质量流量计工作原理精编版
质量流量计的结构和原理

质量流量计的结构和原理
质量流量计的结构和工作原理可以概括为以下几点:
一、结构
质量流量计主要由测量管、流量传感器、温度传感器、控制回路等部分组成。
二、工作原理
1. 热量脉冲法
向流体传输微小的热量脉冲,检测上下游温度变化,计算热容和流速。
2. 冷热线法
一个探头加热,一个探头测量上下游温差,结合热容计算质量流率。
3. 波束法
传感器发射声波或微波穿过管道,根据传播时间计算流速。
4. 测温法
在管道设置温度探头,流体吸热使温度改变,测量时间计算流量。
5. 冲量法
设置具有惯性的击块,流体冲击产生力移动击块,计算流量。
三、计算流程
1. 测量过程参数:密度、温度、压力、波束传播时间等。
2. 将各参数输入计算机控制回路。
3. 通过特定算法计算获得质量流量值。
4. 显示或输出质量流量结果。
四、特点
测量准确、响应快、可靠性高、使用寿命长。
通过以上结构和原理,质量流量计实现了对流体流量准确的测定,具有重要的工业
应用价值。
质量流量计的原理及应用论文

质量流量计的原理及应用论文1. 引言质量流量计是一种用于测量流体质量流量的传感器。
它广泛应用于各种工业领域,如石油化工、制药、食品加工等。
本文将介绍质量流量计的原理以及其在工业领域的应用。
2. 原理质量流量计通过测量流体的质量来计算流体的流量。
它利用了流体的质量与其传导热量的关系来实现测量。
工作原理如下: - 流体经过质量流量计时,流体与质量流量计的传感器发生热交换。
- 传感器中的电阻丝受电流加热,流体带走电阻丝释放的热量。
- 通过测量电阻丝加热前后的温度差,可以计算流体的质量。
3. 应用质量流量计在工业领域有广泛的应用。
以下是几个常见的应用领域:3.1 石油化工在石油化工过程中,精确测量流体的质量流量是非常重要的。
质量流量计可以帮助监测石油化工过程中的流体流量,并提供准确的数据用于生产控制和优化。
3.2 制药在制药过程中,需要严格控制药品的质量和流量。
质量流量计可以精确测量药品的流量和质量,确保制药过程中的生产安全和质量控制。
3.3 食品加工食品加工行业需要精确测量食材和添加剂的流量,以确保产品的质量和食品安全。
质量流量计可应用于食品加工过程中,提供准确的流量信息。
3.4 热能计量质量流量计可用于热能计量系统,帮助测量和计量流体的质量和热量。
这对于工业企业的能源管理和节能减排是非常重要的。
4. 总结质量流量计是一种广泛应用于工业领域的流量传感器。
本文介绍了质量流量计的原理以及其在石油化工、制药、食品加工和热能计量等领域的应用。
通过使用质量流量计,可以实现对流体质量和流量的精确测量,为工业生产和能源管理提供准确的数据支持。
质量流量计的工作原理

质量流量计的工作原理
质量流量计(mass flow meter)是一种用于测量流体质量流量的仪器,其工作原理基于质量守恒定律和波动理论。
质量流量计通常由两个基本组件组成:传感器和转换器。
传感器通常包括测量管道(或流道)和多个传感器,用于测量流体质量流量。
转换器则用于将传感器产生的信号转换成可读取的质量流量数值。
在工作时,流体通过测量管道或流道流动,同时传感器对流体进行测量。
传感器通常使用压力传感器、温度传感器和密度传感器等来获取相关的测量数据。
首先,通过压力传感器测量流体中的压力变化情况,然后通过温度传感器测量流体中的温度变化情况。
这些测量数据与流体的密度相关联,因此需要使用密度传感器来测量流体的密度。
通过对压力、温度和密度等测量数据的获取和计算,质量流量计能够准确地计算出流体的质量流量。
转换器会将这些计算结果转换为可读取的质量流量数值,并在显示屏上显示出来。
需要注意的是,质量流量计的工作原理与体积流量计(如流量计和涡轮流量计)有所不同。
质量流量计主要依据流体的密度变化来测量流体的质量流量,而体积流量计则是基于流体容积的变化来测量流体的体积流量。
总的来说,质量流量计通过测量压力、温度和密度等参数的变
