二次微分方程的通解
二阶微分方程解

二阶微分方程解二阶微分方程分为齐次和非齐次两种类型。
在这里,我们主要讨论二阶常系数齐次线性微分方程的解法。
二阶常系数齐次线性微分方程的一般形式为:ayy'' + by' + cy = 0其中,a、b、c为常数。
求解过程如下:1. 特征方程:首先求出微分方程的特征方程。
特征方程为:r^2 - pr - q = 0其中,p、q为常数。
2. 求解特征方程:求出特征方程的两个根r1和r2。
可以使用公式:r1,2 = (-p ±√(p^2 - 4q)) / 23. 根据根与系数的关系,得出二阶微分方程的通解:通解= yC1* e^(r1x) + yC2 * e^(r2x)其中,yC1和yC2为待定系数,可通过初始条件求解。
4. 求解特解:若需要求解特解,可以先设特解的形式为y = yE(x),然后将其代入原方程,求解待定系数。
举例:求解二阶常系数齐次线性微分方程:yy'' - 2y' + 3y = 01. 特征方程:r^2 - 2r + 3 = 02. 求解特征方程:r1= 1,r2 = 33. 通解:通解= yC1* e^x + yC2* e^-x4. 求解特解:设特解为y = yE(x) = e^(x^2)将其代入原方程,求解得到yE(x)为原方程的特解。
需要注意的是,二阶微分方程的解法不仅限于齐次方程,还包括非齐次方程。
非齐次方程的解法通常需要先求解齐次方程的通解,然后通过待定系数法求解特解。
此外,还有其他类型的二阶微分方程,如艾里方程等,其解法更为复杂。
二阶变系数齐次微分方程通解的求法

假设 2 ( * %) &" ( ( + %) & (( , %)5 $ , , 即 " %& . " ( % ( !) & ( ( 5 $, ( & . ") ( &% . " )5 $ 6 因为 & 为常数, 所以 & # " , 由此得方程的一个特解 !! # #"% ,
% 再设 !" # $ ( %) #特解, 则
! ( ( ) &( "
参考文献
+ 张清芳, 库在强0 用观察法求某些二阶系数齐次方程的通解 [ ,] , 高等数学研究, "’’- , . (&) : /0 —/. [!]
-----------------------------------------( 上接第 !. 页) + 所以原方程组的通解为: " & 2 0 & $ ! $ &20 $ " - 2 0 $ " "20 (!! ("! (&! (!! ("! (&! 1 %( !! !" ) # ’ # ’ ’ % ! ’ (!" ("" (&" (!" ("" (&" ’ % 2 0 ’ ! -20 ’ ’ ’ ’ ! " % & ("! $ ("" & 2 0 % & (&! $ (&" $ & 2 0 % & (!! $ (!" " 2 0 $ - (!! % " (!" $ " $ - ("! % " ("" - 2 0 $ -& (&! % " (&" (!! ("! (&! - 2 0 % (!" ("" % 2 0 % (&" (!" ("" (&"
二阶常微分方程的几种解法

二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:通解的一般方法是将其转化为对应的齐次方程的通阶与它本'''()y ay by f x ++=身的特解之和。
微分方程阶数越高, 相对于低阶的解法越难。
那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。
而由此产生的通解公式给出了该方程通解的更一般的形式。
设二阶常系数线性非齐次方程为(1)'''()y ay by f x ++=这里都是常数。
为了使上述方程能降阶, 考察相应的特征方程b a 、(2)20k ak b ++=对特征方程的根分三种情况来讨论。
1 若特征方程有两个相异实根。
则方程(1) 可以写成12k 、k'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---= 记 , 则(1) 可降为一阶方程'2z y k y =-由一阶线性方程的通解公'1()z k z f x -= [5]()()[()]p x dx p x dxy e Q x e dx c -⎰⎰=+⎰(3)知其通解为这里表示积分之后的函数是以为自变量的。
1130[()]xk xk tz e f t edt c -=+⎰0()xh t dt ⎰x 再由11230[()]x k xk t dy k y z e f t e dt c dx--==+⎰解得12212()()34012[(())]k k xxuk xk k ue y e ef t dt du c c k k --=++-⎰⎰应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k xxxk xk tk te e y ef t edt f t edt c c k k k k k k ----=-++---⎰⎰(4)1122121200121[()()]x x k x k t k xk t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰2 若特征方程有重根, 这时方程为k 或'''22()y ky k y f x -+='''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]x kx kt y ky e e f t dt c --=+⎰再改写为'1()xkxkx kt ey key e f t dt c ----=+⎰即10()()x kxkt d e y e f t dt c dx--=+⎰故(5)120()()xkx kt kx kx y ex t e f t dt c xe c e -=-++⎰例1 求解方程'''256xy y y xe -+=解 这里 的两个实根是2 , 32560k k -+=.