人教版九年级上册《圆》单元测试卷
人教版数学九年级上册《圆》单元测试(带答案)

(2)若 的半径为2,求图中阴影部分的面积.
21.如图,AB是⊙O 直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA的延长线与OC的延长线于点E,F,连接BF.
(1)求证:BF是⊙O的切线;
(2)已知圆的半径为1,求EF的长.
参考答案
一、选择题(每小题3分,共30分)
A. AC=ABB. ∠C= ∠BODC. ∠C=∠BD. ∠A=∠B0D
3.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A DE=EBB. DE=EBC. DE=DOD.DE=OB
4.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是( )
A DE=EBB. DE=EBC. DE=DOD.DE=OB
【答案】D
【解析】
【详解】解:连接EO.
∴∠B=∠OEB,
∵∠OEB=∠D+∠DOE,∠AOB=3∠D,
∴∠B+∠3∠D,
∴∠D+∠DOE+∠D=3∠D,
∴∠DOE=∠D,
∴ED=EO=OB,
故选D.
4.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是( )
A.55°B.65°C.70°D.75°
7.如图,PA、PB是⊙O 切线,切点分别为A、B,若OA=2,∠P=60°,则 的长为()
A. πB.πC. πD. π
8.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( )
16.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.
人教版九年级上册数学《圆》单元测试(附答案)

【解析】
解:连接OC.∵C是弧AB的中点,∠AOB=100°,∴∠BOC= ∠AOB55°+25°=80°.故答案为80°.
16.已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是cm,面积是cm2.
20.已知,AB是⊙O 直径,BC是⊙O的弦,⊙O的割线PDE垂直于AB于点F,交BC于点G,∠A=∠BCP.
(1)求证:PC是⊙O的切线;
(2)若点C在劣弧AD上运动,其条件不变,问应再具备什么条件可使结论BG2=BF·BO成立,(要求画出示意图并说明理由).
21.如图,已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于点D,E是AB上一点,直线CE与⊙O交于点F,连结AF,与直线CD交于点G.
考点:弧长的计算.
6.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()
A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5
【答案】A
【解析】
【详解】解: 的直径为10,半径为5,当 时, 最小,根据勾股定理可得 , 与 重合时, 最大,此时 ,所以线段的 的长的取值范围为 ,
A.弦CD一定是⊙O的直径
B.点O到AC、BC的距离相等
C.∠A与∠ABD互余
D.∠A与∠CBD互补
3. 如图,已知⊙O中∠AOB度数为100°,C是圆周上的一点,则∠ACB的度数为()
A. 130°B. 100°C. 80°D. 50°
4.如果⊙O1与⊙O2的圆心都在x轴上,⊙O1的圆心坐标为(7,0),半径为1,⊙O2的圆心坐标为(m,0),半径为2,则当2<m<4时,两圆的位置关系是().
A.相交B.相切C.相离D.内含
人教版数学九年级上册《圆》单元检测卷(带答案)

【点睛】本题考查了圆柱的计算,解题的关键是熟知圆柱的侧面积的计算方法.
11. 在直角坐标系中的位置如图所示,若将 绕点 旋转,点 的对应点为点 ,其中 , , , ,则旋转后点 的对应点 的坐标为()
A. B. C. D.
【答案】D
【解析】
分析】
根据旋转的性质作出旋转后的图形,写出点A对应点的坐标即可得解.
【详解】连结BC.
∵OB=OC,∴∠OBC=∠OCB.
∵∠ABO=∠ACO,∴∠ABC=∠ACB,∴AB=AC,∴ = = ,故A、B、C正确,不符合题意;
∠BOC的度数无法求出,故D错误,符合题意.
故选D.
【点睛】本题考查了圆心角、弧、弦的关系定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;同时考查了等腰三角形的判定与性质.
指出其旋转中心和旋转的角度
求 的长度;
与 的位置关系如何?说明理由.
24.想一想:如图称为太极图,圆形图案由两条形状和大小完全一样的白鱼和黑鱼组成,也称为“阴阳鱼”,若太极图的直径为 ,你能算出一条白鱼或黑鱼的面积吗?
25.已知 是 的直径,点 是 延长线上一点, , 是 的弦, .