化,能够准确地计算出流体的质量流量,提供了一种可靠和精确的流量测量方式。
科里奥利质量流量计工作原理

科里奥利质量流量计工作原理
科里奥利质量流量计是一种基于科里奥利效应的流量测量仪表,用于测量流体的质量流量。
它利用了科里奥利定律,即当流体流经一根装有电磁线圈的传感器时,由于流体的速度和温度的变化,会在传感器中产生一个感应电势。
具体工作原理如下:
1. 流体通过流量计中的管道,以一定的速度流动。
流速较高的流体具有较高的科里奥利效应,即会在传感器中产生较大的感应电势。
2. 流量计中的电磁线圈产生一个交变磁场,用于感应流体中的电势。
3. 流体中的电势受到磁场的作用,会在流量计中产生一个感应电势。
这个感应电势与流体的速度和温度相关。
4. 流量计中的电路测量和分析这个感应电势,根据科里奥利定律的原理,将感应电势转化为流体的质量流量。
5. 流量计中的计算机或显示屏会将质量流量信息显示出来,以供用户监测和控制。
总结来说,科里奥利质量流量计通过测量流体中的感应电势,利用科里奥利定律将其转化为质量流量信息。
它具有准确、稳定等特点,广泛应用于流体测量和控制领域。
质量流量计工作原理

质量流量计工作原理
质量流量计是一种用于测量流体质量流量的仪器。
它的工作原理是利用流体在
测量管道中的质量变化来计算流体的质量流量。
在质量流量计中,流体的密度是一个重要的参数,因为质量流量是由流体质量和流体密度的乘积得出的。
首先,让我们来看一下质量流量计的基本结构。
质量流量计通常由测量管道、
传感器和数据处理单元组成。
测量管道是流体流动的路径,传感器用于测量流体的质量变化,数据处理单元用于处理传感器采集到的数据并计算出流体的质量流量。
在质量流量计中,流体的质量变化是通过测量管道中的传感器来实现的。
传感
器可以采用多种不同的原理来实现质量变化的测量,比如热敏电阻、压电效应、振动频率等。
这些传感器可以将流体的质量变化转化为电信号,并传输给数据处理单元进行处理。
数据处理单元是质量流量计的核心部分,它通过处理传感器采集到的数据来计
算出流体的质量流量。
在数据处理过程中,需要考虑到流体的密度、温度、压力等参数,以确保计算结果的准确性。
此外,数据处理单元还可以对测量结果进行校正和补偿,以提高测量的精度和稳定性。
总的来说,质量流量计的工作原理是通过测量管道中流体的质量变化来计算流
体的质量流量。
它利用传感器采集到的数据,并通过数据处理单元进行处理和计算,最终得出流体的质量流量。
质量流量计在工业生产、化工、石油、天然气等领域有着广泛的应用,它能够准确、稳定地测量流体的质量流量,对于生产过程的控制和优化具有重要意义。
质量流量计工作原理

质量流量计工作原理质量流量计是一种用于测量流体质量流量的仪器,它通过测量流体的质量来确定流体的流量。
质量流量计的工作原理基于质量守恒定律和动量守恒定律,通过测量流体的质量和速度来计算流体的流量。
本文将介绍质量流量计的工作原理及其应用。
质量流量计的工作原理基于质量守恒定律,质量守恒定律是指在封闭系统内,系统的质量不会发生变化。
质量流量计利用这一原理来测量流体的质量流量。
当流体通过质量流量计时,流体的质量不会发生变化,因此可以通过测量流体的质量来确定流体的流量。
质量流量计的工作原理还基于动量守恒定律,动量守恒定律是指在封闭系统内,系统的动量不会发生变化。
质量流量计利用这一原理来测量流体的流速,通过测量流体的流速和质量来计算流体的流量。
质量流量计通常配有流速传感器,用于测量流体的流速,然后根据流速和质量来计算流量。
质量流量计通常包括质量传感器和流速传感器。
质量传感器用于测量流体的质量,流速传感器用于测量流体的流速。
质量传感器通常采用压力传感器或者称为质量平衡传感器,通过测量流体对传感器的压力来确定流体的质量。
流速传感器通常采用涡街流量传感器或者超声波流量传感器,通过测量流体的流速来确定流体的流量。
质量流量计的工作原理可以简单概括为:通过测量流体的质量和流速来确定流体的流量。