由公式(4) 得到方程的解是2()x f x xe =332222321200xxx t t x t t x xy e e te dt e e te dt c e c e --=-++⎰⎰32321200xxx t x x xe te dt e tdt c e c e -=-++⎰⎰2232132xx x x x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里.321c c =-例2 求解方程'''2ln x y y y e x-+=解 特征方程 有重根1 , .由公式(5) 得到方程的解是2210k k -+=()ln x f x e x =120()ln xx t t x xy ex t e e tdt c xe c e -=-++⎰120()ln xxx xe x t tdt c xe c e =-++⎰1200[ln ln ]xxxx xe x tdt t tdt c xe c e =-++⎰⎰21213ln 24x x xx e x c xe c e ⎡⎤=-++⎢⎥⎣⎦二 常数变易法二阶常系数非齐次线性微分方程的一般形式是, (6)'''()y py qy f x ++= , (7)'''0y py qy ++=其中 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方p q 、程(7) 的通解。
一元二阶微分方程通解

一元二阶微分方程通解
一元二阶微分方程通解的求解方法有多种,下面以常系数齐次线性微分方程为例进行说明。
一般形式的一元二阶齐次线性微分方程可以写成:
a*d^2y/dx^2 + b*dy/dx + c*y = 0
其中,a、b、c都是常数。
首先,我们需要找到该微分方程的特征方程。
假设y=e^(rx)是方程的解,代入微分方程中,得到特征方程:
a*r^2 + b*r + c = 0
解这个特征方程,可以得到两个根r1和r2。
根据根的情况,分为三种情况:
1. 当特征方程有两个不相等的实根r1和r2时,通解形式为:
y = C1*e^(r1*x) + C2*e^(r2*x)
其中C1和C2为任意常数。
2. 当特征方程有一个重根r时,通解形式为:
y = (C1 + C2*x)*e^(r*x)
其中C1和C2为任意常数。
3. 当特征方程有一对共轭复根α±βi时,通解形式为:
y = e^(α*x)*(C1*cos(β*x) + C2*sin(β*x))
其中C1和C2为任意常数。
需要注意的是,以上是针对齐次线性微分方程的通解形式。
如果是非齐次线性微分方程,还需要加上一个特解。
二阶微分方程零点孤立

二阶微分方程零点孤立
二阶微分方程零点的孤立,通常是指在特定条件下,方程的根在不同区间内单调或不单调的现象。
这在数学和工程领域中具有实际意义,因为在某些情况下,我们可能需要关注系统在不同区间内的动态行为。
对于二阶微分方程,其通解可以表示为:
x'' + p(x') + q = 0
其中,p(x')和q是已知函数。
要找到这个方程的零点,我们需要解决以下问题:
x'' + p(x') + q = 0
对于这个方程,我们可以使用数值方法(如欧拉法、龙格库塔法等)求解,从而得到近似解。
而在实际应用中,我们通常关心的是零点的孤立现象,即在不同区间内的动态行为。
。
二阶微分方程解法(参考模板)

第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法 教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程 y+py +qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx满足二阶常系数齐次线性微分方程, 为此将y =e rx代入方程 y +py +qy =0得(r 2+pr +q )e rx=0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y+py +qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又xr r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r xr x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y xr xr ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=a ib 时, 函数y =e(a +ib )x、y =e(a ib )x是微分方程的两个线性无关的复数形式的解. 函数y =e axcos bx 、y =e axsin bx 是微分方程的两个线性无关的实数形式的解. 函数y 1e(a +ib )x和y 2e(a ib )x都是方程的解 而由欧拉公式 得y 1e (a +ib )x e x (cos x i sin x )y 2e(aib )xe x (cos x i sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x )(21sin 21y y ix e x -=βα故e ax cos bx 、y 2=e axsin bx 也是方程解.可以验证, y 1=e ax cos bx 、y 2=e axsin bx 是方程的线性无关解. 因此方程的通解为y =e ax(C 1cos bx +C 2sin bx ). 