2018届东北三省四市高三高考第一次模拟考试数学(理)试题

合集下载

2018年东北三省四市高考模拟试卷

2018年东北三省四市高考模拟试卷

2018年东北三省四市高考模拟试卷数学(理科)第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.306.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.11.已知向量,,(m>0,n>0),若m+n ∈[1,2],则的取值范围是()A.B.C.D.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.现将5张连号的电影票分给甲乙等5个人,每人一张,若甲乙分得的电影版连号,则共有种不同的分法.(用数字作答)14.函数()sin x f x e x =在点()()0,0f 处的切线方程为 .15.等比数列{}n a 的各项均为正数,n S 是其前n 项和,且满足2124283,16S a a a =+=,则4S = .16.F 是双曲线()222210,0x y a b a b-=>>的左焦点,过F 作某一渐近线的垂线,分别与两条渐近线相交于A,B 两点,若12AFBF =,则双曲线的离心率为 . 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知点)(),cos ,sin P Q x x ,O 为坐标原点,函数().f x OP QP =⋅ (1)求函数()f x 的最小正周期;(2)若A 为ABC ∆的内角()4,3f A BC ==,求ABC ∆周长的最大值.18.(本题满分12分)某手机厂商推出一款6吋大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频率分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)根据评分的不同,运用分层抽样的方法从男性用户中抽取20名用户,再从这20名用户中满足评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数X 的分布列和期望.19.(本题满分12分)如图,四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,,AD AP E =为棱PD 的中点.(1)证明:PD ⊥平面ABE ;(2)若F 为AB 的中点,()01PM PC λλ=<<,试确定λ的值,使得二面角P FM B --的余弦值为3-20.(本题满分12分)椭圆()2222:10x y C a b a b +=>>的长轴长为P 为椭圆C 上异于顶点的一个动点,O 为坐标原点,2A 为椭圆C 的右顶点,点M 为线段2PA 的中点,且直线2PA 与直线OM 的斜率之积为12-. (1)求椭圆C 的方程; (2)过椭圆C 的左焦点1F 且不与坐标轴垂直的直线l 交椭圆C 于两点,A B ,线段AB 的垂直平分线与x 轴交于点N ,N 点的横坐标的取值范围是1,04⎛⎫- ⎪⎝⎭,求线段AB 的长的取值范围.21.(本题满分12分)已知函数()ln x f x x= (1)求函数()f x 的极值;(2)当0x e <<时,证明:()()f e x f e x +>-;(3)设函数()f x 的图象与直线x m =的两个交点分别为()()1122,,,,A x y B x y AB 的中点的横坐标为0x ,证明:()00f x '<.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

2018年黑龙江省大庆市高考一模数学理

2018年黑龙江省大庆市高考一模数学理

解 析 : 模 拟 程 序 框 图 的 运 行 过 程 , 得 出 该 程 序 运 行 后 输 出 的 是 2 3 50 的值, S sin sin sin sin
4 4 4 4
S sin

4
sin
2 4
sin
3 4
sin
50 4
a 1 1 a a 1 1 1 1 a 1 1
2 2

得 a =1,得 a=±1,由
2
a 1

,得 a≠1,即 a=-1,
即 p:a=-1, 圆心到直线的距离 d
a 2
,半径 r=1,
∵直线 l:x+y+a=0 与圆 x2+y2=1 相交所得的弦长为 2 ,
2 2
∴r =d +(
2 2
2 3 8 49 50 sin sin sin sin sin sin 4 4 4 4 4 4
sin sin 2 2 49 4 sin 50 4

4
sin

2
1
答案:C 6.已知命题 p: 直线 l1: ax+y+1=0 与 l2: x+ay+1=0 平行; 命题 q: 直线 l: x+y+a=0 与圆 x +y =1 相交所得的弦长为 2 ,则命题 p 是 q( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既充分也不必要条件 解析: 根据直线平行的等价条件以及直线和圆相交的弦长公式分别进行计算, 结合充分条件 和必要条件的定义进行判断即可. 当 a=0 时,两直线方程分别为 y+1=0,x+1=0,两直线不平行, 当 a≠0 时,若两直线平行,则满足 由

2018年东北三省四市联考模拟理数答案

2018年东北三省四市联考模拟理数答案
D C
1 M , F 分别是 PC , PB 中点, MF // CB, MF CB , 2 E 为 DA 中点, ABCD 为矩形, 1 DE // CB, DE CB , MF // DE, MF DE , 2 四边形 DEFM 为平行四边形, EF / / DM . ------------------------------3′
7 2
三、解答题 17. (本小题满分 12 分)
解: (Ⅰ)
Sn n 2 n 1 ,
------------2 分
令 n 1 , a1 1 , an Sn Sn1 2 n 1 , n 2 .
1 n 1 经检验: a1 1 不能与 an n 2 时合并, an . ------------3 分 2 n 1 n 2
设从 12 人中随机抽取 3 人,第 1 组抽到 1 人为事件 A ,第 3 组抽到 2 人为事件 B ,
1 2 C2 C7 P AB C3 21 1 2 12 2 1 . 则 P B / A C2C10 C2 C10 50 P( A) 3 C12
------------7 分
1 1 22 2 23 2Tn
n 1 2n
------------8 分 ------------9 分
n 1 2n , n 2 2n n 1 2n1 ,
1 2 1 23 2 24
(Ⅲ)从所有参与调查的人中任意选出 1 人,关注“生态文明”的概率为 P
4 , 5
X 的可能取值为 0,1,2,3,
------------8 分