(1)求证:直线 是 的切线;
设圆心角为n,有 =2πr=πR,
∴n=180°.
故选B.
考点:圆锥的计算
8.如图,直线 经过 的圆心,与 相交于 、 两点,点 在 上,且 度.点 是直线 上的一个动点(与点 不重合),直线 交 于 ,则使 的点 共有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
作图,根据等腰三角形的性质和三角形的内角和、外角的性质求解即可.
人教版九年级上册数学 第二十四章 圆 单元测试题(含多套试题)

第二十四章圆含多套试题一、选择题1.已知⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定2.下列说法正确的是( )A. 同圆或等圆中弧相等,则它们所对的圆心角也相等B. 0°的圆心角所对的弦是直径C. 平分弦的直径垂直于这条弦D. 三点确定一个圆3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O 外D. 无法确定4.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A. 70°B. 60°C. 50°D. 30°5.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A. 16B. 10C. 8D. 66.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A. 3 cmB. 6cmC. 8cmD. 9 cm7.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A. 15°B. 20°C. 25°D. 30°8.如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A. 20°B. 30°C. 35°D. 70°9.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A. 30°B. 40°C. 50°D. 6010.如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A. 5﹕3B. 4﹕1C. 3﹕1D. 2﹕111.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF 等于()A. 80°B. 50°C. 40°D. 20°12.如图,已知扇形OBC,OAD的半径之间的关系是OB=OA,则弧BC的长是弧AD长的多少倍()A. 倍B. 倍C. 2倍D. 4倍二、填空题13.在半径为6cm的圆中,120°的圆心角所对的弧长为________cm.14.半径为4cm,圆心角为60°的扇形的面积为________ cm2.15.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为________.16.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是________.17.⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为________.18.已知正四边形的外接圆的半径为2,则正四边形的周长是 ________19.如图,AB是圆O的弦,若∠A=35°,则∠AOB的大小为________度.20.如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.21.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为________22.如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为________.三、解答题23.如图,在⊙O中,= ,OD= AO,OE= OB,求证:CD=CE.24.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.25.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.26.如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.27.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为3,求弧BC的长.28.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.参考答案一、选择题1. A2.A3. C4. B5.A6. A7. C8. C9. A 10. D 11. D 12. B二、填空题13.4π14. π 15.10 16.相切17. 50°18.819.110 20.3 21.2π 22.8三、解答题23.证明:= ,∴∠AOC=∠BOC.∵AD=BE,OA=OB,∴OD=OB.在△COD与△COE中,∵,∴△COD≌△COE(SAS),∴CD=CE24.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.25.解:(1)证明:∵AB=AC,∴∠B=∠C,∵OP=OB,∴∠B=∠OPB,∴∠OPB=∠C,∴OP∥AC,∵PD⊥AC,∴OP⊥PD,∴PD是⊙O的切线;(2)解:连结AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在RtBAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.26.(1)证明:连接OC,∵CA=CD,∠ACD=120°,∴∠A=∠D=30°,∴∠COD=2∠A=2×30°=60°,∴∠OCD=180°-60°-30°=90°,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形OBC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.27.