嫦娥三号软着陆轨道位置与速度建摸
《2024年嫦娥三号自主避障软着陆控制技术》范文

《嫦娥三号自主避障软着陆控制技术》篇一一、引言随着人类对太空探索的深入,月球探测任务逐渐成为航天领域的重要一环。
嫦娥三号作为我国探月工程的重要一环,其自主避障软着陆控制技术是确保任务成功的关键技术之一。
本文将详细探讨嫦娥三号在自主避障软着陆控制技术方面的应用及所取得的成果。
二、嫦娥三号任务背景及意义嫦娥三号是我国探月工程的重要一步,其任务目标是实现月球表面的软着陆,并开展相关科学实验。
在这一过程中,自主避障软着陆控制技术起到了至关重要的作用。
此技术的成功应用,不仅为我国探月工程积累了宝贵经验,同时也为后续的深空探测提供了重要的技术支撑。
三、自主避障软着陆控制技术的核心原理嫦娥三号的自主避障软着陆控制技术主要基于先进的导航系统和精确的飞行控制算法。
导航系统通过获取月球表面的地形数据,为飞行器提供实时的环境信息。
飞行控制算法则根据这些信息,实时计算并调整飞行器的轨迹,确保其在着陆过程中能够避开障碍物,实现精确的软着陆。
四、技术实现过程及关键环节1. 障碍物探测与地形建模:嫦娥三号搭载的高精度雷达和光学设备,能够实时探测月球表面的地形信息,并建立精确的地形模型。
这一环节为后续的避障和软着陆提供了重要的数据支持。
2. 飞行轨迹规划与调整:基于探测到的地形信息和飞行控制算法,嫦娥三号能够实时规划出最佳的飞行轨迹。
在飞行过程中,根据实际情况,不断调整轨迹,确保能够避开障碍物并实现软着陆。
3. 软着陆控制策略:在接近月球表面时,嫦娥三号需采用精确的软着陆控制策略。
这一策略包括减速、稳定、着陆等多个环节,确保飞行器在着陆过程中能够保持稳定,并实现精确的着陆点。
五、技术成果及应用价值嫦娥三号的自主避障软着陆控制技术取得了显著的成果。
首先,此技术成功实现了嫦娥三号在月球表面的软着陆,为我国探月工程积累了宝贵的经验。
其次,此技术的应用提高了探月任务的成功率,降低了任务风险。
最后,此技术为后续的深空探测提供了重要的技术支撑,推动了我国航天事业的发展。
2014高教社杯全国大学生数学建模竞赛A题论文答辩

70.9 48.8 29.9 91.3 2.588 1.056 2.498
75.7 37.4 33.3 90.8 1.838 1.168 1.702
总计
1.347 2.437 2.984 3.784 2.763
求解参数N与P的关系为
N (P 3) 3
P值太大,反而会影响计算效率,因此,取
P 30 为宜。
rpGM 1.6139 103 m / s ra a
沿运动轨迹切线方向
第2页,共15页。
1.问题一:着陆准备轨道近月点和远月点的位置
加速度为:
d 2Z dt 2
e i
d 2r dt 2
r d
dt
2
i
r
d 2
dt 2
2 dr dt
d
dt
对嫦娥三号进行受力分析,由牛顿第二定律得:
mMG ei
2014年高教社杯全国大学生数学建模竞赛
A题: 嫦娥三号软着陆轨道设计
与控制策略
第1页,共15页。
1. 问题一:嫦娥三号速度的大小和方向
vp
(1 e )
(1 e )a
(1 e )
va (1 e )a
联立上式可得近月点(近拱点),远月点(远拱点)的速度:
vp
va
raGM 1.6922 103 m / s rp a
当 rp 1752.013 103 m 时,解得 cos ,则-1 ; 180
当 ra 1837.013 103 m 时,解得 cos,则1 。 0
则在近月点的位置是 (180,1752.013 103 )
远月点的位置是 (0,1837.013 103 )
第4页,共15页。
月球探测器软着陆精确建模及最优轨道设计

Fig. 1 C oordinate systems
→
→
→
→
→
→
→
→
(4)
对式 ( 4) 进行求导 ,可以得到探测器相对于惯性空间 的加速度为 dVI dt
→