2018届高三数学第一次模拟考试试题理word版本

2018届高三数学第一次模拟考试试题理word版本

辽宁省大连市2018届高三数学第一次模拟考试试题理第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x<1},B={x|x(x-3)<0},则A B=(A.(-1,0)B.(0,1)C.(-1,3)D.(1,3))2.若复数z=1+i1+ai为纯虚数,则实数a的值为()1A.1B.0C.-D.-123.中国有个名句“运筹帷幄之中,决胜千里之外”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如3266用算筹表示就是,则8771用算筹可表示为()A.B.C.D.4.如图所示程序框图是为了求出满足2n-n2>28的最小正偶数n,那么输出的n值分别是()空白框中及最后A.43B.10c o a s bA.n=n+1和6B.n=n+2和6 C.n=n+1和8D.n=n+2和85.函数f(x )=1+x2+tan xx的部分图象大致为()A.B.C.D.6.某几何体的三视图如图所示(单位:cm),其俯视图为等边三角形,则该几何体的体积(单位:cm3)是()83 C.23D.3337.6本不同的书在书架上摆成一排,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种.A.24B.36 C.48D.608.∆ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=C cos c+A,=2,则∆ABC 面积的最大值是()A.1B.3 C.2D.49.已知边长为2的等边三角形ABC,D为BC的中点,以AD为折痕进行翻折,使∠BDC为10. 将函数 f (x ) = sin 2 x + ⎪ 的图象向右平移 a (a > 0)个单位得到函数g (x ) = cos 2 x + ⎪ 的图象,则 a 的值可以为(A . 5πA . 53 13.设实数 x , y 满足约束条件 ⎨4 x - y ≥ 0 ,则 z = x + 2 y +5 的最大值为.⎪ x + y ≤ 5 和 ′,直角,则过 A ,B ,C ,D 四点的球的表面积为()A . 3πB . 4πC. 5π D . 6π⎛ ⎝π ⎫ 3 ⎭⎛π ⎫ ⎝ 4 ⎭)7π 19π 41π B .C.D .1212 24 2411. 已知双曲线 C : x 2 y 2 -m 2 m 2 - 1= 1的左、右焦点分别为 F 、 F ,若 C 上存在一点 P 满足 1 2PF ⊥ PF ,且 ∆PF F 的面积为 3,则该双曲线的离心率为()1 2 1 27B .C.2 D .32212.若直线 kx - y - k + 1 = 0 (k ∈ R ) 和曲线 E : y = ax 3 + bx 2 +5(b ≠ 0) 的图象交于 A (x , y ),1 1B (x , y ) ,C (x , y2233)(x 1< x < x )三点时,曲线 E 在点 A 、 C 点处的切线总是平行的,则过2 3点 (b , a )可作曲线 E 的()条切线. A .0 B .1 C.2D .3第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)⎧ y ≥ 0 ⎪⎩14.已知半径为 R 的圆周上有一定点 A ,在圆周上等可能地任意取一点与点 A 连接,则所得弦长介于 R 与 3R 之间的概率为.15.已知抛物线 C : y 2 = 2 x ,过点 (1,0 ) 任作一条直线和抛物线 C 交于 A 、B 两点,设点 G (2,0 ),连接 AG , BG 并延长,分别和抛物线 C 交于点 A ′ B ′ 则直线 A ′B 过定点.16.已知腰长为 2 的等腰直角 ∆ABC 中, M 为斜边 AB 的中点,点 P 为该平面内一动点,若PC = 2 ,则 (P A • PB + 4)(PC • PM )的最小值为.b b ( )∑ (x - x )2 ∑ (w - w )2 ∑ x y∑ w y8( ) ( )三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. 设数列{a n}的前 n 项和为 Sn ,且 S =n 2-n + 1 ,在正项等比数列{bn n}中, 2 = a , = a .2 4 5 Ⅰ 求 {a }和 {b }的通项公式;n n(Ⅱ)设 c n= a b ,求数列{c }的前 n 项和.n n n18. 大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量 y (单位: t )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费 x 和年销售量iy (i = 1,2, …,8 ) 数据作了初步处理,得到下面的散点图及一些统计量的值.ixyw8 i =1i8 i =1i8i =1i i8 i =1i i46.6573 6.8289.8 1.6 215083.4 31280表中 w = x , w = i 1 ∑ 8i =1w .i Ⅰ 根据散点图判断, y = a + bx 与 y = c + d x 哪一个适宜作为年销售量 y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据 Ⅰ 的判断结果及表中数据,建立 y 关于 x 的回归方程;(Ⅲ) 已知这种产品的年利润 z 与 x 、 y 的关系为 z = 0.2 y - x .根据 (Ⅱ)的结果回答下列问题:(i )年宣传费 x = 64 时,年销售量及年利润的预报值是多少?(ii )年宣传费 x 为何值时,年利润的预报值最大?附:对于一组数据 (u , v ), (u , v ),……, (u , v 1122nn二乘估计分别为:) ,其回归直线 v = α + β u 的斜率和截距的最小β=∑(u-u)(v-v)i i,α=v-βu.∑(u-u)2()=1(a>b>0)的离心率为,点M(1,)在椭()()∧ni=1ni∧∧i=119.在如图所示的几何体中,四边形ABCD是正方形,P A⊥平面ABCD,E,F分别是线段AD,PB的中点,P A=AB=1.Ⅰ求证:EF//平面DCP;(Ⅱ)求平面EFC与平面PDC所成锐二面角的余弦值.20.在平面直角坐标系xOy中,椭圆C:x2y213+a2b222圆C上.Ⅰ求椭圆C的方程;(Ⅱ)已知P(-2,0)与Q(2,0)为平面内的两个定点,过点(1,0)的直线l与椭圆C交于A,B两点,求四边形APBQ面积的最大值.21.已知函数f(x)=x2-4x+5-a(a∈R).e xⅠ若f(x)在(-∞,+∞)上是单调递增函数,求a的取值范围;(Ⅱ)设g(x)=e x f(x),当m≥1时,若g(x)+g(x)=2g(m),且x121≠x,求证:2x+x<2m.12请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C : ρ = 4cos θ 0 ≤ θ < ⎪ , C 2 : ρ cos θ= 3 . 2 ⎭ ⎝ ( ) 3 ( )⎛ π ⎫ 1Ⅰ求 C 与 C 12 交点的极坐标;(Ⅱ)设点 Q 在 C 上, OQ = 2QP ,求动点 P 的极坐标方程.123.选修 4-5:不等式选讲已知函数 f (x ) = 2x + 2x + 3 + m , m ∈ R .Ⅰ 当 m = -2 时,求不等式 f (x ) ≤ 3 的解集;(Ⅱ) ∀x ∈ (-∞,0 ) ,都有 f (x ) ≥ x + 2 恒成立,求 m 的取值范围.x试卷答案() ⎪⎩2 (n -1) (n ≥ 2)∴ a = ⎨(Ⅱ)由 (Ⅰ)得: c ⎧⎪ 1 (n = 1) ⎧⎪⎪⎩2 (n - 1)⋅ 2n -1 (n ≥ 2 ) = ⎨⎪⎩(n - 1)⋅ 2n (n ≥ 2 )一、选择题1-5: CDADB6-10: BABCC 11、12: BC二、填空题 13.14 14.115. (4,0 )16. 48 - 32 23三、解答题17.解: Ⅰ Q S = n 2 - n + 1 , n∴当 n = 1 时, a = 1 , 1a = S - Sn nn -1= 2 (n -1), (n ≥ 2),n⎧⎪ 1 (n = 1).又 Q 数列 {b n}为等比数列, b 2= a = 2 , b = a = 82 4 5∴ b4 = q 2 = 4 ,b2又 Q b > 0n∴ q = 2 ,∴ b = 2n -1 .n1 (n = 1)=⎨ n设数列 {c n}的前 n 项和为 Tn当 n ≥ 2 时,T = 1 + (2 -1)⋅ 22 + (3 -1)⋅ 23 + L + (n -1)⋅ 2n n= 1 +1⋅ 22 + 2 ⋅ 23 + L + (n -1)⋅ 2n ,2T = 1⋅ 2 + 1⋅ 23 + 2 ⋅ 24 + L + (n - 2)⋅ 2n + (n - 1)⋅ 2n +1 n∴ -T = 3 + 23 + 24 + L + 2n - (n -1)⋅ 2n +1n=3+23(1-2n-2)()∑(y-y)(w-w)∑(w y-wy-yw+wy)∑w y-∑wy∑w y-8wy∑(w-w)∑(w-w)∑(w-w)∑(w-w)22221-2-(n-1)⋅2n+1=3+8(2n-2-1)-(n-1)⋅2n+1=2n+1-(n-1)⋅2n+1-5=(2-n)⋅2n+1-5∴T=5+(n-2)⋅2n+1(n≥2).n当n=1时,T=c=1,11又当n=1时,T=5+(n-2)⋅2n+1=1,n综上,T=5+(n-2)⋅2n+1(n≥1).n18.解:Ⅰ由散点图可以判断y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.(Ⅱ)令w=x,先建立y关于w的线性回归方程d=888888888i iiiiiiiii ii=1i=1i=1i=1=31280-6.8⨯573⨯8=68,1.6c=y-dw=573-68⨯6.8=110.6,所以y关于w的线性回归方程为y=110.6+68w,所以y关于x的线性回归方程为y=110.6+68x.(Ⅲ)(i)由(Ⅱ)知,当x=64时,年销售量y的预报值为y=110.6+6864=654.6,年利润z的预报值为z=654.6⨯0.2-64=66.92.(ii)根据(Ⅱ)的结果知,年利润z的预报值z=0.2⨯(110.6+68x)-x=-x+13.6x+22.12=-(x-6.8)+68.36,2E为DA中点,ABCD为正方形,∴DE//CB,DE=CB,(当x=6.8,即x=46.24时,年利润的预报值最大,故年宣传费为46.24千元时,年利润预报值最大.19.解:Ⅰ)方法一:取PC中点M,连接DM,MF,1M,F分别是PC,PB中点,∴MF//CB,MF=CB,212∴MF//DE,MF=DE,∴四边形DEFM为平行四边形,∴EF//DM, EF⊄平面PDC,DM⊂平面PDC,∴EF//平面PDC.方法二:取P A中点N,连接NE,NF.E是AD中点,N是P A中点,∴NE//D P,又F是PB中点,N是P A中点,∴NE//AB,AB//CD,∴NF//CD,又NE NF=N,NE⊂平面NEF,NF⊂平面NEF,DP⊂平面PCD,CD⊂平面PCD,∴平面NEF//平面PCD.又EF⊂平面NEF,∴EF//平面PCD.E 0,0, ⎪,F , ,0 ⎪EF = , , - ⎪ , 则 ⎨ ,即 ⎨ ,取 n = (1,0,1),( , , , , ⎪方法三:取 BC 中点 G ,连接 EG , FG ,在正方形 ABCD 中, E 是 AD 中点, G 是 BC 中点∴GE / /CD又 F 是 PB 中点, G 是 BC 中点,∴GF / / P C ,又 PCCD = C ,GE ⊂ 平面GEF , G F ⊂ 平面GEF ,PC ⊂ 平面 P CD , CD ⊂ 平面 P CD ,∴ 平面 GEF //平面 PCD .EF ⊂ 平面 GEF∴EF / / 平面 PCD .