求二阶常系数齐次线性微分方程y +py +qy =0的通解的步骤为:第一步 写出微分方程的特征方程 r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解. 例1 求微分方程y-2y -3y =0的通解.解 所给微分方程的特征方程为 r 2-2r -3=0, 即(r 1)(r 3)0其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为 y =C 1e -x+C 2e 3x.例2 求方程y+2y+y=0满足初始条件y|x=0=4、y|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0, 即(r1)20其根r1=r2=1是两个相等的实根, 因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解, 得C1=4, 从而y=(4+C2x)e-x.将上式对x求导, 得y=(C2-4-C2x)e-x.再把条件y|x=0=-2代入上式, 得C2=2. 于是所求特解为x=(4+2x)e-x.例 3 求微分方程y-2y+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0特征方程的根为r1=12i r2=12i是一对共轭复根因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程: 方程y(n) +p1y(n-1)+p2 y(n-2) + + p n-1y+p n y=0,称为n阶常系数齐次线性微分方程, 其中p1, p2 , , p n-1, p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式, 可推广到n阶常系数齐次线性微分方程上去.引入微分算子D及微分算子的n次多项式L(D)=D n+p1D n-1+p2 D n-2 + + p n-1D+p n则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 + + p n-1D+p n)y=0或L(D)y0注 D叫做微分算子D0y y D y y D2y y D3y y D n y y(n)分析令y e rx则L(D)y L(D)e rx(r n+p1r n-1+p2 r n-2 + + p n-1r+p n)e rx=L(r)e rx因此如果r是多项式L(r)的根则y e rx是微分方程L(D)y0的解n阶常系数齐次线性微分方程的特征方程L(r)r n+p1r n-1+p2 r n-2 + + p n-1r+p n0称为微分方程L(D)y0的特征方程特征方程的根与通解中项的对应: 单实根r 对应于一项: Ce rx;一对单复根r 1, 2=a ib 对应于两项: e ax(C 1cos bx +C 2sin bx );k 重实根r 对应于k 项: e rx (C 1+C 2x + +C k x k -1); 一对k 重复根r 1, 2=a ib 对应于2k 项:e ax[(C 1+C 2x + +C k x k -1)cos bx +( D 1+D 2x + +D k x k -1)sin bx ]. 例4 求方程y (4)-2y +5y=0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0, 它的根是r 1=r 2=0和r 3, 4=12i .因此所给微分方程的通解为y =C 1+C 2x +e x(C 3cos2x +C 4sin2x ). 例5 求方程y (4)+b 4y =0的通解, 其中b 0.解 这里的特征方程为 r 4+b 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β.因此所给微分方程的通解为 )2sin2cos(212x C x C ey xβββ+=)2sin2cos(432x C x C exβββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y +py +qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法: 一、 f (x )=P m (x )e lx型当f (x )=P m (x )e lx时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e lx , 将其代入方程, 得等式 Q(x )+(2l +p )Q(x )+(l 2+pl +q )Q (x )=P m (x ).(1)如果l 不是特征方程r 2+pr +q =0 的根, 则l 2+pl +q 0. 要使上式成立, Q (x )应设为m 次多项式:Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=Q m(x)e lx.(2)如果l是特征方程r2+pr+q=0 的单根, 则l2+pl+q=0, 但2l+p0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=xQ m(x)e lx.(3)如果l是特征方程r2+pr+q=0的二重根, 则l2+pl+q=0, 2l+p=0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=x2Q m(x)e lx.综上所述, 我们有如下结论: 如果f(x)=P m(x)e lx, 则二阶常系数非齐次线性微分方程y+py+qy =f(x)有形如y*=x k Q m(x)e lx的特解, 其中Q m(x)是与P m(x)同次的多项式, 而k按l不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y-2y-3y=3x+1的一个特解.