按右手坐标系确定 。oxL yL zL 为月固坐标系 , 参考平 面是月球赤道面 , oxL 沿月球赤道面与起始子午面 的交线方向 , oyL 沿月球自转轴方向 , 该坐标系是右 手坐标系。 Ax 1 y1 z1 为原点在探测器的轨道坐标系 ,
0 引言 月球是距离地球最近的天体 , 对月球资源和环 境进行科学研究和考察 ,是人类走出地球 , 探索未知 世界所必需 经历的 重要步骤 。从 1959 年 至今 , 美 国、 前苏联和日本三个国家已成功地实现了对月球 的探测 。随着航天科技的不断发展 , 我国的月球探 测计划 “嫦娥工程” 也已经顺利展开 。 由于月球没有大气 ,探测器着陆时无法利用大气 制动 ,只能利用制动发动机来减速 , 在很大程度上限 制了探测器所能携带有效载荷的质量 。探测器在月 面着陆可以分为硬着陆和软着陆 。硬着陆对月速度 不受限制 ,探测器撞上月球后设备将损坏 , 只能在接 近月球的过程中传回月面信息 ;软着陆对月速度比较 小 ,探测器着陆后可继续在月面进行考察 , 因此相比 于硬着陆 ,软着陆更具有实用意义。目前已发表的文 献中探测器的动力学模型大多都是采用二维模型 , 即 假设月球探测器在一个固定的铅锤面内运动 , 没有考 虑侧向运动 ,而且所采用的模型都是在忽略月球自转 的基础上得到的 。但由于发动机安装偏差、 姿控 系统误差和月球自转等因素的存在 ,探测器难以保证 始终在固定的铅锤面内运动。文献 [9] 虽然考虑了探 测器在三维空间的运动 ,但所用模型经过了较高程度 的简化 , 将月球引力场假设为平行定常引力场 , 并且 没有考虑月球自转对系统的影响。 对于两点边值问题 ,除了某些特殊系统外 ,通常 难以求得最优控制规律的解析表达式 。因此 , 必须
嫦娥三号软着陆过程(数模竞赛附件2)

附件2:嫦娥三号软着陆过程的六个阶段及其状态要求1. 嫦娥三号软着陆过程示意图附图4嫦娥三号软着陆过程示意图2.嫦娥三号软着陆过程分为6个阶段的要求(1)着陆准备轨道:着陆准备轨道的近月点是15KM,远月点是100KM。
近月点在月心坐标系的位置和软着陆轨道形态共同决定了着陆点的位置。
(2)主减速段:主减速段的区间是距离月面15km到3km。
该阶段的主要是减速,实现到距离月面3公里处嫦娥三号的速度降到57m/s。
(3)快速调整段:快速调整段的主要是调整探测器姿态,需要从距离月面3km到 2.4km处将水平速度减为0m/s,即使主减速发动机的推力竖直向下,之后进入粗避障阶段。
(4)粗避障段:粗避障段的范围是距离月面2.4km到100m区间,其主要是要求避开大的陨石坑,实现在设计着陆点上方100m处悬停,并初步确定落月地点。
嫦娥三号在距离月面2.4km处对正下方月面2300×2300m的范围进行拍照,获得数字高程如附图5所示(相关数据文件见附件3),并嫦娥三号在月面的垂直投影位于预定着陆区域的中心位置。
附图5:距月面2400m处的数字高程图该高程图的水平分辨率是1m/像素,其数值的单位是1m。
例如数字高程图中第1行第1列的数值是102,则表示着陆区域最左上角的高程是102米。
(5)精避障段:精细避障段的区间是距离月面100m到30m。
要求嫦娥三号悬停在距离月面100m 处,对着陆点附近区域100m范围内拍摄图像,并获得三维数字高程图。
分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m处水平方向速度为0m/s。
附图6是在距离月面100m处悬停拍摄到的数字高程图(相关数据文件见附件4)。
附图6:距离月面100m处的数字高程图该数字高程的水平分辨率为0.1m/像素,高度数值的单位是0.1m。
(6)缓速下降阶段:缓速下降阶段的区间是距离月面30m到4m。
该阶段的主要任务控制着陆器在距离月面4m处的速度为0m/s(合速度),即实现在距离月面4m处相对月面静止,之后关闭发动机,使嫦娥三号自由落体到精确有落月点。
2014高教社杯全国大学生数学建模竞赛(A)题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。