方法四:P A ⊥ 平面 ABC ,且四边形 ABCD 是正方形,∴ AD , AB, AP 两两垂直,以 A 为原点, AP ,AB , AD 所在直线为 x, y , z 轴,建立空间直角坐标系 A - xyz ,则 P 1,0,0) D (0,0,1) C (0,1,1)⎛1 ⎫ ⎛ 1 1 ⎫ ⎝2 ⎭ ⎝ 2 2 ⎭⎛ 1 1 1 ⎫ ⎝ 2 2 2 ⎭则设平面 PDC 法向量为 n = (x, y , z ), PD = (- 1,0,1) PC = (- 1,1,1)⎧ P D ⋅ n = 0 ⎧- x + z = 0 ⎪⎩ PC ⋅ n = 0⎩- x + y + z = 01则 P (1,0,0), D (0,0,1), C (0,1,1), E 0,0, ⎪, F , ,0 ⎪ EF = , ,- ⎪, FC = - , ,1⎪⎧⎪EF ⋅ n = 0 ⎪ 1 则 ⎨ , 即 ⎨ 1 1 ⎪⎩FC ⋅ n = 0 ⎪⎩ 2 12 1 1, 则 ⎨ ,即 ⎨ ,取 n = (1,0,1), ⎧PD ⋅ n = 0 ⎧- x + z = 0⎩- x 2 + y 2 + z 2 = 0 ⎪⎩PC ⋅ n = 0=n ⋅n = 3 ⨯ 1 + (- 1)⨯ 0 + 2 ⨯ 1n ⋅ EF = 1 - = 0 ,2 2所以 EF ⊥ n ,又EF ⊄ 平面 PDC ,∴ EF ∥平面 PDC .(Ⅱ )P A ⊥ 平面 ABC ,且四边形 ABCD 是正方形, ∴ AD , AB, AP 两两垂直,以 A 为原点,AP , AB , AD 所在直线为 x, y , z 轴,建立空间直角坐标系 A - xyz ,⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎝2 ⎭ ⎝ 2 2 ⎭设平面 EFC 法向量为 n = (x , y , z ),1111⎛ 1 1 1 ⎫ ⎛ 1 1 ⎫⎝ 2 2 2 ⎭ ⎝ 2 2 ⎭1取 n = (3,-1,2),1⎧ x + y - z = 0 1 1 - x + y + z = 01,则设平面 PDC 法向量为 n = (x , y , z 2222), PD = (- 1,0,1) PC = (- 1,1,1)2 2 22 2cos n , n11 2 n ⋅ n 1 214 ⨯ 2 = 5 7 14.∴ 平面 EFC 与平面 PDC 所成锐二面角的余弦值为(若第一问用方法四,则第二问部分步骤可省略)5 7 14.() 2 2 (Ⅱ)方法一:设 l 的方程为 x = my +1,联立 ⎨ 4 ⎩ 3m 2 + 4 3m 2 + 4 = ⎪ 3t +20. 解: Ⅰ 由 c = 1 可得, a = 2c ,又因为 b 2 = a 2 - c 2 ,所以 b 2 = 3c 2 . a 2所以椭圆 C 方程为x 2 y 2 3 12+ = 1 ,又因为 M (1, ) 在椭圆 C 上,所以4c 3c 2 4c 2 3( )2 + 2 3c 2 = 1 .所以 c 2 = 1 ,所以 a 2= 4, b 2 = 3 ,故椭圆方程为 x2 y 2 + = 1 .4 3⎧ x 2 y 2 ⎪ + = 1 3, ⎪ x = my + 1消去 x 得 (3m 2 + 4) y 2 + 6my - 9 = 0 ,设点 A( x , y ), B( x , y ) ,1 122有 ∆ > 0, y + y = 1 2 -6m -9, y y = ,1 2 y - y =( y 1 21+ y 2)2 - 4 y y1 2=⎛ -6m ⎫2⎝ 3m 2 + 4 ⎭12 m 2 + 1(3m 2 + 4)- 4 ⨯-9 3m 2 + 4所以 1 12 m 2 + 1 S = 2 ⨯ 4 ⨯ (3m 2 + 4)令 t = 1 + m 2 , t ≥ 1 ,有 S = 24t 24 =3t 2 + 1 1t,由1函数 y = 3t + , t ∈ [1,+∞ )ty ' = 3 - 1 t 2> 0, t ∈ [1,+∞ )方法二:设 l 的方程为 x = my +1,联立 ⎨ 4⎩ 3m 2 + 4 3m 2 + 41 + m2 ,点 Q(2,0) 到直线 l 的距离为,1 + m2 3t +1故函数 y = 3t + ,在 [1,+∞ ) 上单调递增,t24t 241故 3t + ≥ 4 ,故 S == ≤ 63t 2 + 11 t3t +t当且仅当 t = 1即 m = 0 时等号成立,四边形 APBQ 面积的最大值为 6 .⎧ x 2 y 2 ⎪ +3= 1,⎪ x = my + 1消去 x 得 (3m 2 + 4) y 2 + 6my - 9 = 0 ,设点 A( x , y ), B( x , y ) , 1 122有 ∆ > 0, y + y = 12-6m -9, y y = ,1 2有 | AB |= 1 + m 2 121 + m2 12(1+ m 2 ) =3m 2 + 4 3m 2 + 4 ,点 P(-2,0) 到直线 l 的距离为 311 + m 2从而四边形 APBQ 的面积1 12(1+ m2 ) 424 1 + m 2 S = ⨯ ⨯=2 3m 2 + 43m 2 + 4令 t = 1 + m 2 , t ≥ 1 ,有 S = 24t 24 =3t 2 + 11 t,1函数 y = 3t + , t ∈ [1,+∞ )ty ' = 3 - 1 t 2> 0, t ∈ [1,+∞ )1故函数 y = 3t + ,在 [1,+∞ ) 上单调递增,t= ≤ 6 当且仅当 t = 1 即 m = 0 时等号成立,四边形 APBQ 面3 + 4k 23 + 4k 2⎩⎡(x + x )2 - 4x x ⎤ = 12 ⨯ k (k + 1) ,1 2 ⎦ (3 + 4k 2 )22 (3 + 4k 2 )2S = 6 ⨯ -3 ⨯ ⎪ - 2 ⨯ + 1 , (0 < < ) ∴S = 6 ⨯ -3 ⨯ ⎪ - 2 ⨯ + 1,(0 < < ) (有 3t + 1≥ 4 ,故 S =t积的最大值为 6 .方法三:①当 l 的斜率不存在时, l : x = 1此时,四边形 APBQ 的面积为 S = 6 .②当 l 的斜率存在时,设 l 为: y = k ( x - 1) , (k ≠ 0)⎧ x 2 y 2 ⎪ + 则 ⎨ 4 3= 1 ⎪ y = k ( x - 1)∴ (3 + 4k 2 )x 2 - 8k 2 x + 4k 2 - 12 = 08k 2 4k 2 - 12 ∆ > 0, x + x =, x x =,1 21 2y - y = k ( x - x ) = k 121 22⎣ 1 2 2 2∴四边形 APBQ 的面积1 k2 (k 2 + 1)S = ⨯ 4 ⨯ y - y = 24 ⨯12令 t = 3 + 4k 2(t > 3) 则 k 2 =t - 34⎛ 1 ⎫21 1 1 ⎝ t ⎭ t t 3⎛ 1 ⎫21 1 1 ⎝ t ⎭ t t 3 ∴0 < S < 6综上,四边形 APBQ 面积的最大值为 6 .21.解: Ⅰ) Q f (x )在 (-∞, +∞)上是单调递增函数,∴在 x ∈ R 上, f ' (x ) = 2x - 4 + ae x≥ 0 恒成立,即: a ≥ (4 - 2x )e x⎣ ⎦∴设 h (x ) = (4 - 2x )e x x ∈ R∴ h ' (x ) = (2 - 2x )e x ,∴当 x ∈ (-∞,1)时 h ' (x ) > 0 ,∴ h (x ) 在 x ∈ (-∞,1)上为增函数,∴当 x ∈ (1,+∞) 时 h ' (x ) < 0 ,∴ h (x ) 在 x ∈ (1,+∞) 上为减函数,∴ h (x )max= h (1) = 2eQ a ≥ ⎡(4 - 2x )e x ⎤ max∴ a ≥ 2e ,即 a ∈[2e , +∞) .(Ⅱ )方法一:因为 g ( x ) = e x ( x 2 - 4 x + 5) - a ,所以 g '( x ) = e x ( x - 1) 2 ≥ 0 ,所以 g ( x ) 在 (-∞, +∞)上为增函数,因为 g ( x ) + g ( x ) = 2g (m ) ,即 g ( x ) - g (m ) = g (m ) - g ( x ) ,1 212g ( x ) - g (m )和g (m ) - g ( x ) 同号,1 2所以不妨设 x < m < x ,设 h( x ) = g (2m - x) + g ( x ) - 2 g (m )( x > m ≥ 1) ,…8 分1 2所以 h'( x ) = -e 2m - x (2m - x - 1) 2 + e x ( x - 1) 2 ,因为 e 2m - x < e x , (2m - x - 1)2 - ( x - 1)2 = (2 m - 2)(2 m - 2 x ) ≤ 0 ,所以 h '(x) > 0 ,所以 h( x ) 在 (m , +∞) 上为增函数,所以 h( x ) > h(m ) = 0 ,所以 h( x ) = g (2m - x ) + g ( x ) - 2 g (m ) > 0 ,2 22所以 g (2m - x ) > 2 g (m ) - g ( x ) = g ( x ) ,2 21所以 2m - x > x ,即 x + x < 2m .2 112方法二:Q g (x ) = e x f (x ) = (x 2 - 4x + 5)e x - ag (x )+ g (x ) = 2g (m ) m ∈[1, +∞) ,12(⎨2,θ=∴(x21-4x+5)e x1-a+(x2-4x+5)e x2-a=2(m2-4m+5)e m-2a 122∴(x2-4x+5)e x1+(x2-4x+5)e x2=2(m2-4m+5)e m 1122∴设ϕ(x)=(x2-4x+5)e x x∈R,则ϕ(x)+ϕ(x)=2ϕ(m),12∴ϕ'(x)=(x-1)2e x≥0∴ϕ(x)在x∈R上递增且ϕ'(1)=0令x∈(-∞,m),x∈(m,+∞)12设F(x)=ϕ(m+x)+ϕ(m-x),x∈(0,+∞),∴F'(x)=(m+x-1)2e m+x-(m-x-1)2e m-xQ x>0∴e m+x>e m-x>0,(m+x-1)2-(m-x-1)2=(2m-2)2x≥0∴F'(x)>0,F(x)在x∈(0,+∞)上递增,∴F(x)>F(0)=2ϕ(m),∴ϕ(m+x)+ϕ(m-x)>2ϕ(m),x∈(0,+∞)令x=m-x1∴ϕ(m+m-x)+ϕ(m-m+x)>2ϕ(m)11即:ϕ(2m-x)+ϕ(x)>2ϕ(m)11又Qϕ(x)+ϕ(x12)=2ϕ(m),∴ϕ(2m-x)+2ϕ(m)-ϕ(x)>2ϕ(m)即:ϕ(2m-x)>ϕ(x 1212 Qϕ(x)在x∈R上递增∴2m-x>x,即:x+x<2m得证.1212)22.Ⅰ)解:联立⎧ρcosθ=3,cosθ⎩ρ=4cosθ3 =±,20≤θ<ππ6,⎛θ ∈ ⎡⎢0, ⎫⎪ , ,θ )且 ρ = 4cos θ ⎣ 2 ⎭⎪ρ0 = 2 ⎧ 2 OQ = QP ,得 ⎨ 3⎩θ0 = θ∴ ρ =4cos θ ,点 P 的极坐标方程为 ρ = 10 cos θ ,θ ∈ ⎢0, ⎪ .- <x <0 ⎪ , ⎝ 2 ⎭ ( ) ⎨ x ≤- ⎪ 当 ⎨ 解得 0 ≤ x ≤ ;当 - <x <0, 1 ≤ 3 恒成立x ≥ 0 2 2 ⎪⎩ 2 此不等式的解集为 ⎢-2 , ⎥ .⎪3 + m- <x <0 ⎪⎝ 2 ⎭x ≤- ⎪ 当 - <x <0 时,不等式化为 3+m ≥ x + = -[(- x ) + (- )] ≤ -2 (- x )(-ρ = 2 3 ,交点坐标 2 3, ⎝π ⎫ ⎪ .6 ⎭(Ⅱ )设 P (ρ,θ ), Q (ρ0 0 0 0 , 0π由已知 ⎪ρ 5 ,2 ⎡ π ⎫ 5 ⎣ 2 ⎭23.解: ⎧⎪4 x + 1 ⎪Ⅰ 当 m =-2 时, f (x ) = 2 x + 2 x + 3 -2= ⎪1⎪(x ≥ 0)⎛ 3 ⎫⎪ ⎪-4 x - 5 ⎩⎛⎝ 3 ⎫ 2 ⎭⎧4 x + 1 ≤ 3 1 3 ⎩⎧-4 x - 5 ≤ 3 ⎪当 ⎨ 3 x ≤-解得 -2 ≤ x ≤ -3 2⎡ 1 ⎤ ⎣2 ⎦⎧ (Ⅱ)当 x ∈ (-∞,0 )时 f (x ) = 2 x + 2 x + 3 + m = ⎪⎨⎪-4 x - 3 + m⎪⎩⎛ 3 ⎫⎛3⎫ ⎝ 2 ⎭,3 2 2 x.由 x + 2 2 2 ) = -2 2x x x∴m ≥ 5x + + 3 ,令 y = 5x + + 3 , x ∈ (-∞, - ] .∴y = 5x + + 3 在 (-∞, - ] 上是增函数.∴ ∴m ≥ - .当且仅当 - x = - 2即 x = - 2 时等号成立.x∴m + 3 ≥ -2 2 ,∴m ≥ -3 - 2 2 .当 x ≤- 3 2时,不等式化为 -4 x - 3 + m ≥ x + .2 x2 2 3x x 2 y ' = 5 - 2 3> 0, x ∈ (-∞, - ] ,x 2 22 3x 2 3 2 35∴ 当 x =- 时, y = 5x + + 3 取到最大值为 - .2 x 6 356综上 m ≥ -3 - 2 2 .。

