平均每年增长的百分率为x ,则下面所列方程中正确的是()A .12(1﹣x )2=16B .16(1﹣x )2=12C .16(1+x )2=12D .12(1+x )2=166.已知xy mn =,则把它改写成比例式后,错误的是()A .x m n y=B .y n m x=C .x y m n=D .x nm y=7.函数y =kx +1与函数y =kx在同一坐标系中的大致图象是()A .B .C .D .8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是()A .B.C.D.二、填空题9.将方程22143x x x -+=-化为一般形式为________________.10.若点P 1(1-,m ),P 2(2-,n )在反比例函数2y x=的图象上,则m ____n (填“>”“<”或“=”号).11.在比例尺为1∶4000000的地图上,两城市间的图上距离为2cm ,则这两城市间的实际距离为____________km.12.若34y x =,则x y x+=______13.设x 1、x 2是方程2220x x +-=的两个实数根,则2112x x x x +的值为_______.14.如图所示,在△ABC 中,DE ∥BC ,AD =3,DB =6,AE =2,则EC 的长为________15.如果函数210(2)ky k x -=-是反比例函数,且当0x >时y 随x 的增大而增大,此函数的解析式是___________________.16.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图所示.当V =5m 3时,气体的密度是__________kg/m 3.三、解答题17.用适当的方法解下列方程.(1)2220x x --=(2)2(2)3(2)0x x ---=18.y 是x 的反比例函数,且当2x =时,13y =-,请你确定该反比例函数的解析式,并求当6y =时,自变量x 的值.19.如图,已知△ABC ∽△ADE ,AB=30cm ,AD=18cm ,BC=20cm ,∠BAC=75°,∠ABC=40°.(1)求∠ADE 和∠AED 的度数;(2)求DE 的长.20.已知关于x 的一元二次方程x 2+2x +a =0,(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)若方程有两个不相等的实数根,求a 的取值范围.21.已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .22.如图,一次函数的图象与反比例函数的图象交于A 、B 两点.(1)利用图中的条件,求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出使一次函数的值小于反比例函数的值的x的取值范围.23.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为96m2?24.在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴和y轴上,点A的坐标为(2,0),点C的坐标为(0,3),双曲线y=kx(x>0)的图象分别与BC、AB交于点D、E,连接DE,若E是AB的中点.(1)求点D的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.参考答案1.D 【解析】试题解析:()10,y y -=0,10,y y =-=120, 1.y y ==故选D.2.B 【解析】试题解析:把点()2,1--代入反比例函数.k y x=得: 2.k =故反比例函数的图象在第一、三象限.故选B.3.A 【分析】根据根的判别式即可求出答案.【详解】由题意可知△=b 2﹣4ac=(﹣2)2﹣4×1×1=0,所以方程x 2﹣2x+1=0有两个相等的实数根.故答案选A .4.D 【解析】试题解析:2:4:1.A B C ABC A B S S AB '''⎛⎫== ⎪⎝⎭''故选D.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.5.D 【详解】由题意可得:第二年的养殖成本为12(1)x +,第三年的养殖成本为:2121+)(1)12(1)x x x +=+(,∴212(1)16x +=.故选D.6.C 【解析】试题解析:选项C.两边同乘最简公分母mn 得,.xn my =与原式不相等.故选C.7.A 【解析】试题分析:根据一次函数和反比例函数的特点,k≠0,所以分k >0和k <0两种情况讨论.①当k >0时,y=kx+1与y 轴的交点在正半轴,过一、二、三象限,y=kx的图象在第一、三象限;②当k <0时,y=kx+1与y 轴的交点在正半轴,过一、二、四象限,y=kx的图象在第二、四象限.故选A .考点:反比例函数的图象;一次函数的图象.8.B 【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.9.230x x +-=【解析】试题解析:方程整理得:230.x x +-=故答案为230.x x +-=点睛:一元二次方程的一般形式:()200.ax bx c a ++=≠10.<【解析】试题解析:()()121,,2,P m P n -- 在反比例函数2y x=的图象上,222,1,12m n ∴==-==---21,-<- .m n ∴<故答案为:.<11.80【解析】试题解析:12240000008000000cm=80km.4000000÷=⨯=故答案为:80.12.74【分析】可设x=4k ,根据已知条件得到y=3k ,再代入计算即可得到正确结论.【详解】解:∵34y x =,∴y=3k ,x=4k ;代入x y x +=4k 3k 7=4k 4+故答案为74【点睛】本题考查了比例的性质的应用,主要考查学生的计算能力,题目比较好,难度不大.13.4-【解析】试题解析:由韦达定理可得:12122, 2.b cx x x x a a+=-=-⋅==-()()222121221121212122422 4.2x x x x x x x x x x x x x x +--⨯-++====--故答案为 4.-点睛:一元二次方程根与系数的关系:1212,.b c x x x x a a+=-⋅=14.4【解析】试题解析:,DE BC ,AD AEDB EC =32.6EC∴= 4.EC ∴=故答案为:4.15.3y x=-【详解】解:有题意可得:210 1.k -=-3.k ∴=±当0x >时,y 随x 的增大而增大,0.k ∴< 3.k ∴=-函数的解析式是:3.y x=-故答案为:3y x=-【点睛】本题考查反比例函数的解析式有三种形式:()1,,0.ky y kx xy k k x-===≠16.2【详解】试题解析:由图象可以看出:3V 5m =时,气体的密度是:32kg/m .17.(1)x1,x 2=1(2)x 1=2,x 2=5【解析】试题分析:方程()1用配方法,方程()2用因式分解法.试题解析:()2122,x x -=2213,x x -+=()213,x -=1x -=1211x x ∴==()()()22230,x x ---=20x -=或50,x -=122, 5.x x ∴==点睛:一元二次方程的解法有:直接开方法,公式法,配方法,因式分解法.18.23y x =-,19x =-【解析】试题分析:由题意y 是x 的反比例函数,可设()0,ky k x=≠然后利用待定系数法进行求解.把6y =代入函数解析式求得相应的x 的值即可.试题解析:设反比例函数的解析式为k y x=,∵当2x =时,13y =-,2.3k ∴=-∴该反比例函数的解析式为2.3y x=-当6y =时,则有263x-=,解得:1.9x =-19.(1)∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)DE=12cm .()1根据三角形的内角和定理求出C ∠,再根据相似三角形对应角相等解答;()2根据相似三角形对应边成比例列式求解即可.【详解】()17540BAC ABC ∠=︒∠=︒ ,,180180754065C BAC ABC ∴∠=︒-∠-∠=︒-︒-︒=︒,ABC ADE ∽,4065.ADE ABC AED C ∴∠=∠=︒∠=∠=︒,()2ABC ADE ∽,.AB BCAD DE∴=即3020.18DE=解得:12cm DE .=20.(1)a =−3,x 1=−3,;(2)a <1.【解析】试题分析:()1将1x =代入方程220x x a ++=得到a 的值,再根据根与系数的关系求出另一根;()2根的判别式0.∆>求出a 的取值范围即可.试题解析:()1将1x =代入方程220.x x a ++=得,1210a +⨯+=,解得: 3.a =-方程为2230.x x +-=设另一根为1,x 则113,x ⋅=-1 3.x =-()244a ∆=-,∵方程有两个不等的实根,0,∴∆>即440a >-,1.a ∴<21.证明见解析【详解】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似.试题解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠= 90DAE BAE ∴∠+∠= ,BF AE ⊥ 于点F ,90ABF BAE ∴∠+∠= ,DAE BAF ∴∠=∠,.ABF EAD ∴ ∽点睛:两组角对应相等,两三角形相似.22.(1)2y x=,1y x =-;(2)32;(3)x <1-或0<x <2【解析】试题分析:()1将点()21A ,代入,m y x=可得反比例函数解析式,将点()1,B n -代入可得n 的值,即可得点B 的坐标,由,A B 坐标可得直线的解析式;()2求得直线与x 轴的交点坐标,利用割补法可得三角形的面积;()3由直线位于双曲线上方时对应的x 的范围即可得答案.试题解析:()1设反比例函数的解析式为.m y x=把()21A ,代入,m y x=得:2m =,∴反比例函数的解析式为2.y x=设一次函数的解析式为y kx b =+,把()1,B n -代入2.y x=得: 2.n =-即()1,2.B --将点()21A ,,()1,2B --代入,y kx b =+得:21{2,k b k b +=-+=-解得:1{ 1.k b ==-∴一次函数的解析式为: 1.y x =-()2在一次函数1y x =-中,令0y =得:10x -=,解得: 1.x =1131112.222AOB S =⨯⨯+⨯⨯= ()3当1x <-或02x <<时,一次函数的值小于反比例函数的值.23.长为12m 、宽为8m .【解析】试题分析:设矩形猪舍垂直于住房墙一边长为m x ,可以得出平行于墙的一边的长为()2721m,x -+根据矩形的面积公式建立方程求解即可.试题解析:设矩形猪舍垂直于住房墙一边长为m x ,可以得出平行于墙的一边的长为()2721m x -+,由题意得()272196.x x -+=解得:126,8.x x ==当6x =时,27211612x -+=>(舍去),当8x =时,272112.x -+=答:所围矩形猪舍的长为12m,宽为8m .24.(1)(1,3);(2)5(0,3或(0,0).【解析】试题分析:()1先求出点E 的坐标,求出双曲线的解析式,点D 与点B 的纵坐标相同,即可得出点D 的坐标;()2分两种情况:若FBC DEB ∽,则CB CF BE BD=,求出CF ,得出F 的坐标.若FBC EDB ∽,则,BC CF DB BE=求出CF ,得出F 的坐标.试题解析:()1∵四边形OABC 为矩形,AB x ∴⊥轴.∵E 为AB 的中点,点A 的坐标为(20),,点C 的坐标为(03).,∴点E 的坐标为32,.2⎛⎫ ⎪⎝⎭∵点E 在反比例函数ky x =的图象上,3k ∴=,∴反比例函数的解析式为3y x =.∵四边形OABC 为矩形,∴点D 与点B 的纵坐标相同,将3y =代入3y x =可得1x =,∴点D 的坐标为 (13).,()2由()1可得2, 1.BC CD ==1.BD BC CD ∴=-=∵E 为AB 的中点,3,2BE =若FBC DEB ∽,则CBCFBE BD =,即2.312CF =43CF ∴=,453.33OF CO CF ∴=-=-=∴点F 的坐标为50,.3⎛⎫ ⎪⎝⎭若FBC EDB ∽,则,BC CFDB BE =即2.312CF=3CF ,∴=此时点F 和点O 重合.综上所述,点F 的坐标为50,3⎛⎫ ⎪⎝⎭或(00),.。