(1)解:∵AB=AC,∴弧AB=弧AC,∵D是弧的中点,∴,∴,∴∠ACB=2∠ACD,∵四边形ABCD内接于⊙O,∴∠BCD=∠EAD=105°∴∠ACB+∠ACD=105°,即3∠ACD=105°,∴∠CAD=∠ACD=35°(2)解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=40°,连结OB,OC,则∠BOC=2∠BAC =80°,∴的长.28.(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.圆(A)卷一、 填空题(每题3分,共33分)1、已知△ABC 中,∠C=90°,AC=4㎝,AB=5㎝,CD ⊥AB 于D ,以C 为圆心,3㎝为半径作⊙C ,则点A 在⊙C_______,点B 在⊙C_______,点D 在⊙C_________(填“上”或“内”或“外”)。
第二十四章圆单元测试人教版2024—2025学年九年级上册秋季

第二十四章圆单元测试人教版2024—2025学年九年级上册秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列说法中,正确的是()A.过圆心的直线是圆的直径B.直径是圆中最长的弦C.相等长度的两条弧是等弧D.顶点在圆上的角是圆周角2.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A.700π平方厘米B.900π平方厘米C.1200π平方厘米D.1600π平方厘米3.如图,点A、点B、点C在⊙O上,∠BAC=130°,那么∠BOC是()A.160°B.120°C.100°D.200°4.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离OE=4,则⊙O的半径长为()A.4B.C.5D.5.如图,AB是⊙O的直径,C,D是⊙O上两点,且∠BDC=35°,则∠BOC=()A.20°B.40°C.55°D.70°6.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=2.以A为圆心AC为半径画圆,交AB于点D,则阴影部分面积是()A.B.C.D.7.如图,点A、B、C都在⊙O上,若∠AOC=150°,则∠ABC的度数()A.30°B.150°C.105°D.110°8.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cm C.cm D.cm9.如图是唐代亭皋发明了“桨轮船”,该桨轮船的轮子被水面截得线AB为10,轮子的吃水深度CD为3,则该桨轮船的轮子半径为()A.B.C.D.610.刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt△ABC中,∠C=90°,AB,BC,CA的长分别为c,a,b.则可以用含c,a,b的式子表示出△ABC的内切圆直径d,下列表达式错误的是()A.d=a+b﹣c B.C.D.d=|(a﹣b)(c﹣b)|二、填空题(每小题3分,满分18分)11.将圆锥的侧面沿一条母线剪开后展平,所得扇形的面积为4πcm2,圆心角θ为90°,圆锥的底面圆的半径为.12.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CAD=°.13.如图,△ABC是⊙O的内接三角形,∠BAC=50°,⊙O半径为3,则的长为.14.若90°圆心角所对的弧长是3πcm,则此弧所在圆的半径是15.如图,四边形ABCD内接于⊙O,点E在AD的延长线上,若∠CDE=80°,则∠ABC 的度数是°.15.如图,动点E、F分别在正方形ABCD的边AD、BC上,AE=CF,过点C作CG⊥EF,垂足为G,连接BG,若AB=2,则线段BG长的最小值为.第II卷第二十四章圆单元测试人教版2024—2025学年九年级上册秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.如图,△ABC中.∠ACB=90°,点O为AC边上一点,以点O为圆心,OC为半径作圆与AB相切于点D,连接CD.(1)求证:∠ABC=2∠ACD;(2)若AC=8,BC=6,求⊙O的半径.18.如图,在Rt△ABC中,∠C=90°,以点C为圆心,AC长为半径的⊙C与AB相交于点D.(1)若弧AD的度数为70°,则∠B=°;(2)若AC=6,BC=8,求线段BD的长.19.如图,在△ABC中,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.⊙O的两条弦FB,FD相交于点F,∠DAE=∠BFD.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求扇形OBD的面积.20.如图,线段AB,CD是⊙O的两条弦,AB=CD,连结AD,AC.(1)证明:AM=DM.(2)若AB⊥CD于点M,且弦AC的弦心距为4,求⊙O的半径.21.如图,△ABC内接于⊙O,D是BC上一点,AD=AC.E是⊙O外一点,∠BAE=∠CAD,∠ADE=∠ACB,连接BE.(1)若AB=8,求AE的长;(2)求证:EB是⊙O的切线.22.如图,AB是半径为5的⊙O的直径,C是的中点,连接CD交AB于点E,连接AC,AD,OC.(1)求证:OC⊥AD.(2)若BE=1,求AD的长.(3)如图2,作CF⊥AB于点H,交AD于点F,射线CB交AD的延长线于点G,若OH=1,求AG的长.23.如图,AB是⊙O的直径,==2,连接AC、CD、AD.CD交AB于点F,过点B作⊙O的切线BM交AD的延长线于点E.(1)求证:AC=CD;(2)连接OE,若DE=2,求OE的长.24.如图,⊙O是△ABC的外接圆,AB为直径,过点C作⊙O的切线CD交BA延长线于点D,点E为上一点,且=.(1)求证:DC∥AE;(2)若EF垂直平分OB,DA=3,求阴影部分的面积.25.如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE =AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60°,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.。