附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。
嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。
目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。
北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。
数学建模A题经验分享

精选ppt课件
8
精选ppt课件
5
精选ppt课件
6
3.主减速阶段的微分方程组建立了相关参量之间的函数关系, 通过解出的结果结合后面阶段的轨道方程可以较为方便地确 定变量敏感度的影响曲线,从而确定出对计算结果影响最大 的相关变虑 适当的简化忽略次要因素:月球自转、地球 引力、月球曲率的影响 做出合理的假设对于简化计算很有帮助 多方位查找资料 matlab等软件辅助分析 团队合作、合理分工很重要
精选ppt课件
4
第三问
逐个单独考虑之前分析过程中忽略的次要因素,分析对所得 优化结果的影响;对主要因素进行适当增减,分析其对结果影 响的敏感度
由于之前的讨论中用了很多的近似与简化过程,使得得出的 结论难免会与现实状况产生偏差,原有模型基础上再考虑一个 之前忽略的变量,如:月球自转对卫星的影响,推力偏差对着 陆器的影响,比冲偏差对着陆器的影响,,将其带入模型之中 重新计算并与原来的结果比较、分析;敏感性分析,保证其余 的变量值不变,单独改变所讨论的这个变量的值,可以得到一 系列结果,对结果变化影响最大的变量就是最敏感的。
精选ppt课件
2
第二问:
分段对飞船各个减速阶段分别建立微分方程模型、方差分 析模型通过题目限制条件进行求解与优化。
主减速阶段与快速调整阶段
依据第一问得出的着陆准备轨道方程,对于登月器主减速段, 本文以此为依据建立出减速段登月器运行的抛物线模型,通 过发动机沿着登月器运动方向反向喷射及与运动方向或呈一 定的夹角等形式分别建立卫星在已有抛物线上减速的力学微 分方程模型,并通过该模型,利用发动机最大功率、耗油量 最低、运动轨迹起始点等的限制因素对微分方程进行求解并 对该阶段进行优化,得出飞行器控制的最优解。对于登月器 的快速调整阶段,通过近似计算可以将问题简化为水平方向 急剧减少,而运动轨迹接近竖直的运动模型。
2014-高教社杯全国大学生数学建模竞赛AB题评阅要点

2021 高教社杯全国大学生数学建模比赛A 题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。
对本问题应该给出合理的建模假定, 譬如: 惯性坐标、二体问题等, 并加以分析说明。
问题1: 在已知的条件下, 确定嫦娥三号在环月轨道上近月点与远月点的相对位置和速度(1) 建立合理适用的坐标系。
(2) 对嫦娥三号进行受力分析, 建立其运动学和准备轨道的数学模型(譬如: 微分方程等模型) 。
(3) 通过求解数学模型得. 到数值结果。
问题2: 确定软着陆轨道与6 阶段的控制策略由问题对着陆轨道 6 个阶段的要求, 每个阶段都应给出起止状态(速度和位置) 和最优控制策略(推力大小和方向) , 以满足各阶段起止状态的需求。
(1) 建立各阶段的最优控制模型, 明确给出控制变量、状态变量、状态方程、约束条件和目标函数。
(2) 在粗避障和精细避障阶段挑选落点时, 需要综合考虑月面的平整度、光照条件、着陆控制误差等因素, 确定最理想的着陆地点。
(3) 各阶段的控制问题是一个无穷维的优化问题, 可以通过合理的简化(譬如离散化为有限维的优化问题) 求解得. 到合理的数值结果, 即最优的控制策略。
(4) 若未按题目要求按6 阶段设计最优控制策略, 而照抄某些文献的两阶段或三阶段的处理方法, 不能视为较好的论文。