解这是二阶常系数非齐次线性微分方程, 且函数f(x)是P m(x)e lx型(其中P m(x)=3x+1, l=0).与所给方程对应的齐次方程为y-2y-3y=0,它的特征方程为r2-2r-3=0.由于这里l=0不是特征方程的根, 所以应设特解为y*=b0x+b1.把它代入所给方程, 得-3b0x-2b0-3b1=3x+1,比较两端x同次幂的系数, 得⎩⎨⎧=--=-13233100b b b -3b 0=3, -2b 0-3b 1=1.由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y . 例2 求微分方程y-5y +6y =xe 2x的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e lx型(其中P m (x )=x , l =2). 与所给方程对应的齐次方程为y -5y +6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为Y =C 1e 2x +C 2e 3x .由于l =2是特征方程的单根, 所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得 -2b 0x +2b 0-b 1=x . 比较两端x 同次幂的系数, 得 ⎩⎨⎧=-=-0212100b b b -2b 0=1, 2b 0-b 1=0.由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=. 从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=. 提示y *=x (b 0x +b 1)e 2x (b 0x 2+b 1x )e 2x[(b 0x 2+b 1x )e 2x][(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2xy *5y *6y *[(b 0x 2+b 1x )e 2x]5[(b 0x 2+b 1x )e 2x]6[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2x5[(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x6(b 0x 2+b 1x )e 2x[2b 04(2b 0x b 1)5(2b 0x +b 1)]e 2x[2b 0x +2b 0b 1]e 2x方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解形式应用欧拉公式可得e lx [P l (x )cos wx +P n (x )sin wx ]]2)(2)([ ie e x P e e x P e x i x i nx i xi l x ωωωωλ---++=x i nl x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-=x i x i e x P e x P )()()()(ωλωλ-++=,其中)(21)(i P P x P n l -=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y+py+qy =P (x )e(l +iw )x的特解为y 1*=x k Q m (x )e(l +iw )x,则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按l iw 不是特征方程的根或是特征方程的根依次取0或1. 于是方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解为x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e lx[R(1)m(x )cos wx +R(2)m(x )sin wx ].综上所述, 我们有如下结论:如果f (x )=e lx[P l (x )cos wx +P n (x )sin wx ], 则二阶常系数非齐次线性微分方程y+py +qy =f (x )的特解可设为y *=x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ],其中R(1)m(x )、R(2)m(x )是m 次多项式, m =max{l , n }, 而k 按l +i w (或l -iw )不是特征方程的根或是特征方程的单根依次取0或1. 例3 求微分方程y+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e lx[P l (x )cos wx +P n (x )sin wx ]型(其中l =0, w =2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y +y =0,它的特征方程为r 2+1=0.由于这里l +iw =2i 不是特征方程的根, 所以应设特解为y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=. 提示y *=(ax +b )cos2x +(cx +d )sin2x .y *=a cos2x 2(ax +b )sin2x +c sin2x +2(cx +d )cos2x(2cx +a2d )cos2x +(2ax 2b c )sin2xy *=2c cos2x 2(2cx +a 2d )sin2x 2a sin2x +2(2ax 2b c )cos2x(4ax4b4c )cos2x(4cx 4a 4d )sin2xy *y *(3ax 3b 4c )cos2x (3cx 4a 3d )sin2x由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a 得31-=a , b =0, c =0, 94=d .(注:文档可能无法思考全面,请浏览后下载,供参考。