人教版九年级上册数学《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
人教版数学九年级上册《第24章圆》单元测试(含答案)

人教版数学九年级上册《第24章圆》单元测试(含答案)(总分:120分,时间:100钟)一.选择题(共10小题,满分30分,每小题3分)1.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B.C.D.2.一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.103.在半径为10cm圆中,两条平行弦分别长为12cm,16cm,则这两条平行弦之间的距离为()A.28cm或4cm B.14cm或2cm C.13cm或4cm D.5cm或13cm 4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48 5.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.56.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000 D.4×102 7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸9.⊙O的半径为10cm,圆心角∠AOB=60°,那么圆心O到弦AB的距离为()A.10cm B.cm C.5cm D.cm 10.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°二.填空题(共6小题,满分18分,每小题3分)11.如图,四边形ABCD内接于半圆O,其中点A,D在直径上,点B,C在半圆弧上,AB∥CD,∠B=90°,若AO=3,∠BAD=120°,则BC=.12.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.13.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是.14.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的倍.15.在一个圆中,如果60°的圆心角所对弧长为6πcm,那么这个圆所对的半径为cm.16.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=4,则阴影部分图形的面积为.三.解答题(共8小题,满分72分)17.(8分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?18.(8分)现将一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?19.(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.20.(8分)如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE ⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.(10分)如图在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=3,求BD的长.22.(8分)如图,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,点P在l上运动.(1)当点P运动到圆上时,求线段OP的长.(2)当点P的坐标为(4,3)时,试判断直线OP与⊙A的位置关系,并说明理由.23.(10分)已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.(12分)如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.参考答案一.选择题1.D.2.C.3.B.4.A.5.C.6.D.7.C.8.D.9.C.10.A.二.填空题11.3.12.<r≤3.13.相切.14.243.15.1816..三.解答题17.解:连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为1,∴AO=OC=,则AC==m,弧BC的长l==πm,则2πR=π,解得:R=.故该圆锥的底面圆的半径是m.18.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.19.证明:连接OC,∵OA⊥CE,OB⊥CF,∴EM=CM,NF=CN,∠CMO=∠CNO=90°,∵C为的中点,∴∠AOC=∠BOC,在△CNO与△CNO中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.20.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.21.解:(1)直线BD与⊙O的位置关系是相切.证明:连结OD,DE.∵∠C=90°,∴∠CBD+∠CDB=90°.∵∠A=∠CBD,∴∠A+∠CDB=90°.∵OD=OA,∴∠A=∠ADO.∴∠ADO+∠CDB=90°.∴∠ODB=180°﹣90°=90°.∴OD⊥BD.∵OD为半径,∴BD是⊙O的切线.(2)∵AD:AO=8:5,∴,∴由勾股定理得AD:DE:AE=8:6:10.∵∠C=90°,∠CBD=∠A.∴△BCD∽△ADE.∴DC:BC:BD=DE:AD:AE=6:8:10.∵BC=3,∴BD=22.解:(1)如图,设l与y轴交点为C.当点P运动到圆上时,有P1、P2两个位置,∴;.(2)连接OP,过点A作AM⊥OP,垂足为M.∵P(4,3),∴CP=4,AP=2.在Rt△OCP中.∵∠APM=∠OPC,∠PMA=∠PCO=90°,∴△PAM∽△POC.∴,,∴,∴直线OP与⊙A相离.23.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。