质量流量计可以用于测量液体、气体甚至固体的流量,因此在工业生产、环境监测、实验室研究等领域有着广泛的应用。
质量流量计的工作原理使其具有许多优点,例如精度高、稳定性好、可靠性高、适用范围广等。
因此,质量流量计在工业生产、环境监测、实验室研究等领域得到了广泛的应用。
总之,质量流量计是一种用于测量流体质量流量的仪器,其工作原理基于质量守恒定律和动量守恒定律,通过测量流体的质量和流速来确定流体的流量。
质量流量计具有精度高、稳定性好、可靠性高、适用范围广等优点,在工业生产、环境监测、实验室研究等领域有着广泛的应用。
质量流量计工作原理

质量流量计工作原理
质量流量计是一种用于测量流体质量流量的仪器,它的工作原理基于质量守恒定律和热力学原理。
质量流量计主要由传感器和信号处理单元组成。
工作原理如下:
1. 传感器:质量流量计的传感器通常由两个主要部分组成:流道和热敏电阻。
流道是流体通过的通道,热敏电阻则位于流道上方或者内部。
当流体通过流道时,流体会带走部分热量,热敏电阻会受到流体温度的影响而发生变化。
2. 热敏电阻:热敏电阻是一种电阻值随温度变化的传感器,其电阻值与温度呈反比关系。
热敏电阻通常由铂制成,称为热敏电阻铂热敏电阻。
在质量流量计中,热敏电阻的电阻值随着流体通过流道带走的热量而发生变化。
3. 测量原理:当流体通过流道时,流体会带走流道和热敏电阻的热量。
测量过程中,控制系统通过恒定的加热电流,维持热敏电阻的温度始终高于流体温度。
流体通过时,热敏电阻的温度发生变化,并通过测量瞬时电阻值的变化,来获取流体质量流量的信息。
4. 信号处理:测得的瞬时电阻值变化将被传输至信号处理单元,该单元负责根据预先设定的电阻变化与质量流量的关系进行计算处理。
最后,信号处理单元将质量流量输出作为结果。
通过以上工作原理,质量流量计可以准确测量流体的质量流量,广泛应用于工业自动化控制、流体传递过程中的计量等领域。
质量流量计的工作原理

质量流量计的工作原理
质量流量计是一种用于测量流体质量流量的仪器,它的工作原理基于质量守恒定律和热力学原理。
质量流量计的基本构造包括质量传感器和控制系统。
传感器通常由弯曲管道、加热器和温度传感器组成。
当流体通过弯曲管道时,由于该管道呈曲线形状,流体会因为离心力而产生离心位移。
这个离心位移会导致弯曲管道的一端出现质量不平衡,而另一端则出现质量平衡。
加热器会根据流体的温度和热容来检测质量平衡的状态。
控制系统则根据加热器检测到的温度差异来计算流体的质量流量。
当流体的质量不平衡发生时,加热器会改变其热输出来调整流体的温度差异,以实现质量平衡。
控制系统通过测量和调整加热器的热输出,使得流体在弯曲管道中始终保持质量平衡。
根据加热器的热输出量的变化,控制系统可以计算出流体的质量流量。
质量流量计的工作原理可以总结为以下几个步骤:首先,测量流体通过弯曲管道时产生的质量不平衡。
然后,根据质量不平衡计算出相应的温度差异。
通过改变加热器的热输出,使得流体的温度差异达到预设的值,从而实现质量平衡。
最后,根据加热器的热输出量的变化计算出流体的质量流量。
质量流量计的工作原理简单而可靠,可以应用于多种场合,如工业过程控制、化工生产、石油炼制等领域。
它具有精度高、
响应快、可靠性好等优点,已经成为流体测量领域中不可或缺的仪器之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质量流量计工作原理精
编版
MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】
质量流量计工作原理
流体的体积是流体温度、压力和密度的函数。
在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。
质量流量计的测量方法,可分为间接测量和直接测量两类。
间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。
1.间接式质量流量计