湘教版九年级上册数学期中考试试卷含答案详解

湘教版九年级上册数学期中考试试卷含答案详解

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列函数中,y 是x 的反比例函数的是()A .xy 3=B .5y x=C .21y x =D .1y 2x=+2.下列各点中,在反比例函数8y x=图象上的是A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若2a =3b ,则下列等式正确的是()A .23a b =B .32a b =C .32b a =D .32b a =4.一元二次方程2210x x -+=的根的情况是()A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.已知△ABC ∽△DEF ,若∠A =30°,∠B =80°,则∠F 的度数为()A .30°B .80°C .70°D .60°6.在同一直角坐标系中,反比例函数y =abx与一次函数y =ax+b 的图象可能是()A .B .C .D .7.如图,在△ABC 中,EF//BC ,13AE AB =,则AFAC =()A .12B .23C .13D .328.如图,正比例函数y =ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >-29.如图,点P 是△ABC 边AB 上一点(AB>AC ),下列条件不一定能使△ACP ∽△ABC 的是()A .AC APAB AC=B .PC ACBC AB=C .∠ACP=∠B D .∠APC=∠ACB10.如图, ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为()A .3B .4C .5D .611.已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是()A .34B .30C .30或34D .30或3612.如图,两个反比例函数1y=x 和2y=x-的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则三角形PAB 的面积为()A .3B .4C .92D .5二、填空题13.两个相似三角形的相似比为1:3,则它们周长的比为_____.14.若方程2340x x --=的两个根分别为1x 和2x ,则1211x x +=_________.15.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.16.如图,在方格纸中(小正方形的边长为1),反比例函数ky x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.17.有一人患流感,经过两轮传染后,共有49人患了流感,如果不及时控制(三轮传染速度相同),第三轮被传染的人数为________.18.如图,△ABC 中,AB =AC ,∠A =90°,BC =6,直线MN ∥BC ,且分别交边AB ,AC 于点M ,N ,已知直线MN 将△ABC 分为面积相等的两部分.如果将线段AM 绕着点A 旋转,使点M 落在边BC 上的点D 处,那么BD =________.三、解答题19.解方程:(1)x 2-4x-1=0(配方法)(2)3x(x-1)=2-2x20.已知反比例函数k 1y x-=(k 为常数,k≠1).(1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围.21.已知关于x 的一元二次方程x 2+2x +a =0,(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)若方程有两个不相等的实数根,求a 的取值范围.22.如图,已知AB AD ⊥,BD DC ⊥,且2BD AB BC =⋅,求证:ABD DBC ∠=∠.23.一次函数y=x+b和反比例函数2yx(k≠0)交于点A(a,1)和点B.(1)求一次函数的解析式;(2)求△AOB的面积;24.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.25.已知:如图,△ABC∽△ADE,∠A=45°,∠C=40°.求:∠ADE的度数.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.参考答案1.B【分析】根据反比例函数的定义判断即可.【详解】A、不符合反比例函数的定义,选项不符合题意;B、符合反比例函数的定义,选项符合题意;C、不符合反比例函数的定义,选项不符合题意;D、不符合反比例函数的定义,选项不符合题意.故选:B.【点睛】本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式kyx=(0k≠).2.D 【分析】由于反比例函数y=kx中,k=xy,即将各选项横、纵坐标分别相乘,其积为8者即为正确答案.【详解】解:A、∵-1×8=-8≠8,∴该点不在函数图象上,故本选项错误;B、∵-2×4=-8≠8,∴该点不在函数图象上,故本选项错误;C、∵1×7=7≠8,∴该点不在函数图象上,故本选项错误;D、2×4=8,∴该点在函数图象上,故本选项正确.故选D.【点睛】考核知识点:反比例函数定义.3.B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】A、由23ab=得:3 2a b=,故本选项错误;B、由32ab=得:2 3a b=,故本选项正确;C、由32ba=得:3 2a b=,故本选项错误;D、由32b a=得:3 2a b=,故本选项错误;故选:B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.4.B【分析】求出其根的判别式,然后根据根的判别式的正负情况即可作出判断.【详解】∵1a =,2b =-,1c =,∴()2242411440b ac =-=--⨯⨯=-=△,∴方程有两个相等的实数根.故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(0a ≠)的根的判别式24b ac =-△:当 >0,方程有两个不相等的实数根;当 =0,方程有两个相等的实数根;当 <0,方程没有实数根.5.C 【分析】根据△ABC ∽△DEF ,从而推出对应角相等求解.【详解】∵△ABC ∽△DEF ,∴3080A D B E C F ∠=∠=∠=∠=∠=∠ ,,,∵180D E F ∠+∠+∠= ,∴70.F ∠=故选:C.【点睛】考查相似三角形的性质,掌握相似三角形的对应角相等是解题的关键.6.D 【分析】先根据一次函数图象经过的象限得出a 、b 的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a <0,b >0,∴ab <0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.C【分析】直接根据平行线分线段成比例定理即可求解.【详解】∵EF//BC,13 AEAB=,∴13 AF AEAC AB==,故选:C.【点睛】本题考查了平行线分线段成比例定理,正确的识别图形是解题的关键.8.B【分析】先根据反比例函数与正比例函数的性质求出B点横坐标,再由函数图象即可得出结论.【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,∴A ,B 两点坐标关于原点对称,∵点A 的横坐标为2,∴B 点的横坐标为-2,∵k ax x<,∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方,∴2x <-或02x <<,故选:B .【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.9.B 【分析】A .利用对应边成比例,且夹角相等来判断即可;B .对应边成比例,但夹角不相等,不能证 ACP 与 ABC 全等;C .利用两角对应相等,两三角形全等,进行判定即可;D .利用两角对应相等,两三角形全等,进行判定即可.【详解】解:A .∵AC APAB AC =,∠A=∠A .∴ ACP ∽ ABC .B .PC ACBC AB=对应边成比例,但夹角不相等,不能证 ACP 与 ABC 全等.C .∵∠ACP=∠B,∠A=∠A .∴ ACP ∽ ABC .D .∵∠APC=∠ACB,∠A=∠A .∴ ACP ∽ ABC .故选:B .【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.注意:两边对应成比例必须夹角相等.10.D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3 x,故BO=x+3 x,OB2﹣OA2=(OD+BO)2﹣(OD2+AD2)=(x+3x)2﹣x2﹣29x=6.故答案为:D.【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键.11.A【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b时;结合韦达定理即可求解;【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412b ∴+=,8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根,1222a b ∴==,6a b ∴==,236m ∴+=,34m ∴=;故选A .【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.12.C【解析】设P 的坐标是1p p ⎛⎫ ⎪⎝⎭,,推出A 的坐标和B 的坐标,求出PA 、PB 的值,根据三角形的面积公式求出即可:∵点P 在1y=x 上,∴设P 的坐标是1p p ⎛⎫ ⎪⎝⎭,.∵PA ⊥x 轴,∴A 的横坐标是p .∵A 在2y=x -上,∴A 的坐标是2p p ⎛⎫- ⎪⎝⎭,.∵PB ⊥y 轴,∴B 的纵坐标是1p .∵B 在2y=x-上,∴12=p x -,解得:x=﹣2p .∴B 的坐标是(﹣2p ,1p).∴()123PA = PB p 2p =3p p p p⎛⎫=--=-- ⎪⎝⎭,.∵PA ⊥x 轴,PB ⊥y 轴,x 轴⊥y 轴,∴PA ⊥PB .∴△PAB 的面积是:1139PA PB 3p=22p 2⨯⨯=⨯⨯.故选C .13.1:3.【分析】由两个相似三角形的相似比为1:3,根据相似三角形周长的比等于相似比,即可求得答案.【详解】∵两个相似三角形的相似比为1:3,∴它们的周长比为:1:3.故答案为1:3.【点睛】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形周长的比等于相似比定理的应用是解此题的关键.14.34-【分析】利用分式加减法,计算原式,应用一元二次方程根与系数关系,求出12x x +和12x x ,代入求值即可.【详解】解:12121211x x x x x x ++=⋅由已知12x x +=3,12x x =-4代入,得1212121134x x x x x x =+⋅+=-故答案为:3 4-【点睛】本题考查一元二次方程根的分布与系数的关系和分数加减法,解答关键是根据相关法则进行计算即可.15.y=2 x【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】解:设A坐标为(x,y),∵B(2,﹣2),C(3,0),以OC,CB为边作平行四边形OABC,∴x+3=0+2,y+0=0﹣2,解得:x=﹣1,y=﹣2,即A(﹣1,﹣2),设过点A的反比例解析式为y=k x,把A(﹣1,﹣2)代入得:k=2,则过点A的反比例函数解析式为y=2 x,故答案为:y=2 x.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.(2,2)或(-2,-2)【分析】先求得反比例函数的解析式为4yx=,设C点的坐标为(x,4x),根据AC=BC得出方程,求出x即可.【详解】由图象可知:点A的坐标为(-1,-4),代入kyx=得:4k xy==,所以这个反比例函数的解析式是4y x =,设C 点的坐标为(x ,4x),∵A (-1,-4),B (-4,-1),AC=BC ,即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭,解得:2x =±,当2x =时,422y ==,当2x =-时,422y ==--,所以点C 的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.17.294.【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有49人患了流感,可求出x ,进而求出第三轮过后,又被感染的人数.【详解】解:设每轮传染中平均每人传染了x 人,1+x +x (x +1)=49x =6或x =−8(舍去).∴每轮传染中平均一个人传染了6个人,第三轮被传染的人数为:49×6=294(人).故答案为:294.【点睛】本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.18.3【分析】依据直线MN ∥BC ,可得△AMN ∽△ABC ,再根据直线MN 将△ABC 分为面积相等的两部分,即可得到S △AMN :S △ABC =1:2,进而得出12 ,22AM AB ==解得AM=3,过A 作AD ⊥BC 于D ,则132AD BC ==,故将线段AM 绕着点A 逆时针旋转45°,可以使点M 落在边BC 上的点D 处,此时132BD BC ==.【详解】∵△ABC 中,,906AB AC A BC ,,=∠==∴cos4532AB BC =⨯= ,∵直线MN ∥BC ,∴△AMN ∽△ABC ,∵直线MN 将△ABC 分为面积相等的两部分,∴S △AMN :S △ABC =1:2,∴12 ,22AM AB ==即2 ,232=解得AM =3,如图,过A 作AD ⊥BC 于D ,则132AD BC ==,∴将线段AM 绕着点A 逆时针旋转45 ,可以使点M 落在边BC 上的点D 处,此时,132BD BC ==.故答案为3.【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.19.(1)x 15x 25;(2)x 1=1,x 2=-23(1)根据配方法的运算步骤依次计算可得;(2)先移项,再提取公因式(x-1),得到两个一元一次方程,解出即可.【详解】(1)∵x 2-4x-1=0∴x 2-4x=1∴x 2-4x+4=1+4,即(x-2)2=5则x-2=∴x 1x 2(2)3x(x-1)=2-2x3x(x-1)+2(x-1)=0(x-1)(3x+2)=0∴x 1=1,x 2=-23【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k -=⨯,解得:3k =;(2)因为反比例函数k 1y x-=,在这个函数图象的每一分支上,y 随x 的增大而减小,所以10k ->,解得:1k >.本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy k =.也考查了反比例函数的性质.21.(1)a =−3,x 1=−3,;(2)a <1.【解析】试题分析:()1将1x =代入方程220x x a ++=得到a 的值,再根据根与系数的关系求出另一根;()2根的判别式0.∆>求出a 的取值范围即可.试题解析:()1将1x =代入方程220.x x a ++=得,1210a +⨯+=,解得: 3.a =-方程为2230.x x +-=设另一根为1,x 则113,x ⋅=-1 3.x =-()244a ∆=-,∵方程有两个不等的实根,0,∴∆>即440a >-,1.a ∴<22.见解析.【分析】由2BD AB BC =⋅可得AB BD =BD BC,可判定Rt △ABD ∽Rt △DBC ,然后由相似三角形对应角相等可得∠ABD=∠DBC.【详解】证明:∵2BD AB BC=⋅∴AB BD =BD BC∴Rt △ABD ∽Rt △DBC∴∠ABD=∠DBC【点睛】本题考查相似三角形的判定,熟练掌握直角三角形的斜边直角边对应成比例即可判定相似是解决本题的关键.23.(1)1y x =-;(2)32.【分析】(1)分别把A 的坐标代入反比例函数解析式求出a 的值,把A 的坐标代入一次函数解析式得出b 的值,即可求解;(2)先求得点B 的坐标,再求出一次函数与y 轴的交点D 的坐标,根据三角形的面积公式求出△AOD 和△BOD 的面积即可.【详解】(1)∵点A (a ,1)是反比例函数2y x=图象上的点,∴2y 1a ==,∴2a =,∴A (2,1),又∵点A 是一次函数y x b =+的图象上的点,∴12b =+,解得,b 1=-,故一次函数解析式为:1y x =-;(2)联立方程组:y x 12y x =-⎧⎪⎨=⎪⎩,解得:1212x 2x 1y 1y 2==-⎧⎧⎨⎨==-⎩⎩,,则()B 12--,,因为直线1y x =-与y 轴交点D 01)-(,,则1OD =,∴1131211222AOB AOD DOB S S S ∆∆∆=+=⨯⨯+⨯⨯=.【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数的解析式,函数的图象等知识点,熟练掌握待定系数法求函数解析式是解题的关键.24.(1)(180﹣3x )件;(2)①该商品的售价为30元/件;②李晨每天通过销售该工艺品捐款的数额为45元.【分析】(1)售价设为x 元,那么降低的价格就是40x -元,那么增加的销量是()340x -件,再加上原来的60件就得到表达式;(2)①根据利润=销量⨯(售价-成本)列方程求出售价;②根据①中算出的售价求出销量,从而算出捐款的数额.【详解】解:(1)∵该商品的售价为x 元/件(20≤x ≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x )=(180﹣3x )件;(2)①依题意,得:(x ﹣20)(180﹣3x )=900,整理,得:x 2﹣80x +1500=0,解得:x 1=30,x 2=50(不合题意,舍去),答:该商品的售价为30元/件;②0.5×(180﹣3×30)=45(元),答:李晨每天通过销售该工艺品捐款的数额为45元.【点睛】本题考查一元二次方程的应用题,解题的关键是根据题意找到等量关系,根据利润=销量⨯(售价-成本)列方程求解.25.∠ADE=95°【分析】由△ABC ∽△ADE ,∠C=40°,根据相似三角形的对应角相等,即可求得∠AED 的度数,又由三角形的内角和等于180°,即可求得∠ADE 的度数.【详解】∵△ABC ∽△ADE ,∠C=40°,∴∠AED=∠C=40°.在△ADE中,∵∠AED+∠ADE+∠A=180°,∠A=45°即40°+∠ADE+45°=180°,∴∠ADE=95°.【点睛】此题考查了相似三角形的性质与三角形内角定理.题目比较简单,注意相似三角形的对应角相等.26.(1)①BD=,BP=(2)4 5.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x.在Rt△BDC中,可得x2=(4﹣x)2+22,推出x的值,从而得出DN的长.由△BDN∽△BAM,可得DN BDAM AB=,由此求出AM.由△ADM∽△APE,可得AM ADAE AP=,由此求出AE的长,可得EC的长,由此即可解决问题.【详解】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB=∵AD=CD=2,∴BD=由翻折可知:BP=BA=②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD =AD =BC =2,∴四边形BCPD 是平行四边形.(2)如图2中,作DN ⊥AB 于N ,PE ⊥AC 于E ,延长BD 交PA 于M .设BD =AD =x ,则CD =4﹣x .在Rt △BDC 中,∵BD 2=CD 2+BC 2,∴x 2=(4﹣x )2+22,∴x =52.∵DB =DA ,DN ⊥AB ,∴BN =AN 在Rt △BDN 中,DN =2.由△BDN ∽△BAM ,可得DN BDAM AB =,∴522AM =,∴AM =2,∴AP =2AM =4.由△ADM∽△APE,可得AM AD AE AP=,∴5 224 AE=,∴AE=16 5,∴EC=AC﹣AE=4﹣165=45.易证四边形PECH是矩形,∴PH=EC=4 5.。