问题3: 着陆轨道设计和控制策略的误差分析与敏感度分析对问题的稳定性有影响的误差包括:(1) 着陆准备轨道参数(近月点位置和速度) 的误差;(2) 分阶段分析发动机推力(大小和方向) 的控制误差;(3) 模型的简化假定、模型的近似与求解过程等综合分析误差;加入能针对以上几个因素对问题结果的影响及程度做相应的敏感度分析, 应给予肯定。
2021高教社杯全国大学生数学建模比赛B题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。
本题主要考查学生对直纹面的描述、建模和计算功底。
2014年数学建模A题-省一等奖

关键词:软着陆、SQP算法、轨道优化、景象匹配
1
一
1.1 问题的背景
问题重述
中国是继美国、前苏联之后的第三个能使卫星登上月球实现软着陆的国家。因此, 嫦娥三号如何实现软着陆以及能否成功成为外界关注的焦点。北京时间 12 月 10 日晚, 嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一 次轨道调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 嫦娥三号着陆地点选在较为平坦的虹湾区。但由于月球地形的不确定性,最终“落 月”地点的选择仍存在一定难度。但嫦娥三号的预定着陆点为 19.51W,44.12N,海拔为 -2641m。在大约距离月球 15 公里时,反推发动机就要点火工作;到离月球 100 米时, 卫星将暂时处于悬停状态,此时它已不受地球上工程人员的控制,因卫星上携带的着陆 器具有很高智能,它会自动选择一块平整的地方降下去,并在离月球表面 4 米的时候关 闭推进器,卫星呈自由落体降落,确保软着陆成功。为了确保探测器能够成功在月球表 面实现软着陆,需要认真设计降落过程中探测器的发动机的控制方案,使“嫦娥 3 号” 能够顺利完成科研任务,得到最大化的应用。由于月球上没有大气,嫦娥三号无法依靠 降落伞着陆,只能靠变推力发动机,才能完成中途修正、近月制动、动力下降、悬停段 等软着陆任务。 这将是中国航天器首次在地外天体的软着陆和巡视勘探, 同时也是 1976 年后人类探测器首次的落月探测。 嫦娥三号在着陆准备轨道上的运行质量为 2.4t, 其安装在下部的主减速发动机能够 产生 1500N 到 7500N 的可调节推力。在给定主减速发动机的推力方向后,能够自动通过 多个发动机的脉冲组合实现各种姿态的调整控制。 要保证准确地在月球预定区域内实现 软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准 备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其 软着陆过程共分为 6 个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆 过程的燃料消耗。 1.2 提出问题 根据上述的叙述以及基本要求,提出以下三个问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与 方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嫦娥三号软着陆轨道位置与速度建摸
嫦娥三号成功发射并抵达月球轨道。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道。
文章建立数学模型解决着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
标签:着陆轨道设计;近月点位置;建模
1 简单分析
将嫦娥三号的主减速阶段的运动情况简化为水平方向和竖直方向的运动,然后单独分析两个方向的运动情况,将距离转换为经纬度,即求出了位置。
可将求近月点和远月点的速度问题转化为求沿椭圆轨道运行卫星的线速度问题,最后根据开普勒第二定律和机械能守恒定理就可求出速度大小。
至于速度的方向,根据曲线运动的特点以及嫦娥三号的运行方向即可确定速度方向。
2 基本假设