人教版九年级上册数学《圆》单元测试带答案

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A. 1 个B. 2个C. 3个D. 4个2.如图,为圆的直径,弦,垂足为,,半径为25,则弦的长为( )A. 24B. 14C. 10D. 73.如图,AB,CD是⊙O的直径,弧AE=弧BD,若∠AOE=32°,则∠COE的度数是( )A. 32°B. 60°C. 68°D. 64°4.如图,圆的两条弦AB,CD相交于点E,且弧AD=弧CB,∠A=40°,则∠CEB的度数为( )A. 50°B. 80°C. 70°D. 90°5.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )A. 点MB. 点NC. 点PD. 点Q6.如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点.若大圆半径为2,小圆半径为1,则的长为()A. B. C. D. 27.已知正六边形的边长是2,则该正六边形的边心距是( )A. 1B.C. 2D.8.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为( )A. πB. 2πC. 3πD. 4π9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A. 16B. 14C. 12D. 1010.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,如果∠CAB=40°,那么∠CAD的度数为( )A. 25°B. 50°C. 40°D. 80°二、填空题(共8小题)11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D=_____度.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为_____.三、解答题(共7小题)19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.23.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.24.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.参考答案一、选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A. 1 个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据等弧、等圆、弦的定义即可一一判断.【详解】(1)长度相等的弧是等弧,错误;(2)在同圆或等圆中,相等的圆心角所对的弧相等,错误;(3)在同圆或等圆中,劣弧一定比优弧短,错误;(4)直径是圆中最长的弦,正确;故选:A.【点睛】考查圆周角定理以及圆心角、弧、弦的关系,解答此类问题注意前提条件是在同圆或等圆中.2.如图,为圆的直径,弦,垂足为,,半径为25,则弦的长为( )A. 24B. 14C. 10D. 7【答案】B【解析】【分析】连接OA,根据垂径定理得到AE=EB,根据勾股定理求出AE,得到答案.【详解】连接OA,∵CD为圆O的直径,弦AB⊥CD,∴AE=EB,由题意得,OE=OC-CE=24,在Rt△AOE中,AE==7,∴AB=2AE=14,故选B.【点睛】本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.3.如图,AB,CD是⊙O的直径,弧AE=弧BD,若∠AOE=32°,则∠COE的度数是( )A. 32°B. 60°C. 68°D. 64°【答案】D【解析】【分析】根据圆心角、弧、弦的关系,由弧AE=弧BD得到∠AOE=∠BOD=32°,然后利用对顶角相等得∠BOD=∠A OC=32°,易得∠COE=64°.【详解】∵弧AE=弧BD,∴∠AOE=∠BOD=32°.∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°.故选D.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4.如图,圆的两条弦AB,CD相交于点E,且弧AD=弧CB,∠A=40°,则∠CEB的度数为( )A. 50°B. 80°C. 70°D. 90°【答案】B【解析】【分析】根据圆周角定理得到∠A=∠C=40°,由三角形外角的性质即可得到结论.【详解】∵弧AD=弧CB,∴∠A=∠C.∵∠A=40°,∴∠CEB=∠A+∠C=80°.故选B.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键.5.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】C【解析】试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q再以点O为圆心的圆上,OP与ON的大小不能确定,∴点P不一定在圆上.故选C.考点:点与圆的位置关系;线段垂直平分线的性质.6.如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点.若大圆半径为2,小圆半径为1,则的长为()A. B. C. D. 2【答案】A【解析】【分析】连接OA、OB、OP,OP即为小圆半径,易证△OAP≌△OBP,通过构建直角三角形,可解答.【详解】解:连接OA、OB、OP,OP即为小圆半径,∵OA=OB,∠OAB=∠OBA,∠OPA=∠OPB=90°,∴△OAP≌△OBP,∴在直角△OPA中,OA=2,OP=1,∴AP=,∴AB=2.故选:A.