九年级数学上册第一学期期中综合测试卷(湘教版 2024年秋)

九年级数学上册第一学期期中综合测试卷(湘教版 2024年秋)

九年级数学上册第一学期期中综合测试卷(湘教版2024年秋)一、选择题(每题3分,共30分)题序12345678910答案1.若关于x 的方程(k -1)x 2+3x -2=0是一元二次方程,则k 的取值范围是()A .k ≠1B .k =1C .k ≠0D .k >12.下列各点在反比例函数y =-3x的图象上的是()A .(1,3)B .(-1,-3)C .(3,-1)D .(-3,-1)3.已知a b =34,则a +b b的值是()A .1B.43C.32D.744.用配方法解方程x 2-10x -1=0时,变形正确的是()A .(x -5)2=26B .(x +5)2=26C .(x -5)2=24D .(x +5)2=245.如图,已知AB ∥CD ∥EF ,AD ∶AF =3∶5,若BE =10,则CE 的长等于()A .4B .5C .6D .7(第5题)(第6题)6.如图,在四边形ABCD 中,已知∠ADC =∠BAC ,那么补充下列条件后不能判定△ADC 和△BAC 相似的是()A .CA 平分∠BCDB .AC 2=BC ·CDC .∠DAC =∠ABCD.AD AB =DC AC7.关于x 的一元二次方程x 2+kx +k -1=0的根的情况,下列说法中正确的是()A .有两个实数根B .有两个不相等的实数根C.有两个相等的实数根D.无实数根8.在同一坐标系中,函数y=-kx和y=kx+2的图象大致是()9.如图,某小区居民休闲娱乐中心是一块长方形(长60米,宽40米)的场地,被3条宽度相同的绿化带分为总面积为1750平方米的活动场所,设绿化带的宽度为x米,由题意可列方程为()(第9题)A.(60-x)(40-x)=1750B.(60-2x)(40-x)=1750C.(60-2x)(40-2x)=1750D.(60-x)(40-2x)=1750 10.如图,已知矩形ABCD与矩形BEFG是位似图形,原点O是位似中心,若点D的坐标为(-2,1),点F的坐标为(-8,2),则S矩形ABCD∶S矩形BEFG等于() A.1∶4B.1∶6C.1∶8D.1∶9(第10题)(第14题)二、填空题(每题3分,共18分)11.若函数y=(m+1)xm2-1是反比例函数,则m=________.12.若点A(-1,m),B(-2,n)在双曲线y=4x上,则m,n的大小关系是m________n. 13.若关于x的一元二次方程(k-2)x2-5x+k2-4=0有一个解为x=0,则k=________.14.三角尺在灯泡O的照射下在墙上形成的影子如图所示,若OA=25cm,AA′=50cm,则这个三角尺的周长与它在墙上的影子的周长的比是__________.15.已知m,n是方程x2+3x-6=0的两根,则(m-2)(n-2)的值为________.16.如图,反比例函数y=-6x在第二象限的图象上有两点A,B,它们的横坐标分别为-1,-3,直线AB与x轴交于点C,则△AOC的面积为________.(第16题)三、解答题(17~20题每题6分,21~23题每题8分,24~25题每题12分,共72分)17.解方程:(1)x(x+3)=7(x+3);(2)x2-4x-7=0.18.已知反比例函数y=2-kx的图象经过点A(3,-2).(1)求k的值;<x2,请(2)若点C(x1,y1),B(x2,y2)均在反比例函数y=2-kx的图象上,且0<x1直接写出y1,y2的大小关系.19.如图,O为原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以O 为位似中心,在y 轴左侧将△OBC 放大2倍,得到△OB ′C ′,请画出图形(B ,C 两点的对应点分别为B ′,C ′);(2)分别写出点B ′,C ′的坐标;(3)已知M (x ,y )为△OBC 内部一点,写出点M 的对应点M ′的坐标.(第19题)20.如图,在平面直角坐标系xOy 中,菱形OABC 的顶点A 在x 轴的正半轴上,反比例函数y =12x(x >0)的图象经过点C (3,m ).(1)求菱形OABC 的周长;(2)求点B 的坐标.(第20题)21.当今社会,“直播带货”已经成为商家的一种新型的促销手段.小亮在直播间销售一种进价为每件10元的日用品,经调查发现,该日用品每天的销售量y(件)与销售单价x(元)满足一次函数关系,部分数据如下表:销售单价x/元202530销售量y/件200150100(1)求y与x之间的函数表达式;(2)该商家每天想获得2160元的利润,又要尽可能地减少库存,应将销售单价定为多少元?22.关于x的一元二次方程x2-(2k-1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1,x2满足x1+x2=-x1x2,求k的值.23.如图①是一个台球桌,其桌面示意图如图②所示,矩形桌面ABCD中,AD =260cm,AB=130cm,球目前在点E的位置,AE=60cm.如果小丁瞄准BC 边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置,求BF的长.(提示:台球的反弹原理是反射角等于入射角)(第23题)24.阅读以下文字并解答问题:在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:(第24题)小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图①).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图②),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小明:测得丙树落在地面上的影长为2.4米,落在坡面上的影长为3.2米(如图③).身高是1.6米的小明站在坡面上,影子也都落在坡面上,小芳测得他的影长为2米.(1)甲树的高度为________米,乙树的高度为________米;(2)请求出丙树的高度.25.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合),以AD为边作菱形ADEF(A,D,E,F按逆时针排列),使∠DAF=60°,直线EF与直线BC交于点H.(1)如图①,当点D在边BC上时,试说明:AD2=DH·AC;(2)如图②,当点D在边BC的延长线上且其他条件不变时,结论AD2=DH·AC是否还成立?若成立,请说明理由;若不成立,请写出AD、DH、AC之间存在的数量关系;(3)如图③,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AD、DH、AC之间存在的数量关系.(第25题)答案一、1.A 2.C 3.D 4.A 5.A 6.B7.A8.D9.B10.A二、11.012.<13.-214.1∶3思路点睛:先求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.15.416.12点拨:因为反比例函数y=-6x在第二象限的图象上有两点A,B,它们的横坐标分别为-1,-3,所以易得A(-1,6),B(-3,2).设直线AB的表达式为y=kx+b k+b=6,3k+b=2,=2,=8,所以直线AB的表达式为y=2x+8,令y=0,则x=-4,所以CO=4,所以△AOC的面积为12×6×4=12.三、17.解:(1)移项,得x(x+3)-7(x+3)=0,所以(x+3)(x-7)=0,所以x+3=0或x-7=0,解得x1=-3,x2=7.(2)移项,得x2-4x=7,配方,得x2-4x+4=7+4,所以(x-2)2=11,所以x-2=±11,解得x1=11+2,x2=-11+2.18.解:(1)将点A(3,-2)的坐标代入y=2-kx,得-2=2-k3,解得k=8.(2)y1<y2.(第19题)19.解:(1)如图,△OB′C′即为所求.(2)B′(-6,2),C′(-4,-2).(3)点M′的坐标为(-2x,-2y).20.解:(1)因为反比例函数y=12x(x>0)的图象经过点C(3,m),所以m=4,所以C(3,4).作CD⊥x轴于点D,所以OD=3,CD=4,所以由勾股定理,得OC=OD2+CD2=5.所以菱形OABC的周长是4×5=20.(2)作BE⊥x轴于点E,因为四边形OABC是菱形,所以BC=OC=5,所以OE=OD+BC=3+5=8.因为BC∥OA,所以BE=CD=4,所以B(8,4).21.解:(1)根据题意可设y与x之间的函数表达式为y=kx+b,把(20,200),(25,150)代入,20k+b=200,25k+b=150,k=-10,b=400,故y与x之间的函数表达式为y=-10x+400.(2)根据题意可得(-10x+400)(x-10)=2160,整理得x2-50x+616=0,解得x1=28,x2=22.因为要减少库存,所以取x=22.答:应将销售单价定为22元.22.解:(1)根据题意,得Δ=[-(2k-1)]2-4×1×(k2+1)=-4k-3>0,解得k<-34.(2)因为x1+x2=2k-1,x1x2=k2+1,x1+x2=-x1x2,所以2k-1=-(k2+1),整理得k2+2k=0.解得k1=0,k2=-2,因为k<-34,所以k=-2.23.解:∵四边形ABCD 为矩形,∴∠EBF =∠FCD =90°,AD =BC =260cm ,AB =CD =130cm.过点F 作FG ⊥BC ,如图,易知∠EFG =∠DFG ,∴∠EFB =∠DFC ,∴△BEF ∽△CDF ,∴BE CD =BF CF.∵AE =60cm ,∴BE =AB -AE =70cm ,∴70130=BF 260-BF,解得BF =91cm.即BF 的长是91cm.(第23题)(第24题)24.解:(1)5.1;4.2(2)如图,假设AB 是丙树,BF 为丙树落在地面上的影长,FE 为丙树落在坡面上的影长,CD 为小明,CE 为小明落在坡面上的影长,则BF =2.4米,FE =3.2米,CD =1.6米,CE =2米.延长BF 交AE 于点H ,作FG ⊥BF ,交AE 于点G ,由小芳的测量方法易知FG FH =10.8=54.∵易知CD ∥FG ,∴△CDE ∽△FGE ,∴CD FG =CE FE ,∴1.6FG =23.2,∴FG =2.56米.∴FH =2.048米.∵易知GF ∥AB ,∴△FGH ∽△BAH ,∴FG BA =FH BH ,∴2.56BA = 2.0482.4+2.048,∴BA =5.56米,故丙树的高度为5.56米.25.解:(1)∵四边形ADEF 是菱形,∠DAF =60°,∴AD ∥EF ,∠DAF =∠E =60°,AD =DE ,∴∠ADC =∠DHE .∵△ABC 是等边三角形,∴∠ACD =60°,∴∠ACD =∠E ,∴△ACD ∽△DEH ,∴AD DH =AC DE ,即AD DH =ACAD,∴AD 2=DH ·AC .(2)成立.理由如下:∵四边形ADEF 是菱形,∠DAF =60°,∴AD ∥EF ,∠DAF =∠DEF =60°,AD =DE ,∴∠ADC =∠DHE ,∠DEH =120°.∵△ABC 是等边三角形,∴∠ACB =60°,11∴∠ACD =120°,∴∠ACD =∠DEH,(第25题)∴△ACD ∽△DEH ,∴AD DH =AC DE ,即AD DH =AC AD,则AD 2=DH ·AC .(3)补全图形如图,数量关系为AD 2=DH ·AC .。

湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列函数:①y =2x ,②y =15x,③y =x ﹣1,④y =11x +.其中,是反比例函数的有()A .0个B .1个C .2个D .3个2.如图,点C 是线段AB 的黄金分割点,则下列各式正确的是()A .AC ABBC AC =B .BC ACAB BC =C .AC ABAB BC=D .BC ACAB AB=3.若250y x -=,则x y :等于()A .2:5B .4:25C .5:2D .25:44.若反比例函数y=1k x-的图象位于第二、四象限,则k 的取值可以是()A .0B .1C .2D .以上都不是5.已知sin =αα是锐角,则α∠的度数是()A .30°B .45°C .60°D .90°6.关于反比例函数y =2x的图象,下列说法正确的是()A .图象经过点(1,1)B .当x <0时,y 随x 的增大而减小C .图象的两个分支关于x 轴成轴对称D .图象的两个分支分布在第二、四象限7.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC=D .AB ACBP CB=8.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)9.如图,双曲线y=kx与直线y=﹣12x交于A、B两点,且A(﹣2,m),则点B的坐标是A.(2,﹣1)B.(1,﹣2)C.(12,﹣1)D.(﹣1,12)10.关于x的函数y=k(x+1)和y=kx(k≠0)在同一坐标系中的图象大致是()A.B.C.D.11.反比例函数y=6x与y=3x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.32B.2C.3D.112.若函数y=(m﹣1)x|m|﹣2是反比例函数,则m的值是()A.m=﹣1B.m=1C.m=﹣1或m=1D.m=﹣2或m=2二、填空题13.若反比例函数y=kx的图象经过点(-1,2),则k的值是________.14.(1)在△ABC中,∠C=90°,sin A=12,则cos B=_____;(2)已知α为锐角,且cos(90°﹣α)=12,则a=_____;(3(α+10°)=1,则锐角a=_____.15.在△ABC中,若2sin cos02A B⎛⎫=⎪⎪⎝⎭,∠A、∠B都是锐角,则∠C的度数为_______.16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为___米.17.如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=kx(k>0)的图象上,那么y1,y2,y3的大小关系是________(请用“<”表示出来)18.在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为1:2,把△EFO缩小,则点E的对应点E′的坐标是______.三、解答题19.计算(1)0112()2-++(2)cos45sin301cos60tan452︒︒︒︒-+.20.如图,O是CD的中点.以O为位似中心,用直尺和圆规作四边形ABCD的一个位似图形,使四边形ABCD的边长放大到原来的2倍.(保留作图痕迹,不必写出作法)21.以点O为位似中心,作出四边形ABCD的位似图形,使得所作图形与原图形的位似比为2:1.22.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c(1)已知a=6,b=3(2)已知∠B=45°,a+b=6,解这个直角三角形(3)已知sin A=12,c=6,解这个直角三角形.23.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)请你根据位似的特征并结合点B的坐标变化回答下列问题:①若点A(52,3),则A′的坐标为______;②△ABC与△A′B′C′的相似比为______;(2)若△ABC的面积为m,求△A′B′C′的面积.(用含m的代数式表示)24.如图,四边形ABCD中,∠B=∠D=90°,∠A=120°,AB=12,CD=AD 的长.25.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与周长.26.如图,已知反比例函数y1=kx的图象与一次函数y2=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求反比例函数和一次函数的表达式;(2)求△OAB的面积;(3)直接写出y 2>y 1时自变量x 的取值范围.27.如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 是安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪AB 的高为1.5米,求拉线CE ,结果精确到0.1米)28.如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.参考答案1.C 【解析】此题应根据反比例函数的定义,解析式符合()0ky k x=≠的形式为反比例函数.【详解】解:①是正比例函数,故A 选项错误;②是反比例函数,故B 选项正确;③是反比例函数,故C 选项正确;④y 是x+1的反比例函数,故D 选项错误.故选:C .【点睛】本题考查了反比例函数的定义,重点是将一般()0ky k x=≠转化为y=kx -1(k≠0)的形式.2.B 【分析】根据黄金分割性质即可解题.【详解】∵点C 是线段AB 的黄金分割点,由图可知,AC 为较短边,∴BC ACAB BC=故选B 【点睛】本题考查了黄金分割的性质,属于简答题,熟悉黄金分割的性质是解题关键.3.A 【详解】∵250y x -=,∴25y x =,∴:2:5=x y .故选A .4.A 【详解】∵反比例函数y=1k x-的图象位于第二、四象限,∴k﹣1<0,即k<1.故选A.5.C【分析】根据60°角的正弦值等于2解答.【详解】解:∵sinα=α是锐角,∴α=60°,故选C.【点睛】本题考查了特殊角的三角函数值,是需要熟记的知识点.6.B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k可得A错误;根据反比例函数y=k x(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得B正确、D错误;根据反比例函数图象关于原点成中心对称可得C 错误.【详解】解:A、1×1=1≠2,因此反比例函数y=2x的图象不过(1,1),故此选项错误;B、∵k=2>0,∴在图象每一支上,y随x的增大而减小,∴当x<0时,y随x的增大而减小,故此选项正确;C、图象的两个分支关于原点对称,故此选项错误;D、图象的两个分支分布在第一、三象限,故此选项错误;故选:B.【点睛】此题主要考查了反比例函数的性质,关键是掌握(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.7.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.8.A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是1 3,∴OD DC OB AB=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.9.A【分析】利用待定系数法求出点A的坐标,再连立方程组求出点B的坐标即可判断.【详解】解:当x=﹣2时,y=1(2)2-⨯-=1,即A (﹣2,1),将A 点坐标代入k y x=,得k=﹣2×1=﹣2,反比例函数的解析式为2y x-=,联立双曲线、直线,得212y xy x -⎧=⎪⎪⎨⎪=-⎪⎩,解得:1121x y =-⎧⎨=⎩,2221x y =⎧⎨=-⎩,B (2,﹣1).故选A .【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握基本知识,属于中考常考题型.10.D 【详解】试题分析:当k >0时,函数y=kx的图像在一三象限,函数y=k (x+1)=kx+k 的图像经过一二三象限,所以选项A 、C 错误;当k <0时,函数y=kx的图像在二四象限,函数y=k (x+1)=kx+k 的图像经过二三四象限,所以选项B 错误,选项D 正确,故选D.考点:1.一次函数图像;2.反比例函数的图像.11.A 【分析】分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3,S △BOC =32,再利用面积相减的关系求出答案.【详解】分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3,S △BOC =32,∴S △AOB =S 四边形OEAC ﹣S △AOE ﹣S △BOC =6﹣3﹣32=32.故选:A .【点睛】此题考查反比例函数的系数k 的几何意义,根据函数图象作出对应的三角形或矩形,利用系数k 求出对应图象的面积是解题的关键.12.A【分析】令x 的指数为-1,系数不为0列式求值即可.【详解】解:由题意得:2110m m ⎧-=-⎨-≠⎩,解得m=-1,故选:A .【点睛】本题考查反比例函数的定义;反比例函数解析式的一般形式y =k x(k≠0),也可转化为y=kx -1(k≠0)的形式;注意不要忽略k≠0.13.-2【分析】由反比例函数k y x=可得=k xy ,将坐标(-1,2)代入即可得出答案.【详解】∵反比例函数y =k x 的图象经过点(-1,2)∴=12=2=-⨯-k xy 故答案为:2-.【点睛】本题考查求反比例函数系数,熟练掌握反比例函数上的点横纵坐标之积即为k是关键.14.1230°20°【分析】(1)根据特殊角的三角函数值求出∠A的度数,根据三角形的内角和定理求出即可;(2)根据特殊角的三角函数值求出90°-α的度数,即可求出答案;(3)求出tan(α+10°)=3,根据特殊角的三角函数值求出α+10°=30°,即可得出答案.【详解】解:(1)∵sinA=12,∴∠A=30°,∵∠C=90°,∴∠B=60°,∴cosB=12.故答案为:12;(2)∵cos(90°-α)=12,∴90°-α=60°,∴α=30°.故答案为:30°;(3(α+10°)=1,∴tan(α+10°)∴α+10°=30°,∴α=20°.故答案为:20°.【点睛】本题考查了三角形内角和定理,特殊角的三角函数值的应用,能熟记特殊角的三角函数值是解此题的关键.15.105°【分析】已知2sin cos 02A B ⎛⎫+-= ⎪ ⎪⎝⎭,根据非负数的性质可得sin 0A =cos 0B =,即可得sin 2A =,cos 2B =.