东北三省四市教研联合体2018届高三第一次模拟考试数学(理)试卷(含答案)

东北三省四市教研联合体2018届高三第一次模拟考试数学(理)试卷(含答案)

2018年东北三省四市教研联合体高考模拟试卷(一)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|||1A x x =<,{}|(3)0B x x x =-<,则A B =U ( ) A .(1,0)- B .(0,1)C .(1,3)-D .(1,3)2.若复数11iz ai+=+为纯虚数,则实数a 的值为( ) A .1B .0C .12-D .1-3.中国有个名句“运城帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图所示)表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推,例如3266用算筹表示就是≡||⊥T ,则8771用算筹可表示为( )4.如图所示的程序框图是为了求出满足2228n n ->的最小偶数n ,那么在X空白框中填入及最后输出的n 值分别是( )A .1n n =+和6B .2n n =+和6C .1n n =+和8D .2n n =+和85.函数2tan ()1xf x x x=++的部分图象大致为( )6.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .3B 1033C .3D 8337.6本不同的书在书架上摆成一排,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有( )种 A .24B .36C .48D .608.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,2b =,ABC ∆面积的最大值是( ) A .1B 3C .2D .49.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角B ADC --,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π10.将函数()sin(2)3f x x π=+的图象向右平移a 个单位得到函数()cos(2)4g x x π=+的图象,则a的值可以为( ) A .512π B .712πC .924π1 D .4124π11.已知焦点在x 轴上的双曲线222211x y m m -=-的左右两个焦点分别为1F 和2F ,其右支上存在一点P 满足12PF PF ⊥,且12PF F ∆的面积为3,则该双曲线的离心率为( )A .5B .7 C .2 D .312.若直线10kx y k --+=(k R ∈)和曲线:E 3253y ax bx =++(0ab ≠)的图象交于11(,)A x y ,22(,)B x y ,33(,)C x y (123x x x <<)三点时,曲线E 在点A ,点C 处的切线总是平行,则过点(,)b a 可作曲线E 的( )条切线 A .0B .1C .2D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数x ,y 满足约束条件0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩则25z x y =++的最大值为 .14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为$ 2.1161.13y x =-+,现表中一个数据为污损,则被污损的数据为 .(最后结果精确到整数位)15.已知函数()f x 满足1()(1)1()f x f x f x ++=-,当(1)2f =时,(2018)(2019)f f +的值为 .16.已知腰长为2的等腰直角ABC ∆中,M 为斜边AB 的中点,点P 为该平面内一动点,若||2PC =u u u r,则()()PA PB PC PM ⋅⋅⋅u u u r u u u r u u u r u u u u r的最小值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设数列{}n a 的前n 项和为n S ,且21n S n n =-+,正项等比数列{}n b 的前n 项和为n T ,且22b a =,45b a =.(1)求{}n a 和{}n b 的通项公式;(2)数列{}n c 中,11c a =,且1n n n c c T +=-,求{}n c 的通项n c .18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率;(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注环境治理和保护问题的人数为随机变量X ,求X 的分布列与数学期望.19.在如图所示的几何体中,四边形ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,1PA AB ==.(1)证明://EF 平面DCP ;(2)求平面EFC 与平面PDC 所成锐二面角的余弦值.20.在平面直角坐标系中,椭圆C :22221(0)x y a b a b +=>>的离心率为12,点3(1,)2M 在椭圆C 上.(1)求椭圆C 的方程;(2)已知(2,0)P -与(2,0)Q 为平面内的两个定点,过(1,0)点的直线l 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值. 21.已知函数2()45xaf x x x e =-+-(a R ∈). (1)若()f x 为在R 上的单调递增函数,求实数a 的取值范围;(2)设()()xg x e f x =,当1m ≥时,若12()()2()g x g x g m +=(其中1x m <,2x m >),求证:122x x m +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C :cos 3ρθ=,曲线2C :4cos ρθ=(02πθ≤<).(1)求1C 与2C 交点的极坐标;(2)设点Q 在2C 上,23OQ QP =u u u r u u u r,求动点P 的极坐标方程.23.选修4-5:不等式选讲已知函数()|2||23|f x x x m =+++,m R ∈. (1)当2m =-时,求不等式()3f x ≤的解集; (2)对于(,0)x ∀∈-∞都有2()f x x x≥+恒成立,求实数m 的取值范围.2018年东北三省四市教研联合体高考模拟试卷(一)数学答案一、选择题1-5:CDCDD 6-10:BABCC 11、12:BC二、填空题13.14 14.38 15.72-16.32-三、解答题17.解:(1)∵21n S n n =-+,∴令1n =,11a =,12(1)n n n a S S n -=-=-,(2)n ≥,经检验11a =不能与n a (2n ≥)时合并, ∴1,1,2(1), 2.n n a n n =⎧=⎨-≥⎩又∵数列{}n b 为等比数列,222b a ==,458b a ==, ∴2424b q b ==,∴2q =, ∴11b =,∴12n n b -=.(2)122112nn n T -==--,∵12121c c -=-,23221c c -=-,…,1121n n n c c ---=-,以上各式相加得112(12)(1)12n n c c n ---=---, 111c a ==,∴121nn c n -=--, ∴21nn c =-.18.解:(1)由10(0.0100.0150.0300.010)1a ⨯++++=,得0.035a =, 平均数为200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁;设中位数为x ,则100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=,∴42.1x ≈岁. (2)第1,2组抽取的人数分别为2人,3人. 设第2组中恰好抽取2人的事件为A ,则1223353()5C C P A C ==. (3)从所有参与调查的人中任意选出1人,关注环境治理和保护问题的概率为45P =, X 的所有可能取值为0,1,2,3,∴03341(0)(1)5125P X C ==-=,11234412(1)()(1)55125P X C ==-=,2234448(2)()(1)55125P X C ==-=, 333464(3)()5125P X C ===, 所以X 的分布列为:∵4~(3,)5X B , ∴412()355E X =⨯=.19.解:(1)取PC 中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 中点,∴//MF CB ,12MF CB =, ∵E 为DA 中点,ABCD 为矩形,∴//DE CB ,12DE CB =,∴//MF DE ,MF DE =,∴四边形DEFM 为平行四边形, ∴//EF DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴//EF 平面PDC .(2)∵PA ⊥平面ABC ,且四边形ABCD 是正方形,∴AD ,AB ,AP 两两垂直,以A 为原点,AP ,AB ,AD 所在直线为x ,y ,z 轴,建立空间直角坐标系A xyz -, 则(1,0,0)P ,(0,0,1)D ,(0,1,1)C ,1(0,0,)2E ,11(,,0)22F ,设平面EFC 法向量1(,,)n x y z =u r ,111(,,)222EF =-u u u r ,11(,,1)22FC =-u u u r ,则110,0,EF n FC n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u r u u u r u r 即0,110,22x y z x y z +-=⎧⎪⎨-++=⎪⎩取1(3,1,2)n =-u r , 设平面PDC 法向量为2(,,)n x y z =u u r ,(1,0,1)PD =-u u u r ,(1,1,1)PC =-u u u r,则220,0,PD n PC n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ru u u r u u r 即0,0,x z x y z -+=⎧⎨-++=⎩取2(1,0,1)n =u u r ,121212cos ,14||||n n n n n n ⋅<>===⋅u r u u ru r u u r u r u u r所以平面EFC 与平面PDC所成锐二面角的余弦值为14. 20.解:(1)∵12c a =,∴2a c =, 椭圆的方程为2222143x y c c+=,将3(1,)2代入得22191412c c+=,∴21c =, ∴椭圆的方程为22143x y +=.(2)设l 的方程为1x my =+,联立221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x ,得22(34)690m y my ++-=, 设点11(,)A x y ,22(,)B x y , 有122634m y y m -+=+,122934y y m -=+,有2212(1)||34m AB m +==+, 点P (2,0)-到直线l点(2,0)Q 到直线l从而四边形APBQ的面积222112(1)23434m S m m +=⨯=++(或121||||2S PQ y y =-)令t 1t ≥,有22431t S t =+2413t t=+,设函数1()3f t t t =+,21'()30f t t =->,所以()f t 在[1,)+∞上单调递增, 有134t t +≥,故2242461313t S t t t==≤++,所以当1t =,即0m =时,四边形APBQ 面积的最大值为6. 21.解:(1)∵()f x 的定义域为x R ∈且单调递增, ∴在x R ∈上,'()240x af x x e=-+≥恒成立, 即:(42)xa x e ≥-,所以设()(42)xh x x e =-,x R ∈, ∴'()(22)xh x x e =-,∴当(,1)x ∈-∞时,'()0h x >,∴()h x 在(,1)x ∈-∞上为增函数,∴当[1,)x ∈+∞时,'()0h x ≤,∴()h x 在[1,)x ∈+∞上为减函数,∴max ()(1)2h x h e ==,∵max (42)x a x e ⎡⎤≥-⎣⎦,∴2a e ≥,即[2,)a e ∈+∞.(2)∵2()()(45)x x g x e f x x x e a ==-+-,∵12()()2()g x g x g m +=,[1,)m ∈+∞,∴122221122(45)(45)2(45)2x x m x x e a x x e a m m e a -+-+-+-=-+-, ∴122221122(45)(45)2(45)x x m x x e x x e m m e -++-+=-+,∴设2()(45)x x x x e ϕ=-+,x R ∈,则12()()2()x x m ϕϕϕ+=,∴2'()(1)0x x x e ϕ=-≥,∴()x ϕ在x R ∈上递增,∴设()()()F x m x m x ϕϕ=++-,(0,)x ∈+∞,∴22'()(1)(1)m x m x F x m x em x e +-=+----,∵0x >,∴0m x m x e e +->>,22(1)(1)(22)20m x m x m x +----=-≥,∴'()0F x ≥,()F x 在(0,)x ∈+∞上递增,∴()(0)2()F x F m ϕ>=,∴()()2()m x m x m ϕϕϕ++->,(0,)x ∈+∞,令1x m x =-,∴11()()2()m m x m m x m ϕϕϕ+-+-+>,即11(2)()2()m x x m ϕϕϕ-+>, 又∵12()()2()x x m ϕϕϕ+=,∴12(2)2()()2()m x m x m ϕϕϕϕ-+->,即12(2)()m x x ϕϕ->,∵()x ϕ在x R ∈上递增,∴122m x x ->,即122x x m +<得证.22.解:(1)联立cos 3,4cos ,ρθρθ=⎧⎨=⎩cos 2θ=±, ∵02πθ≤<,6πθ=,ρ=∴所求交点的极坐标)6π.(2)设(,)P ρθ,00(,)Q ρθ且004cos ρθ=,0[0,)2πθ∈, 由已知23OQ QP =u u u r u u u r ,得002,5,ρρθθ⎧=⎪⎨⎪=⎩ ∴24cos 5ρθ=,点P 的极坐标方程为10cos ρθ=,[0,)2πθ∈. 23.解:(1)当2m =-时,41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩ 当413,0,x x +≤⎧⎨≥⎩解得102x ≤≤;当302x -<<,13≤恒成立; 当453,3,2x x --≤⎧⎪⎨≤-⎪⎩解得322x -≤≤-, 此不等式的解集为1|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)令233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩当302x -≤<时,22'()1g x x=-+,当0x ≤<时,'()0g x ≥,所以()g x 在[0)上单调递增,当32x -≤≤时,'()0g x ≤,所以()g x 在3[,2-上单调递减,所以min ()(g x g =30m =+≥,所以3m ≥-, 当32x ≤-时,22'()50g x x =-+<,所以()g x 在3(,]2-∞-上单调递减, 所以min 335()()026g x g m =-=+≥, 所以356m ≥-,综上,3m ≥-.。