【点睛】本题主要考查了切线、勾股定理的应用,本题综合性较强;掌握其定理、性质,才能熟练解答.7.已知正六边形的边长是2,则该正六边形的边心距是( )A. 1B.C. 2D.【答案】B【解析】【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】如图,连接OA,作OM⊥AB.∵正六边形ABCDEF的边长为2,∴∠AOM=30°,AM AB2=1,∴正六边形的边心距是OM.故选B.【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算.8.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为( )A. πB. 2πC. 3πD. 4π【答案】B【解析】【分析】根据圆周角定理可得出∠AOB=90°,再根据弧长公式计算即可.【详解】如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°.∵OA=4,∴弧AB的长=2π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解题的关键是掌握弧长公式l.9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A. 16B. 14C. 12D. 10【答案】B【解析】【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC的周长.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF.∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14.故选B.【点睛】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.10.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,如果∠CAB=40°,那么∠CAD的度数为( )A. 25°B. 50°C. 40°D. 80°【答案】A【解析】【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【详解】如图,连接BC,BD.∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=40°,∴∠ABC=50°.∵弧AD=弧CD,∴∠ABD=∠CBD∠ABC=25°,∴∠CAD=∠CBD=25°.故选A.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解答本题的关键是作出辅助线.二、填空题(共8小题)11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.【答案】∠AOB=∠COD【解析】【分析】直接利用圆心角、弧、弦的关系求解.【详解】∵弧AB=弧CD,∴∠AOB=∠COD.故答案为:∠AOB=∠COD.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D=_____度.【答案】30【解析】【分析】连接OC,如图,根据切线的性质得∠OCD=90°,再根据等腰三角形的性质和三角形外角性质得到∠COD=60°,然后利用互余计算∠D的度数.【详解】连接OC,如图,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°.∵OA=OC,∴∠ACO=∠CAB=30°,∴∠COD=∠ACO+∠CAB=60°,∴∠D=90°﹣∠COD=90°﹣60°=30°.故答案为:30.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.【答案】4【解析】【分析】连接OA,OB,证出△BOA是等边三角形,【详解】解:如图所示,连接OA、OB∵多边形ABCDEF是正六边形,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=OB=4故答案为4【点睛】本题考查正六边形和圆,等边三角形的判定与性质,解题关键是熟练掌握正六边形的性质.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)【答案】5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.【答案】5【解析】【分析】连接OA,根据垂径定理求出AD.在Rt△AOD中,根据勾股定理列式计算即可.【详解】连接OA.∵OD⊥AB,∴AD AB=3.在Rt△AOD中,OA2=OD2+AD2,即OC2=(9﹣OC)2+32,解得:OC=5.故答案为:5.【点睛】本题考查了勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.【答案】70【解析】【分析】连接OA、OB,如图,根据切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】连接OA、OB,如图,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣40°=140°,∴∠ACB∠AOB140°=70°.故答案为:70.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.【答案】(3,)【解析】【分析】将正六边形ABCDEF绕原点O逆时针旋转2019次时,点A所在的位置就是原D点所在的位置.【详解】2019×60°÷360°=336…3,即与正六边形ABCDEF绕原点O逆时针旋转3次时点A的坐标是一样的.当点A按逆时针旋转180°时,与原D点重合.连接OD,过点D作DH⊥x轴,垂足为H;由已知ED=6,∠DOE=60°(正六边形的性质),∴△OED是等边三角形,∴OD=DE=OE=6.∵DH⊥OE,∴∠ODH=30°,OH=HE=3,HD=.