张量分析-第1讲LJ
第一章 张量分析初步

eijk eijk 6
证明见例题
eijk与ij间的关系
由排列符号的性质 : ei e j eijk ek
ei e j • ek eijk
由于ei e j • ek表示的是混合积,其物理意义是单位立方体的体积.
另外,由矢量分析知, 平行六面体的体积可以表示成其三个棱的行
i e1, j e2, k e3
X1
X3 P(x1, x2, x3)
O
X2
➢ 再对上述代换结果进行简写P点改写为: P(x1,x2,x3)P(xi, i=1,2,3)P(xi)
➢ 基向量:ei, i=1,2,3 ei ➢ 则称上述字母i为指标,i的取值i=1,2,3为指标i的取值
列式形式.
eeij
(i1, ( j1
i2,i3 , j2,
)
j3
)
ek (k1,k 2 ,k3)
ei,ej,ek为3个单位基向量, i,j,k互不相等。
i1 i2 i3 ei e j • ek j1 j2 j3 eijk
k1 k2 k3
a13 x3 a23 x3
b1 b2
a31x1 a32 x2 a33 x3 b3
如何用一个最简单 的式子来表示?
用矩阵? 还有更简单的表示方法吗? 可总结为:aij x j bi
aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号
两种方式:
将左式展开,再给定每一个i值,求左右是否相等;
只有当i=j时ij才不等于“0”,
∴
a j ij ai ii ( ii不求和) ai
张量分析(1)

x2
' x2
e2'
e2 e ' 1
' x1
e1 x1
x1
x2
' x2
' x1
x2
' x2 e2'
e 2 e1'
' x1
e1 x1
x1
令:αi' j cos(ei' ,e j )
( i' , j 1,2 )
则: αi' j
cos(e1' , e1 ) cos(e1' , e2 ) cos sin cos( e , e ) cos( e , e ) ' ' sin cos 1 2 2 2
A B ( Aij Bij )ei e j Tijei e j Τ
符合 φ ijklei e j ek el ,为一新张量
另证:
Ai ' j ' i 'i j ' j Aij Bi ' j ' i 'i j ' j Bij
Ai ' j ' Bi ' j ' i 'i j ' j ( Aij Bij )
xi xi , j ij x j aii jk a jk
三.Ricci 符号
定义:
ei j k
1 1 0
ei j k
即:
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
最新第1章-张量分析(清华大学张量分析-你值得拥有)PPT课件

1 、g
2
P
其中 g 1 、g 2 不一定是单位矢量。
矢量 P 可表示为:
P P1 g1 P 2 g2
2
P g P g 1
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系的协变基矢量和逆变基矢量
P P g :哑指标
x2
( x 1 , x 2 ) Einstein求和约定
r
g2
如何计算 u(vw)?
vw
观察右图,可知 vw正交于
u
v 、w 构成的平面,而 u(vw)
w
正交于 vw,因此,u(vw)
一定在 v 、w 构成的平面
v
u (v w) v w
u(vw)
(u w)v (u v)w (uv) w
数形结合
矢量及其代数运算
➢矢量的乘法 矢量的混合积
uv wuvw群u论的v轮w换次序不变性w
张
gij gi gj gij gi gj
量
可证明:
分 析
g ij g ji
gij g ji
的
称 g i j 为度量张量的协变分量
起
称 g i j 为度量张量的逆变分量
点
gi gij g j gi = g ij g j
协变基矢量在逆变基矢量下分解 逆变基矢量在协变基矢量下分解
斜角直线坐标系的基矢量与矢量分量
※ 根据几何图形直接确定
由对偶条件可知, g 1 与 g 2 、g 3 均正交,因此正交于 g 2 与 g 3 所
确定的平面;其模的大小等于
g1 1
g1 cos
g1 g1
2 g2
2
g3
斜角直线坐标系的基矢量与矢量分量
张量分析——初学者必看精选全文