2018年辽宁省沈阳市高考数学一模试卷(理科)

2018年辽宁省沈阳市高考数学一模试卷(理科)

2018年辽宁省沈阳市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若i是虚数单位,则复数的实部与虚部之积为()A.B.C.D.2.(5分)设集合A={x|x>1},B={x|2x>1},则()A.A∩B={x|x>0}B.A∪B=R C.A∪B={x|x>0}D.A∩B=∅3.(5分)命题“若xy=0,则x=0”的逆否命题是()A.若xy=0,则x≠0 B.若xy≠0,则x≠0 C.若xy≠0,则y≠0 D.若x ≠0,则xy≠04.(5分)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x 的值为()A.﹣3 B.﹣3或9 C.3或﹣9 D.﹣9或﹣35.(5分)刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A.B.C. D.6.(5分)如图所示,网络纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为()A. B. C.D.7.(5分)设x、y满足约束条件,则的最大值是()A.﹣15 B.﹣9 C.1 D.98.(5分)若4个人按原来站的位置重新站成一排,恰有一个人站在自己原来的位置,则共有()种不同的站法.A.4 B.8 C.12 D.249.(5分)函数y=sin2x+2sinxcosx+3cos2x在的单调递增区间是()A.B.C.D.10.(5分)已知双曲线的一条渐近线与圆(x﹣4)2+y2=4相切,则该双曲线的离心率为()A.2 B.C.D.11.(5分)在各项都为正数的等比数列{a n}中,若a1=2,且a1•a5=64,则数列的前n项和是()A.B. C.D.12.(5分)设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2﹣x),当x ∈[﹣2,0]时,,若在区间(﹣2,6)内关于x的方程f(x)﹣log a(x+2)=0(a>0且a≠1)有且只有4个不同的根,则实数a的取值范围是()A. B.(1,4) C.(1,8) D.(8,+∞)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题纸上. 13.(5分)已知随机变量ξ~N(1,σ2),若P(ξ>3)=0.2,则P(ξ≥﹣1)=.14.(5分)在推导等差数列前n项和的过程中,我们使用了倒序相加的方法,类比可求得sin21°+sin22°+…+sin289°=.15.(5分)已知正三角形△AOB(O为坐标原点)的顶点A、B在抛物线y2=3x 上,则△AOB的边长是.16.(5分)已知△ABC是直角边为2的等腰直角三角形,且A为直角顶点,P为平面ABC内一点,则的最小值是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,已知内角A,B,C对边分别是a,b,c,且2ccosB=2a+b.(Ⅰ)求∠C;(Ⅱ)若a+b=6,△ABC的面积为,求c.18.(12分)如图所示,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,底面ABCD 是正方形,且PA=PD,∠APD=90°.(Ⅰ)证明:平面PAB⊥平面PCD;(Ⅱ)求二面角A﹣PB﹣C的余弦值.19.(12分)高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:家占、朋友聚集的地方占、个人空间占.为了考察高中生的“恋家(在家里感到最幸福)”是否与国别有关,构建了如下2×2列联表.(Ⅰ)请将2×2列联表补充完整;试判断能否有95%的把握认为“恋家”与否与国别有关;(Ⅱ)从中国高中生的学生中以“是否恋家”为标准采用分层抽样的方法,随机抽取了5人,再从这5人中随机抽取2人.若所选2名学生中的“恋家”人数为X,求随机变量X的分布列及期望.附:,其中n=a+b+c+d.20.(12分)设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.(Ⅰ)求点P的轨迹方程E;(Ⅱ)过F(1,0)的直线l1与点P的轨迹交于A、B两点,过F(1,0)作与l1垂直的直线l2与点P的轨迹交于C、D两点,求证:为定值.21.(12分)已知f(x)=e x﹣ax2﹣2x,a∈R.(Ⅰ)求函数f(x)图象恒过的定点坐标;(Ⅱ)若f'(x)≥﹣ax﹣1恒成立,求a的值;(Ⅲ)在(Ⅱ)成立的条件下,证明:f(x)存在唯一的极小值点x0,且.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:极坐标与参数方程]22.(10分)设过原点O的直线与圆(x﹣4)2+y2=16的一个交点为P,M点为线段OP的中点,以原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求点M的轨迹C的极坐标方程;(Ⅱ)设点A的极坐标为,点B在曲线C上,求△OAB面积的最大值.[选修4-5:不等式选讲]23.已知a>0,b>0,函数f(x)=|x+a|﹣|x﹣b|.(Ⅰ)当a=1,b=1时,解关于x的不等式f(x)>1;(Ⅱ)若函数f(x)的最大值为2,求证:.2018年辽宁省沈阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若i是虚数单位,则复数的实部与虚部之积为()A.B.C.D.【解答】解:∵=,∴复数的实部为,虚部为,∴复数的实部与虚部之积为.故选:B.2.(5分)设集合A={x|x>1},B={x|2x>1},则()A.A∩B={x|x>0}B.A∪B=R C.A∪B={x|x>0}D.A∩B=∅【解答】解:集合A={x|x>1},B={x|2x>1}={x|x>0},则A∩B={x|x>1};A∪B={x|x>0}.故选C.3.(5分)命题“若xy=0,则x=0”的逆否命题是()A.若xy=0,则x≠0 B.若xy≠0,则x≠0 C.若xy≠0,则y≠0 D.若x ≠0,则xy≠0【解答】解:命题若p则q的逆否命题为:若¬q,则¬p,即命题的逆否命题为:若x≠0,则xy≠0,故选:D4.(5分)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x 的值为()A.﹣3 B.﹣3或9 C.3或﹣9 D.﹣9或﹣3【解答】解:输出才结果为零,有y=0由程序框图可知,当:y=()x﹣8=0时,解得选x=﹣3;当y=2﹣log3x=0,解得x=9.综上,有x=﹣3,或者9.故选:B.5.(5分)刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A.B.C. D.【解答】解:如图所示,设圆的半径为R,则圆的面积为πR2,圆内接正六边形的边长为R,面积为6××R2×sin=;则所求的概率为P==.故选:B.6.(5分)如图所示,网络纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为()A. B. C.D.【解答】解:由几何体的三视图得该几何体是一个底面半径r=2,高为2的圆锥的一半,如图,∴该几何体的体积为:V==.故选:A.7.(5分)设x、y满足约束条件,则的最大值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:作出x、y满足约束条件对应的平面区域,由,得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,得A(0,1),此时z的最大值为z=+1=1,故选:A.8.(5分)若4个人按原来站的位置重新站成一排,恰有一个人站在自己原来的位置,则共有()种不同的站法.A.4 B.8 C.12 D.24【解答】解:根据题意,分2步分析:①,先从4个人里选1人,其位置不变,其他三人的都不在自己原来的位置,有C41=4种选法,②,对于剩余的三人,因为每个人都不能站在原来的位置上,因此第一个人有两种站法,被站了自己位置的那个人只能站在第三个人的位置上,因此三个人调换有2种调换方法.故不同的调换方法有4×2=8,故选:B.9.(5分)函数y=sin2x+2sinxcosx+3cos2x在的单调递增区间是()A.B.C.D.【解答】解:函数y=sin2x+2sinxcosx+3cos2x=+sin2x+3•=2+sin2x+cos2x=2+sin(2x+),令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤π+,故函数的增区间为[kπ﹣,kπ+],k∈Z.结合,可得增区间为(0,],故选:C.10.(5分)已知双曲线的一条渐近线与圆(x﹣4)2+y2=4相切,则该双曲线的离心率为()A.2 B.C.D.【解答】解:双曲线的一条渐近线y=与圆(x﹣4)2+y2=4相切,可得:=2,可得:2b=c,即4b2=c2,所以4c2﹣4a2=c2,解得e==.故选:B.11.(5分)在各项都为正数的等比数列{a n}中,若a1=2,且a1•a5=64,则数列的前n项和是()A.B. C.D.【解答】解:在各项都为正数的公比设为q的等比数列{a n}中,若a1=2,且a1•a5=64,则4q4=64,解得q=2,则a n=2n,可得数列,即为{},可得=﹣,数列的前n项和是﹣+﹣+…+﹣=1﹣,故选:A.12.(5分)设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2﹣x),当x ∈[﹣2,0]时,,若在区间(﹣2,6)内关于x的方程f(x)﹣log a(x+2)=0(a>0且a≠1)有且只有4个不同的根,则实数a的取值范围是()A. B.(1,4) C.(1,8) D.(8,+∞)【解答】解:∵对于任意的x∈R,都有f(x﹣2)=f(2+x),∴f(x+4)=f[2+(x+2)]=f[(x+2)﹣2]=f(x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[﹣2,0]时,,且函数f(x)是定义在R上的偶函数,若在区间(﹣2,6)内关于x的方程f(x)﹣log a(x+2)=0恰有4个不同的实数解,则函数y=f(x)与y=log a(x+2)(a>1)在区间(﹣2,6)上有四个不同的交点,如下图所示:又f(﹣2)=f(2)=f(6)=1,则对于函数y=log a(x+2),由题意可得,当x=6时的函数值小于1,即log a8<1,由此解得:a>8,∴a的范围是(8,+∞)故选D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题纸上. 13.(5分)已知随机变量ξ~N(1,σ2),若P(ξ>3)=0.2,则P(ξ≥﹣1)= 0.8.【解答】解:随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称,∵P(ξ>3)=0.2,∴P(ξ≤﹣1)=P(ξ>3),∴P(ξ≥﹣1)=1﹣P(ξ>3)=1﹣0.2=0.8.故答案为:0.814.(5分)在推导等差数列前n项和的过程中,我们使用了倒序相加的方法,类比可求得sin21°+sin22°+…+sin289°=44.5.【解答】解:设S=sin21°+sin22°+…+sin289°,则S=sin289°+sin288°+…+sin21°,两式倒序相加,得:2S=(sin21°+sin289°)+(sin22°+sin288°)+…+(sin289°+sin21°)=(sin21°+cos21°)+(sin22°+cos22°)+…+(sin289°+coss289°)=89,∞S=44.5.故答案为:44.5.15.(5分)已知正三角形△AOB(O为坐标原点)的顶点A、B在抛物线y2=3x 上,则△AOB的边长是6.【解答】解:由抛物线的对称性可得∠AOx=30°,∴直线OA的方程为y=x,联立,解得A(9,3).∴|AO|==6.故答案为:.16.(5分)已知△ABC是直角边为2的等腰直角三角形,且A为直角顶点,P为平面ABC内一点,则的最小值是﹣1.【解答】解:以BC为x轴,以BC边上的高为y轴建立坐标系,△ABC是直角边为2的等腰直角三角形,且A为直角顶点,斜边BC=2,则A(0,),B(﹣,0),C(,0),设P(x,y),则+=2=(﹣2x,﹣2y),=(﹣x,﹣y),∴=2x2+2y2﹣2y=2x2+2(y﹣)2﹣1,∴当x=0,y=时,则取得最小值﹣1.故答案为:﹣1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,已知内角A,B,C对边分别是a,b,c,且2ccosB=2a+b.(Ⅰ)求∠C;(Ⅱ)若a+b=6,△ABC的面积为,求c.【解答】解:(Ⅰ)由正弦定理得2sinCcosB=2sinA+sinB,又sinA=sin(B+C),∴2sinCcosB=2sin(B+C)+sinB,∴2sinCcosB=2sinBcosC+2cosBsinC+sinB,∴2sinBcosC+sinB=0,(sinB>0)∴,又C∈(0,π)∴;(Ⅱ)由面积公式可得,即ab=2,∴ab=8,c2=a2+b2﹣2abcosC=a2+ab+b2=(a+b)2﹣ab=36﹣8=28,∴.18.(12分)如图所示,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,底面ABCD 是正方形,且PA=PD,∠APD=90°.(Ⅰ)证明:平面PAB⊥平面PCD;(Ⅱ)求二面角A﹣PB﹣C的余弦值.【解答】(Ⅰ)证明:∵底面ABCD为正方形,∴CD⊥AD.又∵平面PAD⊥平面ABCD,∴CD⊥平面PAD.又∵AP⊂平面PAD,∴CD⊥AP.∵PD⊥AP,CD∩PD=D,∴AP⊥平面PCD.∵AP⊂平面PAB,∴平面PAB⊥平面PCD;(Ⅱ)解:取AD的中点为O,BC的中点为Q,连接PO,OQ,可得PO⊥底面ABCD,OQ⊥AD,以O为原点,以的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系,如图,不妨设正方形的边长为2,可得A(1,0,0),B(1,2,0),C(﹣1,2,0),P(0,0,1),设平面APB的一个法向量为,而,,则,即,取x1=1,得;设平面BCP的一个法向量为,而,,则,即,取y2=1,得,∴=,由图知所求二面角为钝角,故二面角A﹣PB﹣C的余弦值为.19.(12分)高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:家占、朋友聚集的地方占、个人空间占.为了考察高中生的“恋家(在家里感到最幸福)”是否与国别有关,构建了如下2×2列联表.(Ⅰ)请将2×2列联表补充完整;试判断能否有95%的把握认为“恋家”与否与国别有关;(Ⅱ)从中国高中生的学生中以“是否恋家”为标准采用分层抽样的方法,随机抽取了5人,再从这5人中随机抽取2人.若所选2名学生中的“恋家”人数为X,求随机变量X的分布列及期望.附:,其中n=a+b+c+d.【解答】解:(Ⅰ)根据题意,填写列联表如下;根据表中数据,计算=,∴有95%的把握认为“恋家”与否与国别有关;(Ⅱ)依题意得,5个人中2人来自于“在家中”是幸福,3人来自于“在其他场所”是幸福,∴X的可能取值为0,1,2;计算,,;∴X的分布列为:数学期望为:.20.(12分)设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.(Ⅰ)求点P的轨迹方程E;(Ⅱ)过F(1,0)的直线l1与点P的轨迹交于A、B两点,过F(1,0)作与l1垂直的直线l2与点P的轨迹交于C、D两点,求证:为定值.【解答】(Ⅰ)解:设P(x,y),则N(x,0),,又∵,∴,由M在椭圆上,得,即;(Ⅱ)证明:当l1与x轴重合时,|AB|=6,,∴.当l1与x轴垂直时,,|CD|=6,∴.当l1与x轴不垂直也不重合时,可设l1的方程为y=k(x﹣1)(k≠0),此时设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),把直线l1与曲线E联立,得(8+9k2)x2﹣18k2x+9k2﹣72=0,可得△=(﹣18k2)2﹣4(8+9k2)(9k2﹣72)>0.,.∴,把直线l2与曲线E联立,同理可得.∴为定值.21.(12分)已知f(x)=e x﹣ax2﹣2x,a∈R.(Ⅰ)求函数f(x)图象恒过的定点坐标;(Ⅱ)若f'(x)≥﹣ax﹣1恒成立,求a的值;(Ⅲ)在(Ⅱ)成立的条件下,证明:f(x)存在唯一的极小值点x0,且.【解答】解:(Ⅰ)∵要使参数a对函数值不发生影响,∴必须保证x=0,此时f(0)=e0﹣a×02﹣2×0=1,所以函数的图象恒过点(0,1).(Ⅱ)依题意得:e x﹣2ax﹣2≥﹣ax﹣1恒成立,∴e x≥ax+1恒成立.构造函数g(x)=e x﹣ax﹣1,则g(x)=e x﹣ax﹣1恒过(0,0),g'(x)=e x﹣a,①若a≤0时,g'(x)>0,∴g(x)在R上递增,∴e x≥ax+1不能恒成立.②若a>0时,g'(x)=0,∴x=lna.∵x∈(﹣∞,lna)时,g'(x)<0,函数g(x)=e x﹣ax﹣1单调递减;x∈(lna,+∞)时,g'(x)>0,函数g(x)=e x﹣ax﹣1单调递增,∴g(x)在x=lna时为极小值点,g(lna)=a﹣alna﹣1,∴要使e x﹣2ax﹣2≥﹣ax﹣1恒成立,只需a﹣alna﹣1≥0.设h(a)=a﹣alna﹣1,则函数h(a)恒过(1,0),h'(a)=1﹣lna﹣1=﹣lna,a∈(0,1),h'(a)>0,函数h(a)单调递增;a∈(1,+∞),h'(a)<0,函数h(a)单调递减,∴h(a)在a=1取得极大值0,∴要使函数h(a)≥0成立,只有在a=1时成立.证明(Ⅲ)f'(x)=e x﹣2x﹣2,设m(x)=e x﹣2x﹣2,∴m'(x)=e x﹣2,令m'(x)>0,x>ln2∴m(x)在(﹣∞,ln2)单调递减,在(ln2,+∞)单调递增,m(ln2)=﹣2ln2<0,∴f'(x)=m(x)=e x﹣2x﹣2在x=ln2处取得极小值,可得f'(x)一定有2个零点,分别为f(x)的一个极大值点和一个极小值点,设x0为函数f(x)的极小值点,则x0∈(0,2),∴f'(x0)=0,,=∵m(2)=e2﹣2×2﹣2=e2﹣6>0,,∴在区间上存在一个极值点,∴最小极值点在内.∵函数f(x)的极小值点的横坐标,∴函数f(x)的极小值,∴(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:极坐标与参数方程]22.(10分)设过原点O的直线与圆(x﹣4)2+y2=16的一个交点为P,M点为线段OP的中点,以原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求点M的轨迹C的极坐标方程;(Ⅱ)设点A的极坐标为,点B在曲线C上,求△OAB面积的最大值.【解答】解:(Ⅰ)设M(ρ,θ),则P(2ρ,θ)又点P的轨迹的极坐标方程为ρ=8cosθ∴2ρ=8cosθ,化简,得点M的轨迹C的极坐标方程为:ρ=4cosθ,,k∈Z.(Ⅱ)直线OA的直角坐标方程为点(2,0)到直线的距离为:,∴△OAB面积的最大值.[选修4-5:不等式选讲]23.已知a>0,b>0,函数f(x)=|x+a|﹣|x﹣b|.(Ⅰ)当a=1,b=1时,解关于x的不等式f(x)>1;(Ⅱ)若函数f(x)的最大值为2,求证:.【解答】解:(Ⅰ)当a=1,b=1时,.不等式f(x)>1为|x+1|﹣|x﹣1|>1.①当x≥1时,因为不等式为x+1﹣x+1=2>1,所以不等式成立,此时符合;符合要求的不等式的解集为{x|x≥1};②当﹣1≤x<1时,因为不等式为x+1+x﹣1=2x>1,所以,此时,符合不等式的解集为;③当x≥1时,因为不等式为﹣x﹣1+x﹣1=﹣2>1不成立,解集为空集;综上所述,不等式f(x)>1的解集为.(Ⅱ)由绝对值三角不等式可得||x+a|﹣|x﹣b||≤|a+b|,a>0,b>0∴a+b=2.∴,当且仅当a=b=1时,等号成立.另解:(Ⅱ)因为a>0,b>0,所以﹣a<0<b,所以函数f(x)=|x+a|﹣|x﹣b|=|x﹣(﹣a)|﹣|x﹣b|=,所以函数f(x)的图象是左右两条平行于x轴的射线和中间连结成的线段,所以函数的最大值等于a+b,所以a+b=2.∵a+b=2,∴.或者=,当且仅当a=2﹣a,即a=1时,“等号”成立.。