根据特殊角的三角函数值求得∠A 、∠B 的度数,再利用三角形的内角和定理求∠C 得度数即可.【详解】∵2sin cos 0A B ⎫+-=⎪⎪⎝⎭,∴sin 02A -=,cos 02B -=即sin 2A =,cos 2B =.又∵∠A 、∠B 均为锐角,∴∠A =45°,∠B =30°,在△ABC 中,∠A+∠B+∠C =180°,∴∠C =105°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出sin 2A =,cos 2B =,解决问题时还要熟知特殊角的三角函数值.16.5【详解】根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB AM OC OA AM =+,即1.6AM 820AM=+,解得AM=5.∴小明的影长为5米.17.y 2<y 1<y 3【分析】利用反比例函数的增减性可比较y 1、y 2,再利用函数值的正负可得出y 3为正数,可求得答案.【详解】∵y=k x (k >0),∴函数图象在每个象限内y 随x 的增大而减小,∵A (-2,y 1),B (-1,y 2),∴y2<y1<0,∵C(2,y3),∴y3>0,∴y2<y1<y3,故答案为y2<y1<y3.【点睛】本题主要考查反比例函数的性质,掌握反比例函数的增减性是解题的关键,即在y=kx中,当k>0时,在每个象限内y随x的增大而减小,当k<0时,在每个象限内y随x的增大而增大.18.(-2,1)或(2,-1).【分析】根据已知得出位似图形对应坐标与位似图形比的关系进而得出答案.【详解】解:∵顶点E的坐标是(-4,2),以原点O为位似中心相似比为1:2将△EFO缩小得到它的位似图形△E′F′O,∴点E′的坐标是:(12×(-4),12×2),[-12×(-4),-12×2],即(-2,1)或(2,-1).故答案为(-2,1)或(2,-1).【点睛】本题考查位似图形的性质,根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k得出是解题的关键.19.(1)4-2;(2)1 22【分析】(1)先进行幂的计算,然后按照实数的混合运算顺序计算即可.(2)将特殊角的三角函数值代入,然后按照实数的混合运算顺序计算即可.【详解】解:(1)原式=4-2;(2)原式=122 1122+=122-【点睛】本题考查实数的运算能力.关键是熟记特殊角的三角函数值,并注意细心运算.20.见解析【分析】根据题意位似中心已知为O,则延长OD,OA,0B,OC,根据相似比,确定所作的位似图形的关键点D',A',B',C',再顺次连接所作各点,即可得到放大一倍的图形四边形A'B'C'D'.【详解】解:如图所示.【点睛】本题主要考查了位似图的画法,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.21.见解析【分析】根据画位似图形的一般步骤,画出图形即可.【详解】解:如图,连接DO延长DO到D′,使得OD′=2OD,连接AO,延长AO到A′,使得OA′=2OA,连接BO,延长BO到B′,使得OB′=2OB,连接CO,延长CO到C′,使得OC′=2OC,则四边形A′B′C′D′就是所1求作的四边形.【点睛】本题考查作图-位似图形,解题的关键是记住画位似图形的一般步骤,利用相似三角形的性质解决问题2倍关系,属于中考常考题型.22.(1)43c =(2)3a b ==,32c =(3)3a =,33b =【分析】(1)直角三角形中知两边,求第三边,运用勾股定理即可(2)45B ∠=︒,即a b =,6a b +=,即可知3a b ==.再运用勾股定理即可(3)1sin 2a A c ==,其中6c =,即可求解.【详解】解:依题意(1)在Rt ABC 中,90C ∠=︒,6a = ,23b =∴根据勾股定理222+=a b c 得,22226(23)43c a b +=+=43c ∴=;(2)45B ∠=︒ ,Rt ABC ∴ 为等腰直角三角形,6a b += ,3a b ∴==,∴根据勾股定理得,22223332c a b ++=∴32c =∴此三角形的三边分别为:a =,b =6c =;(3) 在ABC 中,90C ∠=︒,1sin 2a A c ∴==,6c = ,132a c ∴==,根据勾股定理得.b =,∴此三角形的三边分别为:3a =,b =6c =.【点睛】此题主要考查直角三角形勾股定理的运用,要掌握三角形“知二求三”的技巧,熟练运用勾股定理.23.(1)①(5,6),②1:2;(2)4m 【分析】(1)①观察点B 点和B′点的坐标得到位似比为2,然后根据此规律确定A′的坐标(5,6);②利用对应点坐标的变化即可得出相似比;(2)利用位似图形面积比等于相似比的平方进而得出答案.【详解】解:(1)①∵△ABC 和△A′B′C′是以坐标原点O 为位似中心的位似图形,∵点B (3,1),B′(6,2),∴位似比为2,∴若点A (52,3),则A′的坐标(5,6);②△ABC 与△A′B′C′的相似比为1:2;故答案为(5,6),1:2;(2)∵△ABC 与△A'B'C'的相似比为1:2∴ABC 1A'B'C'4S S = ,而△ABC 的面积为m ,∴△A′B′C′的面积=4m .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .24.6【分析】延长DA 交CB 的延长线于E ,根据已知条件得到∠ABE=90°,根据邻补角的定义得到∠EAB=60°,得到∠E=30°,根据直角三角形的性质即可得到结论.【详解】解:延长DA 交CB 的延长线于E ,∵∠ABC=90°,∴∠ABE=90°,∵∠DAB=120°,∴∠EAB=60°,∴∠E=30°,∴AE=2AB=24,∵∠D=90°,∴∠C=60°,∴CD=30,∴AD=DE-AE=6.【点睛】本题考查了含30°角的直角三角形,正确的作出辅助线是解题的关键.25.(1)见解析;(2)边长为1207cm ,周长为4807cm 【分析】(1)根据四边形EFGH 是正方形,得到//EH BC ,进而得出AEH B ∠=∠,AHE C ∠=∠,即可判定AEH ABC ∽△△;(2)设正方形EFGH 的边长为x ,则DM x =,30AM x =-,根据AEH ABC ∽△△,得出D EH BC AM A =,即304030x x -=,进而解得1207x =,即可得出正方形的边长与周长.【详解】解:(1) 四边形EFGH 是正方形,//EH BC ∴,AEH B ∠∠∴=,AHE C ∠=∠,AEH ABC ∴ ∽;(2)如图,设AD 与EH 交于点M ,90EFD FEM FDM ∠=∠=∠=︒ ,∴四边形EFDM 是矩形,EF DM ∴=,设正方形EFGH 的边长为x ,则DM x =,30AM x =-,AEH ABC ∽,∴D EH BC AM A =,即304030x x -=,解得1207x =,∴正方形EFGH 的边长为1207cm ,周长为4807cm .【点睛】本题主要考查了相似三角形的判定与性质,正方形、矩形的性质的综合应用,解决问题的关键是运用相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比列方程求解.26.(1)反比例函数解析式为y 1=4x,一次函数得到解析式为y 2=x +3;(2)7.5;(3)当﹣4<x <0或x >1时,y 2>y 1【分析】(1)由题意把点A坐标代入反比例函数求出m的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出n的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)根据题意先求出直线与x轴的交点坐标,从而x轴把△AOB分成两个三角形,结合点A、B的纵坐标分别求出两个三角形的面积,进而相加即可;(3)根据函数的图象结合函数图象的性质进行分析求得即可.【详解】解:(1)点A(1,4)在反比例函数y1=kx的图象上,∴k=1×4=4,∴反比例函数的表达式为y1=4 x,∵点B(﹣4,n)也在反比例函数y1=4x的图象上,∴n=44-=﹣1,即B(﹣4,﹣1),把点A(1,4),点B(﹣4,﹣1)代入一次函数y2=kx+b中,可得441k bk b+=⎧⎨-+=-⎩,解得13kb=⎧⎨=⎩,∴一次函数的表达式为y2=x+3;故反比例函数解析式为y1=4x,一次函数得到解析式为y2=x+3;(2)设直线与x轴的交点为C,在y2=x+3中,当y=0时,得x=﹣3,∴直线y2=x+3与x轴的交点为C(﹣3,0),∵线段OC将△AOB分成△AOC和△BOC,∴S△AOB =S△AOC+S△BOC=12×3×4+12×3×1=7.5;(3)从图象看,当﹣4<x<0或x>1时,y2>y1.【点睛】本题考查反比例函数与一次函数图象的交点问题,待定系数法求函数解析式,注意掌握此类题目的求解一般都是先把已知点的坐标代入反比例函数表达式求出反比例函数解析式,然后再求一次函数解析式.27.5.7米【分析】由题意可先过点A 作AH CD ⊥于H .在Rt ACH ∆中,可求出CH ,进而CD CH HD CH AB =+=+,再在Rt CED ∆中,求出CE 的长.【详解】解:过点A 作AH CD ⊥,垂足为H ,由题意可知四边形ABDH 为矩形,30CAH ∠=︒,1.5AB DH ∴==,6BD AH ==,在Rt ACH ∆中,tan CH CAH AH∠=,tan CH AH CAH ∴=∠ ,·tan 6tan 306CH AH CAH ∴=∠=︒==(米),1.5DH =Q ,1.5CD ∴=,在Rt CDE ∆中,60CED ∠=︒Q ,sin CD CED CE ∠=,4 5.7sin 60CD CE ∴==+︒(米),答:拉线CE 的长约为5.7米.【点睛】本题考查了解直角三角形的应用—仰角俯角问题.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.28.(1)152y x =+;(2)1或9.【详解】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=12x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b kb=-+⎧⎪⎨-=⎪-⎩,解得412 bk=⎧⎪⎨=⎪⎩,所以一次函数的表达式为y=12x+5.(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=12x+5-m.由8152yxy x m⎧=-⎪⎪⎨⎪=+-⎪⎩得,12x2+(5-m)x+8=0.Δ=(5-m)2-4×12×8=0,解得m=1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.。