间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。
常见的组合方式主要有3种。
(1)节流式流量计与密度计的组合
由前述知,节流式流量计的差压信号P
qρ,如图1所示,密度计连
∆正比于2
v
续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为
(1-1)靶式流量计的输出信号与2
qρ也成正比关系,故同样可按上述方法与密度计组合构
v
成质量流量计。
密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。
图1 节流式流量计与密度计组合
(2)体积流量计与密度计的组合
如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等,
q成正比,这类流量计与密度计组合,通过乘法运测得的输出信号与流体体积流量
v
算,即可求出质量流量为
(1-2)(3)体积流量计与体积流量计的组合
如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为
(1-3) 图2体积流量计和密度计组合 图3 节流式流量计和其他体积流量计组合
除上述几种组合式质量流量计外,在工业上还常采用温度、压力自动补偿式质量流量计。
由于流体密度是温度和压力的函数,而连续测量流体的温度和压力要比连续测量流体的密度容易,因此,可以根据已知被测流体密度与温度和压力之间的关系,同时测量流体的体积流量以及温度和压力值,通过运算求得质量流量或自动换算成标准状态下的体积流量。
但这种测量方式不适合高压或温度变化范围大的情形,因为在此条件下自动补偿检测出来的温度、压力很困难。
2.直接式质量流量计
直接式质量流量计的输出信号直接反映质量流量,其测量不受流体的温度、压力、密度变化的影响。
直接式质量流量计有许多种形式。
(1)热式质量流量计
热式质量流量计的基本原理是利用外部热源对管道内的被测流体加热,热能随流体一起流动,通过测量因流体流动而造成的热量(温度)变化来反映出流体的质量流量。
如图4所示,在管道中安装一个加热器对流体加热,并在加热器前后的对称点上检测温度。
设p c 为流体的定压比热,T ∆为测得的两点温度差,则根据传热规律,对流体的加热功率P 与两点间温差的关系可表示为 (1-4) 由上式可写出质量流量的方程式 (1-5)
图4 热式质量流量计结构示意图
当流体成分确定时,流体的定压比热为已知常数。
因此由上式可知,若保持加热功率P 恒定,则测出温差T ∆便可求出质量流量;若采用恒定温差法,即保持两点温差T ∆不变,则通过测量加热的功率P 也可以求出质量流量。
由于恒定温差法较为简单、易实现,所以实际应用较多。
这种流量计多用于较大气体流量的测量。
为避免测温和加热元件因与被测流体直接接触而被流体玷污和腐蚀,可采用非接触式测量方法,即将加热器和测温元件安装在薄壁管外部,而流体由薄壁管内部
通过。
非接触式测量方法,适用于小口径管道的微小流量测量。
当用于大流量测量时,可采用分流的方法,即仅测量分流部分流量,再求得总流量,以扩大量程范围。
图5为热式质量流量计的外观图。
图5 热式质量流量计外观图
(2)差压式质量流量计
差压式质量流量计是以马格努斯效应为基础的流量计,实际应用中利用孔板和定量泵组合实现质量流量测量。
常见的有双孔板和四孔板与定量泵组合两种结构。
双孔板结构形式如图6所示,在主管道上安装结构和尺寸完全相同的两个孔板A 和B ,在分流管道上装置两个流向相反、流量固定为q 的定量泵,差压计连接在孔板A 入口和孔板B 出口处。
设主管道体积流量为v q ,且满足v q q >,则由图可知,流经孔板A 的体积流量q q v -,流经孔板B 的流量为q q v +,根据差压式流量测量原理,孔板A 和B 处压差分别为
(1-6) (1-7) 式中,K 为常数;ρ为流体的密度。