§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
偶次置换
1 若i, j, k 1,2,3, 2,3,1, 3,1,2 eijk 1 若i, j, k 3,2,1, 2,1,3, 1,3,2
0 若有两个或三个指标相等
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
§A-4 张量的代数运算 三、矢量与张量的叉积
A 张量分析
右叉乘
T a (Tijeie j ) (akek ) Tij akeie jkrer e T jkr ij akeier B
§A-4 张量的代数运算
A 张量分析
四、两个张量的点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
坐标变换式 xi ii xi xi ii xi
ii cos(xi, xi ) ii cos(xi , xi )
§A-3 坐标变换与张量的定义 A 张量分析
[ii ], [ii ]
互逆、正交矩阵
ii ii
ij
1 0
0 1
基矢量变换式
ei iiei ei iiei
坐标变换系数
v 任意向量变换式 i vii i vii i
ip iq ir eijk epqr jp jq jr
kp kq kr
pk
eijk ekqr
iq jq
ir jr
iq jr ir jq
a11 a12 a13 A a21 a22 a23 a11a22a33 a12a23a31
a31 a32 a33 a13a21a32 a13a22a31 a12a21a33 a11a23a32 eijk a1ia2 j a3k eijk ai1a j2ak3
张量分析书籍附详尽易懂

n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。
第一章 张量分析基础知识

晶体物理性能南京大学物理系由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用.鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容.由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.第一章张量的基础知识§1.1标量、矢量和二阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5二阶张量的变换与张量的定义………………………………………………………§1.6张量的足符互换对称…………………………………………………………………§1.7张量的矩阵表示和矩阵的代数运算…………………………………………………§1.8二阶对称张量的几何表示和二阶张量的主轴………………………………………§1.9二阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第二章晶体的弹性与弹性波§2.1弹性性质与原子间力…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应力……………………………………………………………………………………§2.4推广的虎克定律、弹性系数…………………………………………………………§2.5立方晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因子的测量方法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3高频电场的介电极化(光的色散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离子晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的一般性质…………………………………………………………………§4.2常用铁电体的实验规律……………………………………………………………§4.3铁电体的相变热力学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电方程和机电耦合系数…………………………………………………………§4.7压电晶体的应用实例――石英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲面……………………………………………………………§5.4晶体表面上的折射…………………………………………………………………§5.5晶体偏光干涉及其应用……………………………………………………………第六章倍频与参量频率转换§6.1非线性极化…………………………………………………………………………§6.2非线性极化系数……………………………………………………………………§6.3非线性介质中电磁场耦合方程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7角度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放大…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐方法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13非线性材料的性能要求……………………………………………………………第七章电光效应及其应用§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的几个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第八章声光效应及其应用§8.1弹光效应……………………………………………………………………………§8.2声光交互作用产生的衍射现象……………………………………………………§8.3声光交互作用的理论………………………………………………………………§8.4声光效应在一些物理常数测量中的应用…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散角α的推导………………………………………………………E.双轴晶体中双折射面相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第一章 张量分析基础知识以前学的课程中,有关力学、热学、电学、光学等的性质都是以各向同性介质来表述的或以一维问题来说明问题,这对于突出某些物理现象的微观的物理原因方面是必要的,但晶体物理性能是讲晶体中的力学、电学、光学、声学、磁学、热学等物理性能,而晶体的各向异性却是一种很普遍的特性,特别是很多现象如热电、压电、电光、声光、非线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要方面。
张量分析课件

P = ∑αij Ej (i=1,2,3) i
j =1
3
Pi′ = ∑ α i′j′ E j′ (i'=1,2,3)
j ′ =1
3
代 入
将一阶张量Ej和Pi的变换规律
Pi′ = ∑ Ai′i Pi
3
代 入
E j′ = ∑ Aj ′j E j
j =1
i =1 3
∑A
i =1
3
i ′i i
P = ∑∑ α i′j′ Aj′j E j
证: 刚体定轴转动:
ω
(Z轴)转轴
刚 体
(
)
v τi A ni O′ ri
v
刚体定轴转动
r2 r r I 质点:ij = m(rij δ ij − ( r )i ( r ) j ) O
v Ri
= m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3)
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩. 证: 质点:I ij = m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3) 九个分量:
δij在坐标变换后,其各个分量的值不变. 即在任意坐 标系中按上式定义的二价对称δ符号是一个二阶张量.
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩.
流体力学-第一讲 场论与张量分析初步