2018年黑龙江省哈师大附中高考一模数学试卷(理科)【解析版】

2018年黑龙江省哈师大附中高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模为()A.B.C.D.22.(5分)已知集合,B={x|x≥a},若A∩B=A,则实数a的取值范围是()A.(﹣∞,﹣3]B.(﹣∞,﹣3)C.(﹣∞,0]D.[3,+∞)3.(5分)从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为()A.B.C.D.4.(5分)已知s,则=()A.B.C.D.5.(5分)中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(﹣2,4),则它的离心率为()A.B.2C.D.6.(5分)展开式中的常数项是()A.12B.﹣12C.8D.﹣87.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值()A.2B.3C.D.8.(5分)已知函数的图象的相邻两条对称轴之间的距离是,则该函数的一个单调增区间为()A.B.C.D.9.(5分)辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入m=8251,n=6105,则输出m的值为()A.148B.37C.333D.010.(5分)底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S﹣ABCD,该四棱锥的侧面积为,则该半球的体积为()A.B.C.D.11.(5分)已知抛物线C:y2=2x,直线与抛物线C交于A,B两点,若以AB为直径的圆与x轴相切,则b的值是()A.B.C.D.12.(5分)在△ABC,∠C=90°,AB=2BC=4,M,N是边AB上的两个动点,且|MN|=1,则的取值范围为()A.B.[5,9]C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,AB=2,,,则BC=.14.(5分)若x,y满足约束条件,则的最大值为.15.(5分)甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A、B、C,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C学科;③在长春工作的教师教A学科;④乙不教B学科.可以判断乙教的学科是.16.(5分)已知函数,x0是函数f(x)的极值点,给出以下几个命题:①;②;③f(x0)+x0<0;④f(x0)+x0>0;其中正确的命题是.(填出所有正确命题的序号)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项数列{a n}满足:,其中S n为数列{a n}的前n项和.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.18.(12分)某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[﹣20,﹣10],需求量为100台;最低气温位于区间[﹣25,﹣20),需求量为200台;最低气温位于区间[﹣35,﹣25),需求量为300台.公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:以最低气温位于各区间的频率代替最低气温位于该区间的概率.(1)求11月份这种电暖气每日需求量X(单位:台)的分布列;(2)若公司销售部以每日销售利润Y(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?19.(12分)如图,四棱锥P﹣ABCD中,平面P AD⊥平面ABCD,且P A=PD,底面ABCD为矩形,点M、E、N分别为线段AB、BC、CD的中点,F是PE 上的一点,PF=2FE.直线PE与平面ABCD所成的角为.(1)证明:PE⊥平面MNF;(2)设AB=AD,求二面角B﹣MF﹣N的余弦值.20.(12分)已知椭圆过抛物线M:x2=4y的焦点F,F1,F2分别是椭圆C的左、右焦点,且.(1)求椭圆C的标准方程;(2)若直线l与抛物线M相切,且与椭圆C交于A,B两点,求△OAB面积的最大值.21.(12分)已知函数f(x)=e x,g(x)=lnx,h(x)=kx+b.(1)当b=0时,若对任意x∈(0,+∞)均有f(x)≥h(x)≥g(x)成立,求实数k的取值范围;(2)设直线h(x)与曲线f(x)和曲线g(x)相切,切点分别为A(x1,f(x1)),B(x2,g(x2)),其中x1<0.①求证:x2>e;②当x≥x2时,关于x的不等式a(x1﹣1)+xlnx﹣x≥0恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在极坐标系中曲线C1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x轴的正半轴建立直角坐标系,曲线C2的参数方程为:(t为参数),点A(3,0).(1)求出曲线C1的直角坐标方程和曲线C2的普通方程;(2)设曲线C1与曲线C2相交于P,Q两点,求|AP|•|AQ|的值.[选修4-5:不等式选讲]23.已知不等式|2x﹣5|+|2x+1|>ax﹣1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的范围.2018年黑龙江省哈师大附中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模为()A.B.C.D.2【解答】解:∵=,∴||=|1+i|=.故选:C.2.(5分)已知集合,B={x|x≥a},若A∩B=A,则实数a的取值范围是()A.(﹣∞,﹣3]B.(﹣∞,﹣3)C.(﹣∞,0]D.[3,+∞)【解答】解:集合={x|9﹣x2≥0}={x|﹣3≤x≤3},B={x|x≥a},若A∩B=A,则A⊆B;∴实数a的取值范围是a≤﹣3.故选:A.3.(5分)从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为()A.B.C.D.【解答】解:从标有1、2、3、4、5的五张卡片中,依次抽出2张,设事件A表示“第一张抽到奇数”,事件B表示“第二张抽取偶数”,则P(A)=,P(AB)==,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为:P(A|B)===.故选:B.4.(5分)已知s,则=()A.B.C.D.【解答】解:∵s,∴=cos[+()]=﹣sin()=﹣.故选:B.5.(5分)中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(﹣2,4),则它的离心率为()A.B.2C.D.【解答】解:∵焦点在y轴上的双曲线的渐近线方程是y=±x,∴4=﹣•(﹣2),∴=2,a=2b,a2=4b2=4c2﹣4a2,e=.故选:A.6.(5分)展开式中的常数项是()A.12B.﹣12C.8D.﹣8【解答】解:的展开式的通项为=.取r﹣5=﹣2,得r=3,取r﹣5=0,得r=5.∴展开式中的常数项是﹣﹣2=﹣12.故选:B.7.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值()A.2B.3C.D.【解答】解:由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为1和2,高为2,如图:AD=1,BC=2,SB=x,AD∥BC,SB⊥平面ABCD,AD⊥AB.∴底面的面积S=×(1+2)×2=3.该几何体为x,几何体的体积V==1,可得x=3.故选:B.8.(5分)已知函数的图象的相邻两条对称轴之间的距离是,则该函数的一个单调增区间为()A.B.C.D.【解答】解:函数=2sin(ωx+);由f(x)的图象相邻两条对称轴之间的距离是,∴T=2×=π,∴ω==2;∴f(x)=2sin(2x+),令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+2kπ,k∈Z,∴函数f(x)的一个单调增区间为[﹣,].故选:A.9.(5分)辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入m=8251,n=6105,则输出m的值为()A.148B.37C.333D.0【解答】解:由程序框图知:程序的运行功能是求m=82511,n=6105的最大公约数,∵8251=6105+2146;6105=2×2146+1813;2146=1813+333;1813=5×333+148;333=2×148+37,148=4×37+0∴此时m=37.∴输出m的值是37,故选:B.10.(5分)底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S﹣ABCD,该四棱锥的侧面积为,则该半球的体积为()A.B.C.D.【解答】解:连结AC,BD交点为0,设球的半径为r,由题意可知SO=AO=OC=OD=OB=r.则AB=r,四棱锥的侧面积为:4×=,解得r=,四棱锥的外接半球的体积为:V==,故选:D.11.(5分)已知抛物线C:y2=2x,直线与抛物线C交于A,B两点,若以AB为直径的圆与x轴相切,则b的值是()A.B.C.D.【解答】解:联立得:y2+4y﹣4b=0.依题意应有△=16+16b>0,解得b>﹣1.设A(x1,y1),B(x2,y2),∴y1+y2=﹣4,y1y2=﹣4b,∴x1+x2=﹣2(y1+y2)+4b=8+4b设圆心Q(x0,y0),则应有x0=(x1+x2)=4+2b,y0=(y1+y2)=﹣2.∵以AB为直径的圆与x轴相切,得到圆半径为r=|y0|=2,又|AB|=•=•=4•,∴|AB|=2r,即4•=4,解得b=﹣.故选:C.12.(5分)在△ABC,∠C=90°,AB=2BC=4,M,N是边AB上的两个动点,且|MN|=1,则的取值范围为()A.B.[5,9]C.D.【解答】解:以CA,CB为坐标轴建立坐标系如图所示:∵AB=2BC=4,∴∠BAC=30°,AC=2设AN=a,则N(2﹣,),M(2﹣,),∴=(2﹣)(2﹣)+=a2﹣5a+9.∵M,N在AB上,∴0≤a≤3.∴当a=0时,取得最大值9,当a=时,取得最小值.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,AB=2,,,则BC=1.【解答】解:根据题意,设BC=t,△ABC中,AB=2,,,则有cos∠ABC==﹣,变形可得:t2+2t﹣3=0,解可得:t=﹣3或t=1,又由t>0,则t=1,即BC=1;故答案为:114.(5分)若x,y满足约束条件,则的最大值为.【解答】解:由约束条件作出可行域如图,联立,解得A(1,3),由的几何意义,即可行域内的动点与定点P(﹣1,0)连线的斜率可得,的最大值为.故答案为:.15.(5分)甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A、B、C,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C学科;③在长春工作的教师教A学科;④乙不教B学科.可以判断乙教的学科是C.【解答】解:由①得甲不在哈尔滨工作,乙不在长春工作;由②得在哈尔滨工作的教师不教C学科,甲不教C;由③得在长春工作的教师教A学科;由④得乙不教B学科和A学科.综上,乙教C学科.故答案为:C.16.(5分)已知函数,x0是函数f(x)的极值点,给出以下几个命题:①;②;③f(x0)+x0<0;④f(x0)+x0>0;其中正确的命题是①③.(填出所有正确命题的序号)【解答】解:∵函数f(x)=xlnx+x2,(x>0)∴f′(x)=lnx+1+x,易得f′(x)=lnx+1+x在(0,+∞)递增,∴f′()=>0,∵x→0,f′(x)→﹣∞,∴0<x0<,即①正确,②不正确;∵lnx0+1+x0=0∴f(x0)+x0=x0lnx0+x02+x0=x0(lnx0+x0+1)=﹣x02<0,即③正确,④不正确.故答案为:①③.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项数列{a n}满足:,其中S n为数列{a n}的前n项和.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.【解答】(本题满分12分)解:(1)令n=1,得,且a n>0,解得a1=3.当n≥2时,,即,整理得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1=2,所以数列{a n}是首项为3,公差为2的等差数列,故a n=3+(n﹣1)×2=2n+1.(2)由(1)知:,∴T n=b1+b2+…+b n=.18.(12分)某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[﹣20,﹣10],需求量为100台;最低气温位于区间[﹣25,﹣20),需求量为200台;最低气温位于区间[﹣35,﹣25),需求量为300台.公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:以最低气温位于各区间的频率代替最低气温位于该区间的概率. (1)求11月份这种电暖气每日需求量X (单位:台)的分布列;(2)若公司销售部以每日销售利润Y (单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个? 【解答】(本题满分12分)解:(1)由已知X 的可能取值为100,200,300, P (X =100)==0.2, P (X =200)==0.4,P (X =300)==0.4,∴X 的分布列为:(2)由已知: ①当订购200台时,E (Y )=[200×100﹣50×(200﹣100)]×0.2+200×200×0.8=35000(元) ②当订购250台时,E (Y )=[200×100﹣50×(250﹣100)]×0.2+[200×200﹣50×(250﹣200)]×0.4+[200×250]×0.4=37500(元)综上所求,当订购250台时,Y 的数学期望最大,11月每日应订购250台. 19.(12分)如图,四棱锥P ﹣ABCD 中,平面P AD ⊥平面ABCD ,且P A =PD ,底面ABCD 为矩形,点M 、E 、N 分别为线段AB 、BC 、CD 的中点,F 是PE 上的一点,PF =2FE .直线PE 与平面ABCD 所成的角为.(1)证明:PE⊥平面MNF;(2)设AB=AD,求二面角B﹣MF﹣N的余弦值.【解答】证明:(1)方法一:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面P AD⊥平面ABCD,所以OP⊥平面ABCD,∠PEO=,OP=OE.因为MN∥BC,OE∥AB,所以MN⊥OE,所以MN⊥PE.又EF=PE=OE,EQ=OE,所以,所以△EFQ∽△EOP,所以,所以PE=FQ.且MN∩FQ=Q,所以PE⊥平面MNF.方法二:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面P AD⊥平面ABCD,所以OP⊥平面AC,,OP=OE.又因为MN∥BC,OE∥AB,所以MN⊥OE,所以MN⊥PE.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴,建立空间直角坐标系O﹣xyz.设AB=m,AD=n,则P(0,0,m),E(0,m,0),M(,0),F(0,),于是=(0,m,﹣m),=(﹣).所以=0,所以PE⊥MF,且MN∩MF=M,所以PE⊥平面MNF解:(2)取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面P AD⊥平面AC,所以OP⊥平面AC,,OP=OE.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴的正方向,建立空间直角坐标系O﹣xyz.设AB=AD=m,则P(0,0,m),E(0,m,0),B(),M(,0),F(0,),于是=(0,m,﹣m),=(0,﹣,0),=(﹣).设平面BMF的一个法向量为=(x,y,z),则,令x=1,得=(1,0,2).而平面NMF的一个法向量为==(0,m,﹣m).所以cos<>===﹣.由图形得二面角B﹣MF﹣N的平面角是钝角,故二面角B﹣MF﹣N的余弦值为﹣.20.(12分)已知椭圆过抛物线M:x2=4y的焦点F,F1,F2分别是椭圆C的左、右焦点,且.(1)求椭圆C的标准方程;(2)若直线l与抛物线M相切,且与椭圆C交于A,B两点,求△OAB面积的最大值.【解答】(本题满分12分)解:(1)∵F(0,1),∴b=1,又,∴.又a2﹣b2=c2,∴a=2,∴椭圆C的标准方程为.(2)设直线l与抛物线相切于点P(x0,y0),则,即,联立直线与椭圆,消去y,整理得.由,得.设A(x1,y1),B(x2,y2),则:.则原点O到直线l的距离.故△OAB面积=,当且仅当,即取等号,故△OAB面积的最大值为1.21.(12分)已知函数f(x)=e x,g(x)=lnx,h(x)=kx+b.(1)当b=0时,若对任意x∈(0,+∞)均有f(x)≥h(x)≥g(x)成立,求实数k的取值范围;(2)设直线h(x)与曲线f(x)和曲线g(x)相切,切点分别为A(x1,f(x1)),B(x2,g(x2)),其中x1<0.①求证:x2>e;②当x≥x2时,关于x的不等式a(x1﹣1)+xlnx﹣x≥0恒成立,求实数a的取值范围.【解答】解:(1)当b=0时:h(x)=kx,由f(x)≥h(x)≥g(x)知:e x≥kx≥lnx,依题意:对x∈(0,+∞)恒成立,设,当x∈(0,1)时m′(x)<0;当x∈(1,+∞)时m′(x)>0,∴[m(x)]min=m(1)=e,设,当x∈(0,e)时n′(x)>0;当x∈(e,+∞)时n′(x)<0,∴,故:实数k的取值范围是(2)由已知:f′(x)=e x,①:由得:由得:故∵x1<0,∴,∴lnx2>1,故:x2>e;②由①知:,且x2>e>1由a(x1﹣1)+xlnx﹣x≥0得:a(x1﹣1)≥x﹣xlnx,(x≥x2)设G(x)=x﹣xlnx(x≥x2)G′(x)=1﹣lnx﹣1=﹣lnx<0,∴G(x)在[x2,+∞)为减函数,∴[G(x)]max=G(x2)=x2﹣x2lnx2由a(x1﹣1)≥x2﹣x2lnx2,得:a(x1﹣1)≥x2(1﹣lnx2),∴a(x1﹣1)≥(x1﹣1)又x1<0,∴a≤1.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在极坐标系中曲线C1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x轴的正半轴建立直角坐标系,曲线C2的参数方程为:(t为参数),点A(3,0).(1)求出曲线C1的直角坐标方程和曲线C2的普通方程;(2)设曲线C1与曲线C2相交于P,Q两点,求|AP|•|AQ|的值.【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,∴x2+y2=4x,故曲线C1的直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4.由,消去参数t,可得.∴曲线C2:;(2)将代入x2+y2=4x,得t2﹣t﹣3=0,∵△=1+4×3=13>0,∴方程有两个不等实根t1,t2分别对应点P,Q,∴|AP|•|AQ|=|t1|•|t2|=|t1•t2|=|﹣3|=3,即|AP|•|AQ|=3.[选修4-5:不等式选讲]23.已知不等式|2x﹣5|+|2x+1|>ax﹣1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的范围.【解答】(本小题满分10分)解:(1)当a=1时:不等式为:|2x﹣5|+|2x+1|>x﹣1,等价于:或或解得:,所以不等式的解集为:(﹣∞,+∞);(2)设函数f(x)=|2x﹣5|+|2x+1|=,设函数g(x)=ax﹣1过定点A(0,﹣1),画出f(x),g(x)的图象,不等式|2x﹣5|+|2x+1|>ax﹣1.不等式的解集为R,k AB==,由数形结合得a的范围是.。