由上式可得 (1-8) 可见,孔板A 、B 前后的压差31p p p -=∆与流体质量流量v m q q ρ=成正比,测出压差p ∆便可以求出流体质量流量。
图6 双孔板差压式质量流量计结构原理图
由于双孔板质量流量计的定量泵流量必须大于主管道流量,并且要用两个定量泵,在主管道流量较大时比较困难。
因此,提出采用一个定量泵和四个孔板组合的改进方案。
如图7所示,从主管道流入的流量v q 分成两路,并在支路安装相同的孔板A 、C 和B 、D ,两个支路间安装一个定量泵,流量为q 。
设流过孔板A 的体积流量为A q ,流过孔板B 、C 、D 的体积流量如图7中所示。
用与上述计算相同的方法,在v q q >时,可求出如下关系
(1-9) 如果v q q <,则变成如下关系 (1-10)
可见,四孔板与定量泵组合结构不论v q q >或v q q <均可测量。
这种测量方法,适于测量液体的质量流量,测量范围为~250 kg/h ,量程比为20:1,测量准确度可达%。
图7 四孔板差压式质量流量计结构原理图
(3)科里奥利质量流量计
科里奥利质量流量计(简称科氏力流量计)是一种利用流体在振动管中流动而产生与质量流量成正比的科里奥利力的原理来直接测量质量流量的仪表。
科氏力流量计结构有多种形式,一般由振动管与转换器组成。
振动管(测量管道)是敏感器件,有U 形、Ω形、环形、直管形及螺旋形等几种形状,也有用双管等方式,但基本原理相同。
下面以U 形管式的质量流量计为例介绍。
图8 科氏力流量计测量原理
图8所示为U 形管式科氏力流量计的测量原理示意图。
U 形管的两个开口端固定,流体由此流入和流出。
U 形管顶端装有电磁激振装置,用于驱动U 形管,使其铅垂直于U 形管所在平面的方向以O-O 为轴按固有频率振动。
U 形管的振动迫使管中流体在沿管道流动的同时又随管道作垂直运动,此时流体将受到科氏力的作用,同时流体以反作用力作用于U 形管。
由于流体在U 形管两侧的流动方向相反,所以作用于U 形管两侧的科氏力大小相等方向相反,从而使U 形管受到一个力矩的作用,管端绕R —R 轴扭转而产生扭转变形,该变形量的大小与通过流量计的质量流量具有确定的关系。
因此,测得这个变形量,即可测得管内流体的质量流量。
设U 形管内流体流速为u ,U 形管的振动可视为绕O-O 为轴的瞬时转动,转动角速度为ω若流体质量为m ,则其上所作用的科氏力为
2F m u ω=⨯ (1-11) 式中,F 、ω、u 均为矢量,ω是按正弦规律变化的。
U 形管所受扭力矩为
112224M F r F r Fr m ur ω=+== (1-12) 式中12F F F F ===,12r r r ==为U 形管跨度半径。
因为质量流量和流速可分别写为:/m q m t =,/u L t =,式中t 为时间,则上式可写为
4m M rLq ω= (1-13) 设U 型管的扭转弹性模量为s K ,在扭力矩M 作用下,U 型管产生的扭转角为θ。
故有
(1-14) 因此,由上两式得 4s m K q rL
θω= (1-15) U 型管在振动过程中,θ角是不断变化的,并在管端越过振动中心位置Z-Z 时达到最大。
若流量稳定,则此最大θ角是不变的。
由于θ角的存在,两直管端1P 、2P 将不能同时越过中心位置Z-Z ,而存在时间差t ∆。
由于θ角很小,设管端在振动中心位置时的振动速度为p u ,(p u L ω=),则
2sin 2p r r t u L θθω∆=
= (1-16) 从而
(1-17) 将上式代入式(1-15),得
(1-18) 对于确定的流量计,式中的s K 和r 是已知的,故质量流量m q 与时间差t ∆成正比。
如图8所示,只要在振动中心位置Z-Z 处安装两个光电或磁电位移传感器,测出时间差t ∆,即可由式(1-18)求得质量流量。
科氏力流量计能直接测得气体、液体和浆液的质量流量,也可以用于多相流测量,且不受被测介质物理参数的影响。
测量精度较高,量程比可达l00:1。
图9为科里奥利质量流量计的外观图。
图9 科里奥利质量流量计外观图。