ax ay az
10.01.2021
18
所以有: (向量线方程)
dx dy dz
ax ay az
向量管:在场内取任一非向量的封闭曲线C,通过C上每一点 作矢(向)量线,则这些矢量曲线的区域为向量管。
流线方程 迹线方程
dx dy dz ux uy uz dx dy dz dt ux uy uz
迹线的描述 是从欧拉法
15
二、场的几何表示
变化快
变化慢
1、scalar field:
(1)用等值线(面)表示
令:
t0 f(r,t0)f0
t1 f(r,t1 )f1
等值线(等位面)图
(2)它的疏密反映了标量函数的变化情况
10.01.2021
16
二、场的几何表示
2、 vector field: 大小:标量. 可以用上述等位线(等位面)的概念来几何表示。
10.01.2021
12
数量三重积: c ab
ax ay az
a bc abc abc bx by bz
cx cy cz
a b c c a b b c a
abcacb
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
10.01.2021
③在任一方向的变形等于该方向的方向导数。
④梯度的方向是标量变化最快的方向。
10.01.2021
25
梯度的基本运算法则有:
C C
C( 为 常 数 )
1 2 1 2
1 2 1 2 2 1
f f
10.01.2021
26
四、向量的散度(divergence)
a ba xi a yj a zkb xi b yj b zk
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a2 F3 a3 F2 a c b1 a b c1 a3 F1 a1 F3 a c b2 a b c2 a1 F2 a2 F1 a c b3 a b c3
所以有: a b c a c b a b c
g1和g 2
g1和g 2 不是单位矢量,即它们有量纲的, 一般地说,
其长度也不为单位长度。此外它们也并不正交。 矢量F可以在 g1和g 2 上分解:
F F g1 F g 2
1 2
(平行四边形法则)
则有: F g 1 F 1g 1 g 1 F 2 g 2 g 1
F g 1 F 1g 1 g 1 F 2 g 2 g 1
e2 b2 c2
e3
e3 b3 b2 c3 b3 c2 e 1 b3 c1 b1c3 e 2 b1c2 b2 c1 e 3 c3
b3 a 2 F3 a3 F2 e 1 a3 F1 a1 F3 e 2 a1 F2 a 2 F1 e 3 F3
j 1
F2 ' e 2 ' e1 F1 e 2 ' e 2 F2 e 2 ' e 3 F3 2 ' j F j
j 1 3
3
F3' e 3' e1 F1 e 3' e 2 F2 e 3' e 3 F3 3' j F j
j 1
矢量场函数的散度: 矢量场函数的旋度:
i F x Fx j y Fy
Fx Fy Fz F z y x
k Fz Fy Fx Fz Fy Fx i k j y z y z z x x Fz
一些有用的公式: (1) (2) a b a b
(3) a a a (5) a a a
(4) a b b a a b
c ab
ab ba (a b) a b (a b) c a (b c)
(2) 矢量的积
点积:
a b abcos(a, b)
a b a1b1 a 2 b2 a3b3
λ(a b) (a) b a b a (b c) a b a c
a b b a
叉积: c a b
大小: c ab sin (a, b) 方向: 右手螺旋法则.
e1 a b a1 b1
e2
e3
a2 a3 b2 b3
a b b a a (b c) a b a c λ(a b) (a) b a (b)
混合积: a (b c)
运算结果是标量, 对应于三个矢量围成的六面体的体积 可正可负. a (b c) a b c cosθ
根据混合积物理意义有: V a (b c) b c a c a b 混合积的行列式表示:
a b c b1 c1 一个有用的公式:
1.1 绪论
1.什么是张量?
标量:在力学与其它学科中, 有些物理量只有大小没有方向, 这类物理量统称标量。常见的标量有: 质量、密度、长度、 时间、温度、功、能量等。 矢量:有些物理量既有大小又有方向,例如:力、位移、 速度、加速度等。矢量本身跟坐标系的选择没有关系。坐 标系建立后,矢量可沿坐标系进行分解,矢量的坐标分量 依赖于坐标系的选取。不同坐标系下的分量满足一定的坐 标变换关系。矢量有‘四则运算’。 张量: 张量是矢量的推广。张量对于不同坐标系有相应的 分量。张量在不同坐标系下的分量也满足一定的坐标变换 关系。张量也有四则运算。