常系数二阶微分方程的齐次通解

常系数二阶微分方程的齐次通解————————————————————————————————作者:————————————————————————————————日期:附录2 常系数二阶微分方程的齐次通解常系数二阶齐次微分方程 0=+2+2022y dtdy dt yd ωα 设其中α、ω0都是正实数。
要使二阶微分方程有确定的解,必须知道两个初始条件:初始值y (0)和一阶导数的初始值0=t dt dy 。
这里只讨论齐次通解在一些典型的系数值下的特点,不求出解中的待定常数。
目的在于避免过多的数学式子,突出对有普遍意义的特征的认识。
尝试St e y =(S 为实的或复的常数)是否能为方程的解。
代入方程可得恒等式: 0=)+2+(202S S S e St ωα由此得到决定常数S 的特征方程: 0=+2+202ωαS S该一元二次代数方程的根为: 202-±-=ωααS因常数项的值不同,解的形式不同:1.自由振荡情况(无阻尼情况)(0=α)此时,S 是一对共轭虚数: 01j =ωS 02-j =ωS齐次通解为: t t e K e K t y 00-j 2j 1+=)(ωω变为常用的三角函数式 )+sin(=)(0θωt K t y这是一个等幅正弦振荡,ω0 是自由振荡角频率或谐振角频率。
K 和θ 是由初始条件决定的常数。
2.欠阻尼情况( 0<<0ωα )此时,S 是一对共轭复数: d 1j +-=ωαS d 2j --=ωαS齐次通解为: )+sin(=)(d -θωαt Ke t y t 这是一个衰减振荡。
其中,220-=αωωd (正实数)是衰减振荡角频率。
振幅按指数函数t e α-衰减,故称α为衰减系数。
K 和θ 是由初始条件决定的常数。
这种情况下,系统开始会有正弦振荡,但随时间而衰减,过一段时间后就消失。
3.过阻尼情况(0>ωα)此时,S 是两个负实数:2021-+-=ωααS2022---=ωααS齐次通解为: t t e K e K t y )---(2)-+(-1202202+=)(ωααωααK 1和K 2 是由初始条件决定的常数。
二阶常系数齐次线性微分方程通解

二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),特解
1、当p^2-4q大于等于0时,r和k都是实数,y*=y1是方程的特解。
2、当p^2-4q小于0时,r=a+ib,k=a-ib(b≠0)是一对共轭复根,y*=1/2(y1+y2)是方程的实函数解。
扩展资料:
一阶非齐次线性微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。
研究非齐次线性微分方程其实就是研究其解的问题,通解是由其对应的齐次方程的通解加上其一个特解组成。
一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为
y'+p(x)y=0,另一类就是非齐次形式的,它可以表示为
y'+p(x)y=Q(x)。
齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。
对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。
就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次微分方程的通解 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程 方程ypyqy 0称为二阶常系数齐次线性微分方程 其中p 、q 均为常数如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC 1y 1C 2y 2就是它的通解我们看看 能否适当选取r 使ye rx 满足二阶常系数齐次线性微分方程 为此将ye rx 代入方程ypyqy 0得(r 2prq )e rx 0由此可见 只要r 满足代数方程r 2prq 0 函数ye rx 就是微分方程的解特征方程 方程r 2prq 0叫做微分方程ypyqy 0的特征方程 特征方程的两个根r 1、r 2可用公式求出特征方程的根与通解的关系(1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解这是因为函数x r e y 11=、x r ey 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为x r x r e C e C y 2121+=(2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解这是因为 x r e y 11=是方程的解 又0)()2(121111=++++=q pr r xe p r e x r x r所以xr xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为x r x r xe C e C y 1121+=(3)特征方程有一对共轭复根r 1, 2i 时 函数ye (i )x 、ye (i )x 是微分方程的两个线性无关的复数形式的解 函数ye x cos x 、ye x sin x 