2018年黑龙江省哈尔滨三中高考数学一模试卷(理科)

2018年黑龙江省哈尔滨三中高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(★)设集合A={x|2 x≥4},集合B={x|y=lg(x-1)},则A∩B=()A.[1,2)B.(1,2]C.[2,+∞)D.[1,+∞)2.(★)下列函数中,既是偶函数又在区间(0,1)内单调递减的是()A.y=x2B.y=cosx C.y=2x D.y=|lnx|3.(★)在等差数列{a n}中,若a 3+a 11=18,S 3=-3,那么a 5等于()A.4B.5C.9D.184.(★)已知=(cos15°,sin15°),=(cos75°,sin75°),则| |=()A.2B.C.D.15.(★★)过原点且倾斜角为60°的直线被圆x 2+y 2-4y=0所截得的弦长为()A.2B.2C.D.6.(★★)设l,m是两条不同的直线,α,β是两个不同平面,给出下列条件,其中能够推出l∥m的是()A.l∥α,m⊥β,α⊥βB.l⊥α,m⊥β,α∥βC.l∥α,m∥β,α∥βD.l∥α,m∥β,α⊥β7.(★)函数y=log a(x-3)+1(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0上,其中m>0,n>0,则mn的最大值为()A.B.C.D.8.(★★)设S n是数列{a n}的前n项和,若S n=2a n-3,则S n=()A.2n+1B.2n+1-1C.3•2n-3D.3•2n-19.(★★★)如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为()A.B.2C.D.410.(★★)千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:根据上表可得回归方程= x+ 中的为1.35,我校2018届同学在学科竞赛中获省级一等奖及以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为()A.111B.115C.117D.12311.(★★)已知F 1、F 2为双曲线C:- =1(a>0,b>0)的左、右焦点,点P为双曲线C右支上一点,直线PF 1与圆x 2+y 2=a 2相切,且|PF 2|=|F 1F 2|,则双曲线C的离心率为()A.B.C.D.212.(★★)设函数f(x)=lnx+ax 2+bx,若x=1是函数f(x)的极大值点,则实数a的取值范围是()A .(-∞,)B .(-∞,1)C .[1,+∞)D .[,+∞)二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.(★★★)已知正方形ABCD 的边长为2,E 为CD 的中点,则•= .14.(★★★)若实数x ,y 满足 ,则2x+y 的最大值为 .15.(★★)直线l 与抛物线y 2=4x 相交于不同两点A ,B ,若M (x 0,4)是AB 中点,则直线l 的斜率k= .16.(★★★)已知锐角△A 1B 1C 1的三个内角的余弦值分别等于钝角△A 2B 2C 2的三个内角的正弦值,其中A 2> ,若|B 2C 2|=1,则 |A 2B 2|+3|A 2C 2|的最大值为 .三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(★★★)已知函数f (x )=sin 2x+sinxcosx .(1)当x ∈[0, ]时,求f (x )的值域;(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若f ( )= ,a=4,b+c=5,求△ABC 的面积.18.(★★)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均课外体育锻炼时间在[40,60)的学生评价为“课外体育达标”. (1)请根据上述表格中的统计数据填写下面的2×2列联表;(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关? 参考公式K 2= ,其中n=a+b+c+d19.(★★★★)如图,直三棱柱ABC-A 1B 1C 1中,∠ACB=120°且AC=BC=AA 1=2,E是棱CC 1上动点,F是AB中点.(1)当E是CC 1中点时,求证:CF∥平面AEB 1;(2)在棱CC 1上是否存在点E,使得平面AEB 1与平面ABC所成锐二面角为,若存在,求CE 的长,若不存在,请说明理由.20.(★★★★)已知F是椭圆+ =1的右焦点,过F的直线1与椭圆相交于A(x 1,y 1),B(x 2,y 2)两点.(1)若x 1+x 2=3,求AB弦长;(2)O为坐标原点,∠AOB=θ,满足3 . tanθ=4 ,求直线l的方程.21.(★★★★)已知函数f(x)=ln(ax+2)+ (x≥0).(1)当a=2时,求f(x)的最小值;(2)若f(x)≥2ln2+1恒成立,求实数a的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.[选修4-4:坐标系与参数方程](本小题满分10分)22.(★★)在极坐标系中,曲线C 1的方程为ρ2= ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C 2的方程为(t为参数).(1)求曲线C 1的参数方程和曲线C 2的普通方程;(2)求曲线C 1上的点到曲线C 2的距离的最大值.[选修4-5:不等式选讲](本小题满分0分)23.(★★★★)已知函数f(x)=2|x-a|-|x+2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)当a=2时,函数f(x)的最小值为t,+ =-t(m>0,n>0),求m+n的最小值.。

2018高三数学(理)第一次模拟考试题(东北三省三校有答案)

2018高三数学(理)第一次模拟考试题(东北三省三校有答案)2018高三数学(理)第一次模拟考试题(东北三省三校有答案)哈尔滨师大附中、东北师大附中、辽宁省实验中学 2018年高三第一次联合模拟考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数的模为( ) A. B. C. D. 2.已知集合,,若,则实数的取值范围是( ) A. B. C. D. 3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( ) A. B. C. D. 4.已知,则 ( ) A. B. C. D. 5.中心在原点,焦点在轴上的双曲线的一条渐近线经过点,则它的离心率为( ) A. B.2 C. D. 6. 展开式中的常数项是( ) A. B. C.8 D. 7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是( ) A. B. C.1 D.3 8.已知函数的图象的相邻两条对称轴之间的距离是,则该函数的一个单调增区间为( ) A.B. C. D. 9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入,,则输出的值为( ) A.148 B.37 C.333 D.0 10.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的侧面积为,则该半球的体积为( ) A. B. C. D. 11.已知抛物线,直线与抛物线交于,两点,若以为直径的圆与轴相切,则的值是( ) A. B. C. D. 12.在,,,是边上的两个动点,且,则的取值范围为( ) A. B. C. D. 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.在中,,,,则 ______________.14.若满足约束条件,则的最大值为______________. 15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科、、,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教学科;③在长春工作的教师教学科;④乙不教学科. 可以判断乙教的学科是______________. 16.已知函数,是函数的极值点,给出以下几个命题:① ;② ;③ ;④ ;其中正确的命题是______________.(填出所有正确命题的序号) 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知正项数列满足:,其中为数列的前项和.(1)求数列的通项公式; (2)设,求数列的前项和 . 18.某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。

东北三省四市教研联合体2018届高三第一次模拟考试理科综合试卷(含答案)

东北三省四市教研联合体2018年高考模拟试卷(一)理科综合试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列生理过程可以在生物膜上完成的是A.酶的合成B.C02的固定C.纺锤体的形成D.NADPH的生成2.下列有关实验的说法错误的是A.做脂肪的检测和观察实验时,染色后需滴加50%的酒精以洗去浮色B.在“低温诱导染色体加倍”的实验过程中,使用95%酒精的实验目的均相同C.研究土壤中动物类群的丰富度时,常用记名计算法和目测估计法来统计D.设计并制作生态缸时,应将生态缸置于室内通风、光线良好的地方观察并记录3.下列与胰岛素有关的叙述,错误的是A.胰岛素可催化细胞中葡萄糖的氧化分解B.胰岛B细胞分泌的胰岛素可随血液流到全身C.许多糖尿病患者可以通过注射胰岛素来治疗D.胰岛素的作用结果会反过来影响胰岛素的分泌4.下列关于植物生命活动调节的叙述,错误的是A.从细胞水平看,生长素可以影响细胞的伸长和分化B.在成熟组织中,生长素可以通过韧皮部进行非极性运输C.用适宜浓度的2,4-D处理插条两端,可促进插条两端生根D.“瓜熟蒂落”的过程中,植物激素乙烯和脱落酸均起调节作用5.下图简要表示某种病毒侵入人体细胞后发生的生化过程,相关叙述正确的是A.X酶存在于Rous肉瘤病毒和烟草花叶病毒中B.X酶可催化RNA分子水解和DNA分子的复制C.图中核酸分子水解最多产生5种碱基和5种核背酸D.图中所示的中心法则内容可以适用于各种生物6.西瓜是雌雄同株异花植物,果皮由母本的子房壁发育而来,果皮深绿条纹(基因A)对果皮浅绿(基因a)为显性。