(1)假设月球的自传对着陆器没有影响;(2)假设忽略日、地引力摄动等环境干扰引起的误差;(3)假设月球近似为一个质量均匀的标准球体,为一个质点。
3 模型的建立与求解
3.1 速度大小模型的建立
嫦娥三号围绕月球做轨迹为椭圆的圆周运动,着陆准备轨道为近月点15km,远月点100km的椭圆形轨道。
H为远月点到月面的距离;h为近月点到月面的距离。
求嫦娥三号在近月点和远月点的速度,也就是求它在近月点和远月点相应的线速度,为此我们将月球看作是一个质点,将嫦娥三号也看做是一个质点,忽略月球重力场和月球自转对嫦娥三号做椭圆运动的影响,所以将问题转化为求沿椭圆轨道运行卫星的线速度问题。
图1表示了卫星沿椭圆轨道运行情况示意图:
对比近月点A和远月点B,由卫星总机械能守恒可有:
M为月球的质量m为嫦娥三号的质量vA是近月点的线速度vB 为远月点的线速度。
又根据开普勒第二定律可知:vA(a-c)=vB(a+c)(2)
联合(1)、(2)式可解得:v■=■■ v■=■■ 其中G为引力常数。
即,在近月点的速度为:v■=■■ (3)
在远月点的速度为:v■=■■(4)
3.2 速度大小的求解
由题中所给数据可知:月球质量为M=7.3477×1022kg,月球平均半径为r0=1737.013km,近地点到月面的距离为h=15km,远月点到月面的距离为H=100km,根据这些数据可以得出:半长轴:a=(2r0+h+H)/2=1794.603km
焦点距离:c=a-(r0+h)=42.5km。
根据椭圆中a、b、c之间的关系:a2=b2+c2解得:b=1794.099km。
即月心的位置为(42.5,0)。
将所得数据代入(3)式可得:vA=1.69
2km/s。
将数据代入(4)式解得:vB=1.614km/s。
3.3 速度方向的求解
3.3.1 速度方向模型建立
嫦娥三号将在近月点15公里处(即近月点)以抛物线下降,而且在横向飞行的水平距离远远小于月球半径的平均值,所以可以将整个主减速阶段过程简化为水平方向和竖直方向运动的过程。
所以有:F=■ ,F为推力,Fx为推力在水平方向上的分力,Fy为推力在水平方向上的分力。
根据牛顿第二定有,水平方向的运动过程满足:ax=Fx/m为嫦娥三号在准备着陆轨道上的质量,ax为水平加速度。
竖直方向的运动过程满足:ay=■-a
在主减速阶段,即从近月点减速到离地面3公里处时,嫦娥三号基本位于着陆点上方,认为此时水平方向速度为0,即v水=0
m表示嫦娥三号在准备着陆轨道上的质量2.4t,ay为竖直加速度,a表示月球的重力加速度为g/6。
根据速度变化公式有,水平方向的速度变化大小为:
式中:t为主减速阶段所用时间,Q为单位时间所消耗的燃料的质量,v0为水平方向初速度。
在竖直方向的速度变化大小为:
式中:v1为主减速阶段竖直方向的末速度。
根据位移速度公式可有,在水平方向:v02=2ax×S所以S=■,S为水平方向上的位移。
3.3.2 模型求解
v0=vA=1.692km/s;在主减速阶段结束时:v1=57m/s;利用Matlab软件编程可以解出:S=451.81km;嫦娥三号在着陆过程中经度基本保持不变,只有纬度在发生变化。
可以得出月球极区的半径为:r1=1735.843km。
月球与地球一样,北半球依然分为90个分度,所以每个分度的竖直高度差为19.2871km,所以从近月点到着陆点的纬度变化大小为23.4255°。
根据资料中给出的嫦娥三号近月轨道示意图以及题中给出着陆点的位置是19.51W,44.12N,可以判断出嫦娥三号在准备着陆轨道上的运行方向是由南向北,所以可以得出近月点的纬度为20.694°,所以近月点的位置为19.51W,20.694N;又因为近月点与月远点的位置关于月心对称,所以远月点的位置为159.305E,69.306S
参考文献
[1]王鹏基,张,曲广吉.月球软着陆飞行轨迹与制导律优化设计研究[J].宇航学报,2007,28(5):1175-1179.
[2]张嗣瀛,等.现代控制理论[M].北京:清华大学出版社,2006.。