是微分方程的两个线性无关的实数形式的解函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得y 1e (i )x e x (cos xi sin x )y 2e (i )x e x (cos xi sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x )(21sin 21y y ix e x -=βα 故e x cos x 、y 2e x sin x 也是方程解可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解因此方程的通解为ye x (C 1cos xC 2sin x )求二阶常系数齐次线性微分方程ypyqy 0的通解的步骤为第一步 写出微分方程的特征方程r 2prq 0第二步 求出特征方程的两个根r 1、r 2第三步 根据特征方程的两个根的不同情况 写出微分方程的通解例1 求微分方程y 2y 3y 0的通解解 所给微分方程的特征方程为r 22r 30 即(r 1)(r 3)0其根r 11 r 23是两个不相等的实根 因此所求通解为yC 1e x C 2e 3x例2 求方程y 2yy 0满足初始条件y |x 04、y | x 02的特解解 所给方程的特征方程为r 22r 10 即(r 1)20其根r 1r 21是两个相等的实根 因此所给微分方程的通解为y (C 1C 2x )e x将条件y|x04代入通解得C14 从而y(4C2x)e x将上式对x求导得y(C24C2x)e x再把条件y|x02代入上式得C22 于是所求特解为x(42x)e x例 3 求微分方程y2y5y 0的通解解所给方程的特征方程为r22r50特征方程的根为r112i r212i是一对共轭复根因此所求通解为ye x(C1cos2xC2sin2x)n阶常系数齐次线性微分方程方程y(n) p1y(n1)p2 y(n2) p n1yp n y0称为n阶常系数齐次线性微分方程其中p1p2 p n1p n都是常数二阶常系数齐次线性微分方程所用的方法以及方程的通解形式可推广到n阶常系数齐次线性微分方程上去引入微分算子D 及微分算子的n次多项式L(D)=D n p1D n1p2 D n2 p n1D p n则n阶常系数齐次线性微分方程可记作(D n p1D n1p2 D n2 p n1D p n)y0或L(D)y0注 D叫做微分算子D0yy D yy D2yy D3yy D n yy(n)分析令ye rx则L(D)yL(D)e rx(r n p1r n1p2 r n2 p n1rp n)e rx L(r)e rx因此如果r是多项式L(r)的根则ye rx是微分方程L(D)y0的解n阶常系数齐次线性微分方程的特征方程L(r)r n p1r n1p2 r n2 p n1rp n0称为微分方程L(D)y0的特征方程特征方程的根与通解中项的对应单实根r对应于一项Ce rx一对单复根r12i对应于两项e x(C1cos xC2sin x)k重实根r对应于k项e rx(C1C2x C k x k1)一对k重复根r12i 对应于2k项e x[(C1C2x C k x k1)cos x( D1D2x D k x k1)sin x]例4 求方程y (4)2y 5y 0 的通解解 这里的特征方程为r 42r 35r 20 即r 2(r 22r 5)0它的根是r 1r 20和r 3 412i因此所给微分方程的通解为yC 1C 2xe x (C 3cos2xC 4sin2x )例5 求方程y (4) 4y 0的通解 其中0解 这里的特征方程为r 4 40 它的根为)1(22,1i r ±=β )1(24,3i r ±-=β因此所给微分方程的通解为 )2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++-二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程 方程ypyqyf (x )称为二阶常系数非齐次线性微分方程 其中p 、q 是常数二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解yY (x )与非齐次方程本身的一个特解yy *(x )之和yY (x ) y *(x )当f (x )为两种特殊形式时 方程的特解的求法一、 f (x )P m (x )e x 型当f (x )P m (x )e x 时 可以猜想 方程的特解也应具有这种形式 因此 设特解形式为y *Q (x )e x 将其代入方程 得等式Q (x )(2p )Q (x )(2pq )Q (x )P m (x )(1)如果不是特征方程r 2prq 0 的根 则2pq 0 要使上式成立 Q (x )应设为m 次多项式 Q m (x )b 0x m b 1x m 1 b m 1xb m通过比较等式两边同次项系数 可确定b 0 b 1 b m 并得所求特解y *Q m (x )e x(2)如果是特征方程 r 2prq 0 的单根 则2pq 0 但2p 0 要使等式Q (x )(2p )Q (x )(2pq )Q (x )P m (x )成立 Q (x )应设为m 1 次多项式Q (x )xQ m (x )Q m (x )b 0x m b 1x m 1 b m 1xb m通过比较等式两边同次项系数 可确定b 0 b 1 b m 并得所求特解 y *xQ m (x )e x(3)如果是特征方程 r 2prq 0的二重根 则2pq 0 2p 0 要使等式 Q (x )(2p )Q (x )(2pq )Q (x )P m (x )成立 Q (x )应设为m 2次多项式Q (x )x 2Q m (x )Q m (x )b 0x m b 1x m 1 b m 1xb m通过比较等式两边同次项系数 