∵D在第四象限,∴D(3,﹣3),即旋转2019后点A的坐标是(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为_____.【答案】.【解析】【分析】解答时根据扇形面积公式带入数值进行计算即可得到答案【详解】扇形面积:S=在△ABC中,D为BC的中点BD=DCBD长为半径画一弧交AC于E点BD=DE∠A=60°,∠B=100°∠C=20°=∠DEC∠BDE=∠C+∠DEC=40°=aBC=2 r=1S=故答案为:【点睛】此题重点考察学生对扇形面积公式的理解,正确选择面积公式是解题的关键三、解答题(共7小题)19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF【答案】见解析【解析】【分析】连结AD,如图,根据垂径定理由CD⊥AB得到弧AC=弧AD,再根据圆周角定理得∠ADC=∠AED,然后根据圆内接四边形的性质得∠CEF=∠ADC,于是利用等量代换即可得到结论.【详解】证明:连结AD,如图,∵CD⊥AB,∴弧AC=弧AD,∴∠ADC=∠AED,∵∠CEF=∠ADC,∴∠AED=∠CEF.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和圆内接四边形的性质.20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点睛】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.【答案】(1)答案见解析;(2)135°.【解析】【分析】(1)根据正方形的性质得到AB=CD,根据圆心角、弧、弦的关系得到,得到,即可得到结论;(2)连接OA、OB、OM,根据正方形的性质求出∠AOB和∠AOM,计算即可.【详解】(1)∵四边形ABCD是正方形,∴AB=CD,∴.∵M为的中点,∴,∴,∴BM=CM;(2)连接OA、OB、OM.∵四边形ABCD是正方形,∴∠AOB=90°.∵M为弧AD的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.【点睛】本题考查了正多边形的性质、圆心角、弧、弦的关系定理,掌握正方形的性质、圆心角、弧、弦的关系定理是解题的关键.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.【答案】(1)45°;(2).【解析】【分析】(1)根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质即可得到结论;(2)根据阴影部分的面积=S△ABC-S扇形DBC即可得到结论.【详解】(1)∵AB为半圆⊙O的直径,∴∠ACB=90°.∵AC=BC,∴∠ABC=45°;(2)∵AC=BC,∴∠ABC=45°,∴△ABC是等腰直角三角形.∵AB=2,∴BC=AB=,∴阴影部分的面积=S△ABC-S扇形DBC=.【点睛】本题考查了不规则图形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.23.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.【答案】(1)证明见解析;(2)y=x2.【解析】【分析】(1)连接OC,根据圆心角、弧、弦的关系定理得到∠COA=∠COB,证明△COD≌△COE,根据全等三角形的性质证明;(2)连接AC,根据全等三角形的判定定理得到△AOC为等边三角形,根据正切的定义求出CD,根据三角形的面积公式计算即可.【详解】(1)证明:连接OC,∵,∴∠COA=∠COB,∵D、E分别是⊙O两条半径OA、OB的中点,∴OD=OE,在△COD和△COE中,,∴△COD≌△COE(SAS)∴CD=CE;(2)连接AC,∵∠AOB=120°,∴∠AOC=60°,又OA=OC,∴△AOC为等边三角形,∵点D是OA的中点,∴CD⊥OA,OD=OA=x,在Rt△COD中,CD=OD•tan∠COD=,∴四边形ODCE的面积为y=×OD×CD×2=x2.【点睛】本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.24.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.【答案】(1)4;(2)详见解析【解析】【分析】(1)首先连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长;(2)由OC=CP=4,△OBC是等边三角形,可求得BC=CP,即可得∠P=∠CBP,又由等边三角形的性质,∠OBC=60°,∠CBP =30°,则可证得OB⊥BP,继而证得PB是⊙O的切线.【详解】(1)连接OB,∵弦AB⊥OC,劣弧AB的度数为120°,∴弧BC与弧AC的度数为:60°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC=4;(2)证明:∵OC=CP,BC=OC,∴BC=CP,∴∠CBP=∠CPB,∵△OBC是等边三角形,∴∠OBC=∠OCB=60°,∴∠CBP=30°,∴∠OBP=∠CBP+∠OBC=90°,∴OB⊥BP,∵点B在⊙O上,∴PB是⊙O的切线.【点睛】此题考查了切线的判定、等边三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD,证明△CDE∽△DBE,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°.∵AB=AC,∴∠ABC=∠ACB.∵∠ADB=∠ACB,∴∠F=∠FDE,∴DE=EF=3.∵CE=2,∠BCD=90°,∴∠DCE=90°,∴CD.∵∠BDE=90°,CD⊥BE,∴∠DCE=∠BDE=90°.∵∠DEC=∠BED,∴△CDE∽△DBE,∴,∴BD,∴⊙O的半径.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE=EF是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版九年级圆单元测试卷