v1 w1 a u v2 v2 b u v3 w3 cu
三重叉积:
a (b c) 它是一个矢量(方位判断)
a (b c) a c b a b c
证明:(采用直角坐标系)
e1 F b c b1 c1
e1 a F b1 F1 e2 b2 F2
(6) a b b a a b b a a b (7) (8) (9)
2
2
d nds
S
(10)
ad n ads
力学中常见的张量: 应力张量 σ ,
xx xy xz yy yz yx zx zy zz
应变张量 ε ,
xx yx zx
xy xz yy yz zy zz
弹性张量 C , σ C : ε 2. 张量分析的主要学习内容
有没有矢量除法? 例: 求证: (a b) (c d) (b c) (a d) (c a) (b d) 0
1.3 微分算子 1. 场函数
在空间某个域内的每个点x, y, z 对应一个函数 的值 则该函数称为该域内的场函数. x, y, z
x1
x3
e3
e1
e2
x2
1 i j e i e j ij 0 i j
e1 e 2 e 3 , e 2 e3 e1 , e3 e1 e 2
基矢为单位矢量,因此矢量F及其分量 F1 , F2 , F3 有相同的量纲。
矢量可在基矢上进行分解:
F F1e 1 F2 e 2 F3e 3
设有新坐标系: x1' , x2 ' , x3' , e1' , e 2 ' , e 3 ' , 新坐标的基矢可以在老坐标上分解(以平面坐标为例): 两边点乘 e1 , 两边点乘 e 2,
e1' 1'1e1 1'2e 2
e1' e1 1'1 cos( x1' , x1 )
e1' e 2 1'2 cos( x1' , x2 )
张量分析 ( Tensor analysis)
教材 张量分析,莫乃榕,华中科技大学力学系 参考书目 张量分析(第二版),黄克智等,清华大学出版 社,2003年.
第一章 矢量和张量
1.1 绪论 1.2 矢量及其代数运算 1.3 微分算子以及积分公式 1.4 坐标系以及基矢 1.5 坐标变换 1.6 张量 1.7 度量张量 1.8 张量代数 1.9 置换符号及置换张量
au a b c u V W b u cu
a1
a2 b2 c2
av bv cv
a3 b3 c3
aw bw cw
证明:(采用直角坐标系):
a1 a b c u V W b1 c1 a1 b1 c1 a2 b2 c2 a3 u1 b3 u 2 c3 u 3 a2 b2 c2 a3 u1 b3 v1 c3 w1 u2 v2 w2 av bv cv u3 a1 v3 b1 w3 aw bw cw c1 a2 b2 c2 a3 u1 b3 u 2 c3 u 3 v1 v2 v3 w1 v2 w3
其中:
F1 F e1 , F2 F e 2 , F3 F e 3 ; F1' F e1' , F2' F e 2' , F3' F e 3'
3
则有:
F1' e1' e1 F1 e1' e 2 F2 e1' e 3 F3 1' j F j
惯性矩张量 I
张量的基本性质; 张量代数; 张量微积分; 张量对时间的导数; 曲面微分法
3. 张量分析的用途 (1)从张量的角度出发便于更深刻地理解力学量 的性质, 特别是坐标变换性质。 (2)可以脱离特定的坐标系来描述物理量之间的 关系,从而使物理关系的表达更加简洁。 (3)为学习连续介质力学等高端力学理论奠定数 学基础。
标量场函数, 矢量场函数, 张量场函数
2. 哈密顿(Hamilton)算子
i j k y z x
(直角坐标系)
具有微分和矢量的双重特征 微分算子可以用来求标量场函数的梯度, 矢量场函数 的散度和旋度。
标量场函数的梯度: i j k y x z
其中 i, j, k , e1 , e 2 , e 3是直角坐标系中的单位矢量 分量记法(也要对应于一定的坐标系):
Fx , Fy , Fz
F1 , F2 , F3
F1 F e1 , F2 F e 2 , F2 F e 3
3. 矢量的代数运算及其法则 (1) 矢量和(差) c a b
i ' j cos( xi ' , x j ) 称为坐标变换系数。
ei ij 'e j ' , i 1,2,3 同理有:
j '1 3
基矢的坐标变换关系
矢量分量的坐标变换关系:
F F1e1 F2 e 2 F3e 3 F1'e1' F2 'e 2 ' F3'e 3'
式中: i ' j e i ' e j cos( xi ' , x j )
同理
Fi ij 'e j ' ,
j '1 3
i 1,2,3,
ij ' ei e j ' cos( xi , x j ' )
上面两式即为矢量分量的坐标变换式.