湘教版数学(2024)九年级上册期中试卷(含答案)

湘教版数学(2024)九年级上册期中试卷(含答案)

湘教版数学九年级上册期中试卷一、单选题1.下列方程中,是关于x的一元二次方程为( )A.x2﹣4x+5=0B.x2+x+1=yC.+8x﹣5=0D.(x﹣1)2+y2=32.一元二次方程(x﹣1)2=25可以转化为两个一元一次方程,其中一个一元一次方程是x﹣1=5,则另一个一元一次方程是( )A.x+1=﹣5B.x+1=5C.x﹣1=﹣5D.x﹣1=53.反比例函数y=−8的图象一定经过的点是( )xA.(−1,8)B.(1,8)C.(4,2)D.(−2,−4)4.如图,身高为1.6m的吴格霆想测量学校旗杆的高度,当她站在C处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0m,BC=8.0m,则旗杆的高度是( )A.6.4m B.7.0m C.8.0m D.9.0m5.下列方程是一元二次方程的是( )+x2=2 A.3x+1=0B.x2﹣3=0C.y+x2=4D.1x6.如图,一支反比例函数y=k的图象经过点A,作AB⊥x轴于点B,连接OA,若S△AOB=3,x则k的值为( )A.3B.﹣3C.6D.﹣67.如图,反比例函数y= (k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是( )A.B.C.D.8.代数式x2+4x+5的最小值是( )A.5B.1C.4D.没有最小值9.用配方法将方程x2-4x+3= 0化成(x+a)2=b的形式,则b的值是( )A.1B.-1C.7D.-710.一款简易电子秤的工作原理:一个装有踏板(踏板质量忽略不计)的可变电阻R2,R2与踏板人的质量m之间的函数关系式为R2=−2m+240(0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为12伏,定值电阻R1的阻值为60欧,接通开关,人站上踏板,电流表显示的读数为I 安,该读数可以换算为人的质量m,电流表量程为0~0.2安(温馨提示:导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=UR),则下面结论错误的为( )A.用含I的代数式表示m为m=150−6IB.电子体重秤可称的最大质量为120千克C.当m=115时,若电源电压U为12(伏),则定值电阻R1最小为70(欧)D.当m=115时,若定值电阻R1为40(欧),则电源电压U最大为10(伏)二、填空题11.一元二次方程2x2+4x−1=0的二次项系数、一次项系数及常数项之和为 .12.若函数y=3x的图象经过点(1,m),则m的值是 .13.关于x的方程2kx2+3x+1=0有两实根,则k的取值范围 .14.如图,已知直线a//b//c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果AC=3,CE=5,DF=4,那么BD= .15.已知(m,n)是函数y= 3x与y=x﹣2的一个交点,则代数式m2+n2﹣3mn的值为 .16.如图,△ABC是等腰三角形,AB过原点O,底边BC∥x轴,双曲线y=kx过A,B两点,过点C作CD∥y轴交双曲线于点D.若S△BCD=12,则k的值是 .三、计算题17.用适当的方法解下列方程:(1)3x2−27=0(2)x2−4x+1=018.解方程:x(x−4)=2.19.先化简,再求值:m−33m2−6m ÷ (m+2−5m−2),其中m是方程x2+2x﹣3=0的根.四、解答题20.如图,依靠一面长18米的墙,用38米长的篱笆围成一个矩形场地ABCD,设AD长为x米.(1)用含有x的代数式表示AB的长,并直接写出x的取值范围;(2)当矩形场地的面积为180平方米时,求AD的长.21.随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆.若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆?22.如图,一次函数y =−x +4的图象与反比例函数y =k x(k 为常数,k ≠0)的图象交于A(1,a),B 两点.(1)求反比例函数的表达式;(2)若BE ⊥y 于点E ,求△BOE 的面积;(3)在x 轴上找一点P ,使PA +PB 的值最小,求满足条件的点P 的坐标.23.直线l 1:y =−x +4与y 轴交于点C ,反比例函数y =a x的图象交于点A (m,3)、B .(1)求a 的值及B 的坐标;(2)在x 轴上存在点D ,使S △ACD =32S △AOC ,求点D 的坐标;(3)如图2,将反比例函数y =a x的图象沿直线l 1:y =−x +4翻折得到一个封闭图形(图中阴影部分),若直线l 2:y =kx +4与此封闭图形有交点,求出满足条件的k 的取值范围.答案解析部分1.【答案】A【知识点】一元二次方程的定义及相关的量2.【答案】C【知识点】直接开平方法解一元二次方程3.【答案】A【知识点】反比例函数图象上点的坐标特征4.【答案】C【知识点】两条直线被一组平行线所截,所得的对应线段成比例5.【答案】B【知识点】一元二次方程的定义及相关的量6.【答案】D【知识点】反比例函数系数k的几何意义7.【答案】D【知识点】反比例函数的图象;一次函数图象、性质与系数的关系8.【答案】B【知识点】配方法的应用9.【答案】A【知识点】配方法解一元二次方程10.【答案】C【知识点】反比例函数的性质;列反比例函数关系式11.【答案】5【知识点】一元二次方程的定义及相关的量12.【答案】3【知识点】反比例函数的概念13.【答案】k≤9且k≠08【知识点】一元二次方程根的判别式及应用14.【答案】125【知识点】两条直线被一组平行线所截,所得的对应线段成比例15.【答案】1【知识点】反比例函数与一次函数的交点问题16.【答案】−92【知识点】等腰三角形的性质;两条直线被一组平行线所截,所得的对应线段成比例17.【答案】(1)x1=3,x2=−3;(2)x1=2+3,x2=2−3;【知识点】直接开平方法解一元二次方程;配方法解一元二次方程18.【答案】解:x(x−4)=2,x2−4x=2x2−4x+4=6(x−2)2=6x−2=±6x=2±6∴x1=2+6,x2=2−6.【知识点】配方法解一元二次方程19.【答案】解:m−33m2−6m ÷ (m+2−5m−2)=m−33m(m−2)÷(m+3)(m−3)m−2=13m(m+3)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式=13m(m+3)=13×1×(1+3)= 112【知识点】分式的化简求值;因式分解法解一元二次方程20.【答案】(1)AB=38−2x(10≤x<19)(2)10米【知识点】一元一次不等式组的应用;一元二次方程的应用-几何问题21.【答案】该小区到2012年底电动自行车将达到216辆【知识点】一元二次方程的实际应用-百分率问题22.【答案】(1)y=3x(2)3 2(3,0【知识点】反比例函数系数k的几何意义;待定系数法求反比例函数解析式;反比例函数与一次函数的交点问题;轴对称的性质23.【答案】(1)a=3;B(3,1)(2)点D的坐标为(10,0)或(−2,0)(3)−43≤k≤−34【知识点】待定系数法求反比例函数解析式;反比例函数与一次函数的交点问题。