班级:__________姓名:________________
成绩:___________
一、选择题(每小题3分,共24分)
1.如图1所示,AB是直径,点E是半圆AB中点,弦CD∥AB且平分OE,连AD,∠BAD度数为()
A.45°B.30°C.15°D.10°
图1图2图3
2.下列命题中,真命题是()
A.圆周角等于圆心角的一半B.等弧所对的圆周角相等
C.垂直于半径的直线是圆的切线D.过弦的中点的直线必经过圆心
3.半径分别为5和8的两个圆的圆心距为d,若3<d≤13,•则这两个圆的位置关系一定是()
A.相交B.相切C.内切或相交D.外切或相交
4.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那
么OM长为()
A.3cm B.6cm C.41cm D.9cm
5.半径相等的圆的内接正三角形,正方形边长之比为()A.1:2B.:2C.3:2D.1:2 6.如图2,已知⊙O的直径AB与弦AC的夹角为35°,过C 点的切线PC与AB•的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°
7.如图3所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x•轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()
A.(-4,0)B.(-2,0)C.(-4,0)或(-2,0)D.(-3,0)
8.如图4,两个半径都是4cm的圆外切于点C,一
只蚂蚁由点A开始依A、B、C、D、E、F、C、G、A
的顺序沿着圆周上的8段长度相等的路径绕行,蚂
蚁在这8段路径上不断爬行,直到行走2006πcm
后才停下来,则蚂蚁停的那一个点为()图4 A.D点B.E点C.F点D.G点
二、填空题(每题3分,共30分)
9.如图24—A—8,在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于点C,则∠AOC=。
10.如图24—A—9,AB、AC与⊙O相切于点B、C,∠A=50゜,P为⊙O上异于B、C的一个动点,则∠BPC的度数为。
图24—A—8图24—A—10
则整个旋转过程中线段OH所扫过部分的面积
图24—A—9
11.已知⊙O的半径为2,点P为⊙O外一点,OP长为3,那
么以P为圆心且与⊙O相切的圆的半径为。
12.一个圆锥的底面半径为3,高为4,则圆锥的侧面积
是。
13.扇形的弧长为20πcm,面积为240πcm2,则扇形的半径
为cm。
14.如图24—A—10,半径为2的圆形纸片,沿半径OA、OB
裁成1:3两部分,用得到的扇形围成圆锥的侧面,则圆锥
的底面半径分别为。
15.在△R t ABC中,∠C=90゜,AC=5,BC=12,以C为圆心,
R为半径作圆与斜边AB相切,则R的值为。
16.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如
果底边BC的长为8,那么BC边上的高为。
17.如图24—A—11,AB为半圆直径,O为圆心,
C为半圆上一点,E是弧AC的中点,OE交弦AC
于点D。
若AC=8cm,DE=2cm,则OD的长为
cm。
图24—A—11
18.如图,△R t AB C中,∠ACB=90°,∠C AB=30O A11
°,BC=2,O、H分别为边AB、AC的中点,将△H C H
1 ABC绕点B顺时针旋转120°到△A BC的位置,A
11
(即阴影部分面积)为
三、解答题(共66分)
O B
8
C
1
E
19如图所示,CE是⊙O的直径,弦AB⊥CE于D,若CD=2,AB=6,求⊙O•半径的长.
20.如图所示,AB是⊙O的直径,BC切⊙O于B,AC交⊙O于P,是BC•边上的中点,连结PE,PE与⊙O相切吗?若相切,请加以证明,若不相切,请说明理由.
21.“五一”节,小雯和同学一起到游乐场玩大型摩天轮,•摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m).
(1)经过2min后小雯到达点Q如图所示,此时他离地面的高度是多少.
(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中.
A
22.小刚对科技馆富有
创意的科学方舟形象设
A
O
B
B
科学方舟
D C
24 .如图,在平面直角坐标系中, A ,B 两点的坐标分别为
A(-2,, B(8,0) ,以 A B 为直径的半圆 P 与 y 轴交于点 M ,以O A B E 为
计很有兴趣,他回家后将一正五边形纸片沿其对称轴对
折.旋转放置,做成科学方舟模型.如图所示,该正五边形 的边心距 OB 长为 2 , AC 为科学方舟船头 A 到船底的距离, 请你计算 AC + 1 AB = .(结果保留根号).
2
23.如图, AB 为⊙ O 的直径, CD ⊥ AB 于点 E ,交⊙ O 于点 D , OF ⊥ AC 于点 F .
(1)请写出三条与 BC 有关的正确结论;
C
(2)当 ∠D = 30 , BC = 1时,求圆中阴影部分的面积.F
A 0)
一边作正方形 ABCD .
D
(1)求 C ,M 两点的坐标;(4 分)
(2)连接CM ,试判断直线CM 是否与⊙P 相切?说明你的理 由;(6 分)
(3)在 x 轴上是否存在一点 Q ,使得 △QMC 的周长最小?若 存在,求出点 Q 的坐标;若不存在,请说明理由.(3 分)
y
D
E
M
A -2
O P
B
C
B 8
x
25如图,在平面直角坐标系中,OABC,OC在x轴上,OA=4,
□
∠AOC=60°,点P在x轴上,点P从原点出发以每秒1个单位的速度沿x轴的正方向匀速运动,设运动时间为t,以OP为一边在第一象限内作等边三角形OPD,当t=12时,直线PD恰好经过B点,
(1)求直线OA的解析式;
(2)求C点的坐标;
(3)以PC为直径在第一象限内作半圆,过PD的中点R作半圆的切线,是否存在t的值使该切线与x轴的夹角为
30°,若存在求出t的值;若不存在,请说明理由.
y
A B
O C x。