将果皮浅绿色四倍体西瓜aaaa和果皮深绿条纹的二倍体西瓜AA间行种植。

待开花后自然授粉,并收获两倍体植株上所结的种子甲。

第二年;将种子甲与二倍体西瓜按4:1的行比种植,自然授粉后,种子甲长成的植株所结的果实A.全部为无子西瓜B.全部为有子西瓜C.果皮浅绿色的为有子西瓜D.果皮深绿条纹的为有子西瓜7.化学是一门创造新物质的科学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届东北三省四市高三高考第一次模拟考试数学(理)试题2018年东北三省四市教研联合体高考模拟试卷数学(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|||1A x x =<,{}|(3)0B x x x =-<,则A B =( )A .(1,0)-B .(0,1)C .(1,3)-D .(1,3)2.若复数11iz ai +=+为纯虚数,则实数a 的值为( )A .1B .0C .12- D .1-3.中国有个名句“运城帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图所示)表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推,例如3266用算筹表示就是≡||⊥T ,则8771用算筹可表示为( )8.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A=+,2b =,ABC ∆面积的最大值是( )A .1B 3C .2D .49.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角B AD C --,则过A ,B ,C ,D 四点的球的表面积为( ) A .3πB .4πC .5πD .6π10.将函数()sin(2)3f x x π=+的图象向右平移a 个单位得到函数()cos(2)4g x x π=+的图象,则a 的值可以为( )A .512πB .712πC .924π1D .4124π11.已知焦点在x 轴上的双曲线222211x y m m -=-的左右两个焦点分别为1F 和2F ,其右支上存在一点P 满足12PF PF ⊥,且12PF F ∆的面积为3,则该双曲线的离心率为( ) A 5B .72C .2D .312.若直线10kx y k --+=(k R ∈)和曲线:E 3253y ax bx =++(0ab ≠)的图象交于11(,)A x y ,22(,)B x y ,33(,)C x y (123x xx <<)三点时,曲线E 在点A ,点C 处的切线总是平行,则过点(,)b a 可作曲线E的( )条切线A .0B .1C .2D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数x ,y 满足约束条件0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩则25z x y =++的最大值为.14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为2.1161.13y x =-+,现表中一个数据为污损,则被污损的数据为 .(最后结果精确到整数位)15.已知函数()f x 满足1()(1)1()f x f x f x ++=-,当(1)2f =时,(2018)(2019)f f +的值为 .16.已知腰长为2的等腰直角ABC ∆中,M 为斜边AB 的中点,点P 为该平面内一动点,若||2PC =,则()()PA PB PC PM ⋅⋅⋅的最小值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设数列{}na 的前n 项和为nS ,且21nSn n =-+,正项等比数列{}n b 的前n 项和为n T ,且22b a =,45b a =.(1)求{}na 和{}nb 的通项公式;(2)数列{}nc 中,11c a =,且1nn ncc T +=-,求{}nc 的通项nc .18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率;(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注环境治理和保护问题的人数为随机变量X,求X的分布列与数学期望.19.在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,1==.PA AB(1)证明://EF平面DCP;(2)求平面EFC与平面PDC所成锐二面角的余弦值.20.在平面直角坐标系中,椭圆C:22221(0)x y a b a b+=>>的离心率为12,点3(1,)2M 在椭圆C 上. (1)求椭圆C 的方程;(2)已知(2,0)P -与(2,0)Q 为平面内的两个定点,过(1,0)点的直线l 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值.21.已知函数2()45xaf x xx e =-+-(a R ∈).(1)若()f x 为在R 上的单调递增函数,求实数a 的取值范围; (2)设()()xg x ef x =,当1m ≥时,若12()()2()g x g x g m +=(其中1x m <,2x m>),求证:122x xm+<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C :cos 3ρθ=,曲线2C :4cos ρθ=(02πθ≤<). (1)求1C 与2C 交点的极坐标;(2)设点Q 在2C 上,23OQ QP =,求动点P 的极坐标方程. 23.选修4-5:不等式选讲 已知函数()|2||23|f x x x m =+++,m R ∈. (1)当2m =-时,求不等式()3f x ≤的解集;(2)对于(,0)x ∀∈-∞都有2()f x x x≥+恒成立,求实数m 的取值范围.2018年东北三省四市教研联合体高考模拟试卷(一)数学答案一、选择题1-5:CDCDD 6-10:BABCC 11、12:BC二、填空题13.14 14.38 15.72- 16.32242-三、解答题17.解:(1)∵21nSn n =-+,∴令1n =,11a=,12(1)n n n a S S n -=-=-,(2)n ≥,经检验11a =不能与na (2n ≥)时合并, ∴1,1,2(1), 2.n n a n n =⎧=⎨-≥⎩又∵数列{}nb 为等比数列,222b a ==,458ba ==,∴2424bq b==,∴2q =,∴11b =,∴12n nb-=. (2)122112nn n T -==--,∵12121cc -=-,23221cc -=-,…,1121n nn cc ---=-,以上各式相加得112(12)(1)12n n c c n ---=---,111c a ==,∴121n nc n -=--, ∴21n nc=-.18.解:(1)由10(0.0100.0150.0300.010)1a ⨯++++=,得0.035a =, 平均数为200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁;设中位数为x ,则100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=,∴42.1x ≈岁. (2)第1,2组抽取的人数分别为2人,3人. 设第2组中恰好抽取2人的事件为A , 则1223353()5C C P A C ==.(3)从所有参与调查的人中任意选出1人,关注环境治理和保护问题的概率为45P =,X的所有可能取值为0,1,2,3,∴03341(0)(1)5125P X C ==-=,11234412(1)()(1)55125P X C ==-=,2234448(2)()(1)55125P X C ==-=,333464(3)()5125P X C ===,所以X 的分布列为:X0 123P 1125 121254812564125∵4~(3,)5X B , ∴412()355E X =⨯=. 19.解:(1)取PC 中点M ,连接DM ,MF , ∵M ,F 分别是PC ,PB 中点,∴//MF CB ,12MF CB =, ∵E 为DA 中点,ABCD 为矩形,∴//DE CB ,12DE CB =, ∴//MF DE ,MF DE =,∴四边形DEFM 为平行四边形, ∴//EF DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴//EF 平面PDC .(2)∵PA ⊥平面ABC ,且四边形ABCD 是正方形,∴AD ,AB ,AP两两垂直,以A 为原点,AP ,AB ,AD 所在直线为x ,y ,z轴,建立空间直角坐标系A xyz -,则(1,0,0)P ,(0,0,1)D ,(0,1,1)C ,1(0,0,)2E ,11(,,0)22F , 设平面EFC 法向量1(,,)n x y z =,111(,,)222EF =-,11(,,1)22FC =-, 则110,0,EF n FC n ⎧⋅=⎪⎨⋅=⎪⎩即0,110,22x y z x y z +-=⎧⎪⎨-++=⎪⎩取1(3,1,2)n =-,设平面PDC 法向量为2(,,)n x y z =,(1,0,1)PD =-,(1,1,1)PC =-, 则220,0,PD n PC n ⎧⋅=⎪⎨⋅=⎪⎩即0,0,x z x y z -+=⎧⎨-++=⎩取2(1,0,1)n =, 12121257cos ,||||142n n n n n n ⋅<>===⋅⨯所以平面EFC 与平面PDC 5720.解:(1)∵12c a =,∴2a c =, 椭圆的方程为2222143x y c c+=,将3(1,)2代入得22191412cc +=,∴21c =,∴椭圆的方程为22143x y +=.(2)设l 的方程为1x my =+,联立221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x ,得22(34)690my my ++-=,设点11(,)A x y ,22(,)B x y , 有122634m y ym -+=+,122934y ym -=+, 有2222212112(1)||13434m m AB m m m ++=+=++,点P (2,0)-到直线l 的距离为21m +点(2,0)Q 到直线l 的距离为21m+从而四边形APBQ 的面积2222112(1)2412341m m S m m++=⨯=++(或121||||2S PQ y y =-)令21t m =+,1t ≥,有22431tS t =+2413t t=+,设函数1()3f t t t =+,21'()30f t t=->,所以()f t 在[1,)+∞上单调递增,有134t t +≥,故2242461313tS t t t==≤++,所以当1t =,即0m =时,四边形APBQ 面积的最大值为6. 21.解:(1)∵()f x 的定义域为x R ∈且单调递增, ∴在x R ∈上,'()240xa f x x e =-+≥恒成立,即:(42)xa x e ≥-,所以设()(42)xh x x e =-,x R ∈,∴'()(22)xh x x e =-,∴当(,1)x ∈-∞时,'()0h x >,∴()h x 在(,1)x ∈-∞上为增函数, ∴当[1,)x ∈+∞时,'()0h x ≤,∴()h x 在[1,)x ∈+∞上为减函数, ∴max()(1)2h x h e ==,∵max(42)xa x e ⎡⎤≥-⎣⎦,∴2a e ≥,即[2,)a e ∈+∞. (2)∵2()()(45)xx g x ef x x x e a==-+-,∵12()()2()g x g x g m +=,[1,)m ∈+∞, ∴122221122(45)(45)2(45)2x x m xx e a x x e a m m e a -+-+-+-=-+-,∴122221122(45)(45)2(45)x x mxx e x x e m m e -++-+=-+,∴设2()(45)xx xx e ϕ=-+,x R ∈,则12()()2()x x m ϕϕϕ+=,∴2'()(1)0xx x eϕ=-≥,∴()x ϕ在x R ∈上递增,∴设()()()F x m x m x ϕϕ=++-,(0,)x ∈+∞,∴22'()(1)(1)m xm xF x m x em x e +-=+----,∵0x >, ∴0m xm x ee +->>,22(1)(1)(22)20m x m x m x +----=-≥,∴'()0F x ≥,()F x 在(0,)x ∈+∞上递增, ∴()(0)2()F x F m ϕ>=,∴()()2()m x m x m ϕϕϕ++->,(0,)x ∈+∞, 令1x m x =-,∴11()()2()m m x m m x m ϕϕϕ+-+-+>,即11(2)()2()m x x m ϕϕϕ-+>,又∵12()()2()x x m ϕϕϕ+=,∴12(2)2()()2()m x m x m ϕϕϕϕ-+->,即12(2)()m x x ϕϕ->,∵()x ϕ在x R ∈上递增, ∴122m xx ->,即122x xm+<得证.22.解:(1)联立cos 3,4cos ,ρθρθ=⎧⎨=⎩3cos 2θ=±,∵02πθ≤<,6πθ=,3ρ= ∴所求交点的极坐标(23,)6π.(2)设(,)P ρθ,0(,)Q ρθ且04cos ρθ=,0[0,)2πθ∈,由已知23OQ QP=,得02,5,ρρθθ⎧=⎪⎨⎪=⎩∴24cos 5ρθ=,点P 的极坐标方程为10cos ρθ=,[0,)2πθ∈.23.解:(1)当2m =-时,41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩当413,0,x x +≤⎧⎨≥⎩解得102x ≤≤;当302x -<<,13≤恒成立; 当453,3,2x x --≤⎧⎪⎨≤-⎪⎩解得322x -≤≤-, 此不等式的解集为1|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)令233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩当302x -≤<时,22'()1g x x=-+,当20x -≤<时,'()0g x ≥,所以()g x 在[2,0)上单调递增,当322x -≤≤-时,'()0g x ≤,所以()g x 在3[,2)2--上单调递减, 所以min()(2)g x g =-2230m =+≥,所以223m ≥-,当32x ≤-时,22'()50g x x =-+<,所以()g x 在3(,]2-∞-上单调递减, 所以min335()()026g x g m =-=+≥,所以356m ≥-, 综上,223m ≥-.。

相关文档
最新文档