湘教版九年级上册数学期中考试试卷及答案详解

湘教版九年级上册数学期中考试试卷及答案详解

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.反比例函数7y x=的图象分布在()A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限2.若()2223a a x --=是关于x 的一元二次方程,则a 的值是()A .0B .2C .-2D .±23.若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是A .B .C .D .4.如右图:直线3y x =-+与y 轴交于点A ,与反比例函数ky x=的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的表达式为()A .4y x=B .4y x=-C .2y =D .1y x=-5.若关于x 的一元二次方程22(1)5320m x x m m -++-+=有一个根为0,则m 的值()A .0B .1或2C .1D .26.一元二次方程x 2+kx ﹣3=0的一个根是x =1,则k 的值为()A .2B .﹣2C .3D .﹣37.如图,在宽度为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540m 2,求道路的宽.如果设小路宽为xm ,根据题意,所列方程正确的是()A.(20+x)(32﹣x)=540B.(20﹣x)(32﹣x)=100C.(20﹣x)(32﹣x)=540D.(20+x)(32﹣x)=5408.若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3B.1:9C.3:1D.139.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是()A.B.C.D.10.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m二、填空题11.如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM的面积为1,则反比例函数的解析式为_______.12.若点A (-2,-2)在反比例函数ky x=的图象上,则当函数值y ≥-2时,自变量x 的取值范围是_________________13.一元二次方程x 2+5x +6=0的根是_______________14.若关于x 的一元二次方程x 2+2x +a =0有两个不同的实数根,则a 应满足的条件_________________15.如图,两个反比例函数4y x =和2y x=在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,PA ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为_____.16.如图,点E 在线段AB 上,CA ⊥AB 于点A ,DB ⊥AB 于点B ,AC=1,AB=5,EB=2,点P 是射线BD 上的一个动点,则当BP=_____时,△CEA 与△EPB 相似.三、解答题17.解下列方程:(1)2x 2-x =0(2)x 2-4x =4(3)6x +9=2x 2(4)4y 2-4y -2=018.已知等腰三角形的一边长为3,它的其它两边长恰好是关于x 的一元二次方程x 2-8x+m=0的两个实数根,求m 的值.19.新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?20.如图,在△ABC 中,AB =8cm ,BC =16cm ,点P 从点A 开始沿边AB 向点B 以2cm/s 的速度移动,点Q 从点B 开始沿边BC 向点C 以4cm/s 的速度移动,如果点P 、Q 分别从点A 、B 同时出发,经几秒钟△PBQ 与△ABC 相似?试说明理由.21.如图,BD 、AC 相交于点P ,连接BC 、AD ,且∠1=∠2,求证:△ADP ∽△BCP .22.如图,D 为△ABC 内一点,E 为△ABC 外一点,且满足AB BC ACAD DE AE==,求证:△ABD ∽△ACE .23.(1)如图,过反比例函数(0)ky x x=>图象上任意一点P (x ,y ),分别向x 轴与y 轴作垂线,垂线段分别为PA 、PB ,证明:OAPB S k =矩形,12OAP S k ∆=,12OPB S k ∆=.(2)如图,反比例函数(0)k y x x=>的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,求k 的值.24.反比例函数ky x=在第一象限上有两点A ,B .(1)如图1,AM ⊥y 轴于M ,BN ⊥x 轴于N ,求证:△AMO 的面积与△BNO 面积相等;(2)如图2,若点A(2,m),B(n,2)且△AOB 的面积为16,求k 值.参考答案1.B 【分析】直接根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数7y x=中,70k =>,∴此函数图象的两个分支分别位于第一、三象限.故选B .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解题的关键.2.C 【详解】由题意得:222,20a a -=-≠,解得:a=-2.故选C.3.B 【分析】根据ab <0及正比例函数与反比例函数图象的特点,可以从a >0,b <0和a <0,b >0两方面分类讨论得出答案.【详解】解:∵ab <0,∴分两种情况:(1)当a >0,b <0时,正比例函数y ax =的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a <0,b >0时,正比例函数y ax =的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B 符合.故选:B .【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.4.B 【分析】先求出点A 的坐标,然后表示出AO 、BO 的长度,根据AO =3BO ,求出点C 的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【详解】解:∵直线y=−x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为−1,∵点C在直线y=−x+3上,∴点C(−1,4),∴反比例函数的解析式为:4 yx =-.故选:B.【点睛】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.5.D【分析】把x=0代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠0.【详解】解:根据题意,将x=0代入方程,得:m2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D.【点睛】本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m的值必须满足:m-1≠0这一条件.6.A【详解】将1x =代入方程230x kx +-=有130k +-=,解得2k =,故选A 7.C 【分析】设小路宽为x 米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32﹣x )(20﹣x )米2,进而即可列出方程,求出答案.【详解】解:利用平移,原图可转化为右图,设小路宽为x 米,根据题意得:(20﹣x )(32﹣x )=540.故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.8.B 【分析】由相似△ABC 与△DEF 的相似比为1:3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC 与△DEF 的面积比.【详解】相似△ABC 与△DEF 的相似比为1:3∴△ABC 与△DEF 的面积比为1:9故答案为B 9.B 【详解】根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.10.B【详解】∵AB⊥BC,CD⊥BC,∴AB∥DC.∴△EAB∽△EDC.∴CE CD BE AB=.又∵BE=20m,EC=10m,CD=20m,∴102020AB=,解得:AB=40(m).故选B.11.2 yx =-.【解析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|,又反比例函数的图象在二、四象限,∴k<0.则由1=12|k|得k=-2.所以这个反比例函数的解析式是2 yx =-.12.x≤-2或x>0【分析】先将点A的坐标代入反比例函数的解析式即可求出k的值,然后画出函数图象,利用反比例函数的性质及数形结合的思想即可求出x的取值范围..【详解】解:∵点A(−2,−2)在反比例函数kyx=的图象上,∴k=(−2)×(−2)=4,∴反比例函数的解析式为4y x=,其图象如图所示:由函数图象可知,在第一象限,函数值y 都是正数,所以x >0时,y≥−2;在第三象限,函数值y 随x 的增大而减小,所以x≤−2时,y≥−2,综上所述,函数值y≥−2时,自变量x 的取值范围是x≤−2或x >0.故答案为:x≤−2或x >0.【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数的性质,以及由反比例函数值求自变量,本题关键在于要分两个象限求解x 的取值范围.13.122,3x x =-=-.【分析】把一元二次方程x 2+5x +6=0分解因式得到()()230x x ++=,进而推出20,30x x +=+=,求出方程的解即可.【详解】解:x 2+5x +6=0,分解因式得:()()230x x ++=,即:20,30x x +=+=,解方程得:122,3x x =-=-,故答案为:122,3x x =-=-.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.14.a <1【分析】若一元二次方程x 2+2x +a =0有两个不同的实数根,则根的判别式240b ac =-> ,建立关于a 的不等式,求出a 的取值范围.【详解】解:∵方程有两个不同的实数根,a =1,b =2,c =a ,∴2242410b ac a =-=-⨯⨯> ,解得:1a <,故答案为:1a <.【点睛】本题考查了一元二次方程()200++=≠ax bx c a 的根的判别式24b ac =-△:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.1.【解析】∵PA ⊥x 轴于点A ,交C 2于点B ,∴S △POA =12×4=2,S △BOA =12×2=1,∴S △POB =S △POA ﹣S △BOA =2﹣1=1.16.23或6.【分析】先根据已知条件得出AE=3,再分△CAE ∽△PBE 和△CAE ∽△EBP 两种情况,利用相似三角形的对应边成比例分别求解可得.【详解】解:∵CA ⊥AB ,DB ⊥AB ,∴∠A=∠B=90°,又∵AB=5,EB=2,∴AE=AB ﹣EB=3,①当△CAE ∽△PBE 时,CA AE PB BE =,即132PB =,解得:PB=23;②当△CAE ∽△EBP 时,CA AE BE BP =,即13=2BP,解得:BP=6;综上,当BP=23或6时,△CEA 与△EPB 相似.故答案为:23或6.【点睛】本题主要考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定与性质及分类讨论思想的运用.17.(1)x1=0,x 2=12;(2)x 1,x 2;(3)12x x ==12y y ==【分析】(1)把方程左边提公因式分解因式可得()210x x -=,进而可得两个一元一次方程x =0或2x -1=0,再解即可;(2)方程两边同时加上4,可得(x -2)2=8,再开方即可;(3)首先移项6x +9=2x 2,然后将二次项系数化为1,配方可得(x -32)2=274,再开方即可求;(4)先计算出b 2-4ac ,再利用求根公式即可解得.【详解】(1)解:2x 2-x =0,x (2x -1)=0,x =0或2x -1=0,则x 1=0,x 2=12.(2)解:方程两边同时+4,得x 2-4x +4=4+4,(x -2)2=8,根据平方根的意义,得x -2=±2∴x 1,x 2(3)移项,得2x 2-6x -9=0.将二次项系数化为1,得x 2-3x -92=0.配方,得x 2-3x +(32)2-(32)2-92=0,(x -32)2=274.根据平方根的意义,得x -32=±2,∴x 1=32+,x 2=32-.(4)4y 2-4y -2=0.∵a =4,b =-4,c =-2,∴b 2-4ac =(-4)2-4×4×(-2)=48,∴y =424±⨯=12,∴y 1y 2【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.18.m=15或16.【分析】由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出m 的值,进而求出方程的另一根,再根据三角形的三边关系判断出的值是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出m 的值,再求出方程的两个根进行判断即可.【详解】因为三角形是等腰三角形,所以3可能是腰,或者两腰都是方程的根.分两种情况:①3是腰时,3是方程的一个根,代入得出m=15,此时另一根为5,三角形存在;②两腰都是方程的根时,即方程有两个相等根,即左边是完全平方公式,则m=16,此时两根都为4,三角形也存在,所以m=15或16.【点睛】本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.19.2750元.【详解】试题分析:设每台冰箱降价x 元,根据题目中的等量关系“每台冰箱的利润×销售的数量=总利润”可列方程(2900-x-2500)(8+4×)=5000,解得x 即可.试题解析:解:设每台冰箱降价x元,根据题意,得(2900-x-2500)(8+4×)=5000解这个方程,得x1=x2=150定价=2900-150=2750(元)因此,每台冰箱的定价应为2750元.考点:一元二次方程的应用.20.经2或0.8秒钟△PBQ与△ABC相似.【解析】【分析】首先设经x秒钟△PBQ与△ABC相似,由题意可得AP=2xcm,BQ=4xcm,BP=AB﹣AP=(8﹣2x)cm,又由∠B是公共角,分别从BP BQBA BC=与BP BQBC BA=分析,即可求得答案.【详解】解:设经x秒钟△PBQ与△ABC相似,则AP=2xcm,BQ=4xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣2x)cm,∵∠B是公共角,∵①当BP BQBA BC=,即824816x x-=时,△PBQ∽△ABC,解得:x=2;②当BP BQBC BA=,即824168x x-=时,△QBP∽△ABC,解得:x=0.8,∴经2或0.8秒钟△PBQ与△ABC相似.【点睛】此题考查了相似三角形的判定.此题难度适中,属于动点型题目,注意掌握数形结合思想、分类讨论思想与方程思想的应用.21.见解析【分析】根据两角对应相等,两三角形相似的判定定理得解.【详解】证明:∵∠1=∠2,∠DPA =∠CPB ,∴△ADP ∽△BCP .【点睛】本题考查相似三角形的判定,熟练掌握三角形相似的各种判定方法是解题关键.22.见解析.【分析】根据已知条件证明△ADE ∽△ABC ,得到∠DAB=∠EAC ,即可得到结果;【详解】∵AB BC AC AD DE AE==,∴△ADE ∽△ABC ,∴∠DAE=∠BAC ,∴∠DAB=∠EAC ,∵AB AD AC AE =,∴△ABD ∽△ACE .【点睛】本题主要考查了相似三角形的判定与性质,准确判断是解题的关键.23.(1)证明见解析;(2)3.【分析】(1)由矩形面积和三角形面积公式计算即可提证;(2)本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、矩形OABC 的面积与|k|的关系,列出等式求出k 值.【详解】(1)∵P (x ,y )(x >0,y >0)∴PB=x ,PA=y∵四边形PBOA 是矩形∴OB=PA=x ,OA=PB=y∴OAPB S PA PB x y k矩形=⨯=⨯=111222OAP S OA PA x y k ∆=⨯=⨯=111222OPB S OB PB x y k ∆=⨯=⨯=.(2)由题意得:E 、M 、D 位于反比例函数图象上,则,S △OCE =2k,S △OAD =2k,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ONMG =|k|,又∵M 为矩形ABCO 对角线的交点,∴S 矩形ABCO =4S ONMG =4|k|,由于函数图象在第一象限,k >0,则9=422k k k ++解得:k=3.24.(1)见解析;(2)12.【分析】(1)根据反比例函数的k 值的含义即可证明,(2)过点A 作AC ⊥x 轴,则AM=2,AC=m ,BN=2,CN=n-2,根据S △AOB =S 四边形ACOM +S 梯形ACBN -S △AOM -S △BON ,列出其面积的表示式子又m=n,即可化简得21182m =,得m=6,故求出k 值【详解】(1)设某点A(x 1,y 1),B(x 2,y 2)∵A ,B 都在反比例函数k y x=上,∴x 1y 1=x 2y 2,∴S △AMO=12x 1y 1=S △BNO=12x 2y 2即△AMO 的面积与△BNO 面积相等;(2)过点A 作AC ⊥x 轴,则AM=2,AC=m ,BN=2,CN=n-2,S △AOB =S 四边形ACOM +S 梯形ACBN -S △AOM -S △BON ,即16=2m+12(2+m)(n-2)-12×2×2m∵m=n ∴可化简为21182m ,∴m=6,(-6舍去)∴k=2m=12.【点睛】此题主要考查反比例函数的图像与性质解题的关键是根据题意作出辅助线进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级音乐期末考试试题及答案
页脚内容
1
E
D C
B
A 2
1
九年级上册数学期中测试卷
一、选择题(共12小题,每小题3分,满分36分)
1. 1.若反比例函数y =x
k
(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).
A 、(21,2)
B 、(-21
,2) C 、(-2,-1) D 、(2,-1)
2.下列方程中,是关于x 的一元二次方程的是( ) A.()()12132+=+x x B.
021
12
=-+x x
C.02=++c bx ax
D. 1222-=+x x x 3.如图,在△ABC 中,若DE ∥BC ,
2
1
=DB AD ,DE=4 cm,则BC 的长为 ( )
A. 8 cm
B. 12 cm
C. 11 cm
D. 10 cm
4.某闭合电路中,电源电压为定值,电流I (A ).与电阻R (Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I •的函数解析式为( ).
A .I =6R
B .I =-6R
C .I =3R
D .I =2
R
5.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =k x
(k ≠0)的图象大致是( )
6.已知21∠=∠,那么添加下列一个条件后,仍无法..
判定△ABC ∽△ADE 的 是( )
A .D
B ∠=∠ B .AED
C ∠=∠ C .
AE AC AD AB = D .DE
BC
AD AB =
7.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份
平均每月的增长率为x ,那么x 满足的方程是 ( )
A. 50(1+x )2=182
B. 50+50(1+x )+50(1+x )2
=182 C. 50(1+2x )=182 D. 50+50(1+x )+50(1+2x )=182 8.若关于x 的一元二次方程0342=+-x kx 有实数根,则k 的非负整数值是( )
A. 1
B. 0,1
C. 1,2
D. 1,2,3 9.下列四个三角形中,与图中的三角形相似的是 ( )
A. B. C. D.
10.如图,反比例函数()01<=
k x
k
y 与一次函数y 2=x +4的图象交于A 、B 两点的 横坐标分别为-3,-1,则当x <0时,关于x 的不等式y 1<y 2的解集为( ) A.x <-3 B. -3<x <-1 C.-1<x <0 D . x <-3或-1<x <0
11.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,CD=2,BD=1, 则AD 的长是 ( )
A. 1
B. 2
C. 2
D. 4
12.如图,梯形AOBC 中,对角线交于点E ,双曲线y=k
x
(k >0)经过A 、E 两点,若AC :
OB=1:3,梯形AOBC 面积为24,则k =( )
A .7108
B 、235
C 、465
D 、2
27
二、填空题(共6小题,每小题3分,满分18分)
13.方程02=-x x 的解为 . 14.反比例函数
x
a y 12-=
的图象在第二、四象限,则常数a 的取值范围是________. 15.已知△ABC∽△DEF,且相似比为3:4,S △ABC =2cm 2,则S △DEF = cm 2
16.如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A 、B 、C 和
D 、
E 、
F ,已知AB BC =3
2,则DF =10,则DE =___________.
17.已知点A (-1,y 1),B (1,y 2)和C (2,y 3)都在反比例函数y =k x
(k<0)的图象上,
学校 班级 姓名 考场座位号
……………………………密……………………………………………………封…………………………………………线………………………
七年级音乐期末考试试题及答案
页脚内容
2
则____<____<____(填y 1,y 2,y 3).
18.如图,正方形CDEF 内接于Rt △ABC ,点D 、E 、F 分别在边AC 、AB 和BC 上,当2AD =,
3BF =时,正方形CDEF 的面积是 。