可确定b 0 b 1 b m 并得所求特解 y *x 2Q m (x )e x综上所述 我们有如下结论 如果f (x )P m (x )e x 则二阶常系数非齐次线性微分方程ypyqy f (x )有形如y *x k Q m (x )e x的特解 其中Q m (x )是与P m (x )同次的多项式 而k 按不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2例1 求微分方程y 2y 3y 3x 1的一个特解解 这是二阶常系数非齐次线性微分方程 且函数f (x )是P m (x )e x 型(其中P m (x )3x 1 0) 与所给方程对应的齐次方程为y 2y 3y 0它的特征方程为r 22r 30由于这里0不是特征方程的根 所以应设特解为y *b 0xb 1把它代入所给方程 得3b 0x 2b 03b 13x 1比较两端x 同次幂的系数 得⎩⎨⎧=--=-13233100b b b 3b 03 2b 03b 11 由此求得b 01 311=b 于是求得所给方程的一个特解为 31*+-=x y 例2 求微分方程y 5y 6yxe 2x 的通解解 所给方程是二阶常系数非齐次线性微分方程 且f (x )是P m (x )e x 型(其中P m (x )x 2) 与所给方程对应的齐次方程为y 5y 6y 0它的特征方程为r 25r 60特征方程有两个实根r 12 r 23 于是所给方程对应的齐次方程的通解为 YC 1e 2x C 2e 3x由于2是特征方程的单根 所以应设方程的特解为y *x (b 0xb 1)e 2x把它代入所给方程 得2b 0x 2b 0b 1x比较两端x 同次幂的系数 得⎩⎨⎧=-=-0212100b b b 2b 01 2b 0b 10 由此求得210-=b b 11 于是求得所给方程的一个特解为 x e x x y 2)121(*--= 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+-+= 提示y *x (b 0xb 1)e 2x (b 0x 2b 1x )e 2x[(b 0x 2b 1x )e 2x ][(2b 0xb 1)(b 0x 2b 1x )2]e 2x[(b 0x 2b 1x )e 2x ][2b 02(2b 0xb 1)2(b 0x 2b 1x )22]e 2xy *5y *6y *[(b 0x 2b 1x )e 2x ]5[(b 0x 2b 1x )e 2x ]6[(b 0x 2b 1x )e 2x ][2b 02(2b 0xb 1)2(b 0x 2b 1x )22]e 2x 5[(2b 0xb 1)(b 0x 2b 1x )2]e 2x 6(b 0x 2b 1x )e 2x[2b 04(2b 0xb 1)5(2b 0xb 1)]e 2x [2b 0x 2b 0b 1]e 2x方程ypyqye x [P l (x )cos xP n (x )sin x ]的特解形式应用欧拉公式可得e x [P l (x )cos xP n (x )sin x ] x i x i e x P e x P )()()()(ωλωλ-++= 其中)(21)(i P P x P n l -= )(21)(i P P x P nl += 而m max{l n } 设方程ypyqyP (x )e (i )x 的特解为y 1*x k Q m (x )e (i )x 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解其中k 按i 不是特征方程的根或是特征方程的根依次取0或1 于是方程ypyqye x [P l (x )cos xP n (x )sin x ]的特解为x k e x [R (1)m (x )cos xR (2)m (x )sin x ]综上所述 我们有如下结论如果f (x )e x [P l (x )cos xP n (x )sin x ] 则二阶常系数非齐次线性微分方程 ypyqyf (x )的特解可设为y *x k e x [R (1)m (x )cos xR (2)m (x )sin x ]其中R (1)m (x )、R (2)m (x )是m 次多项式 m max{l n } 而k 按i (或i )不是特征方程的根或是特征方程的单根依次取0或1例3 求微分方程yyx cos2x 的一个特解解 所给方程是二阶常系数非齐次线性微分方程且f (x )属于e x [P l (x )cos xP n (x )sin x ]型(其中0 2 P l (x )x P n (x )0) 与所给方程对应的齐次方程为yy 0它的特征方程为r 210由于这里i 2i 不是特征方程的根 所以应设特解为y *(axb )cos2x (cxd )sin2x把它代入所给方程 得(3ax 3b 4c )cos2x (3cx 3d 4a )sin2xx cos2x比较两端同类项的系数 得 31-=a b 0 c 0 94=d 于是求得一个特解为 x x x y 2sin 942cos 31*+-= 提示y *(axb )cos2x (cxd )sin2xy *a cos2x 2(axb )sin2xc sin2x 2(cxd )cos2x(2cxa 2d )cos2x (2ax 2bc )sin2xy *2c cos2x 2(2cxa 2d )sin2x 2a sin2x 2(2ax 2bc )cos2x(4ax 4b 4c )cos2x (4cx 4a 4d )sin2xy * y *(3ax 3b 4c )cos2x (3cx 4a 3d )sin2x由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a 得31-=a b 0 c 0 94=d。