三、解答题(共8小题,满分66分) 19.(本题满分10分,每题5分)
解方程:(1)09)1(2=-+x (2)x x 4122=-
20.(本题满分8分) 先化简再求值:
⎪⎭
⎫ ⎝⎛--+÷--2526332
x x x x x ,其中x 满足x 2
-3x +2=0.
21.(本题满分8分)已知关于x 的方程x 2+mx +m -2=0. (1)若此方程的一个根为0,求m 的值;
(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.
22.(本题满分8分)如图,在平面直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,
A 、C 分别在坐标轴上,点
B 的坐标为(4,2),直线32
1
+-=x y 交AB ,BC 分别于点M ,
N ,反比例函数y =k
x
的图象经过点M ,N .
(1)求反比例函数的解析式;
(2)若点P 在y 轴上,且△OPM 的面积与 四边形BMON 的面积相等,求点P 的坐标.
23.(本题满分10分)如图,四边形ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°,E 为
AB 的中点.
(1)求证:AC 2=AB•AD; (2)求证:CE∥AD; (3)若AD=5,AB=8,求
AF
AC
的值.
24.(本题满分10分)某新建火车站站前广场需要绿化的面积为46000 m 2,施工队在绿
化了22000 m 2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少平方米
(2)该项绿化工程中有一块长为20 m ,宽为8 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56 m 2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
25.(本题满分12分)如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒. (1)求直线AB 的解析式;
(2)当t 为何值时,△APQ 与△ABO 相似?
(3)当t 为何值时,△APQ 的面积为5
24
个平方单位?。

相关文档
最新文档