储能技术的发展及分析

合集下载

储能技术的发展及应用

储能技术的发展及应用

储能技术的发展及应用储能技术的发展及应用是当今能源领域的热门话题之一、随着可再生能源的快速发展和能源转型的需求,储能技术的重要性越来越凸显出来。

本文将重点探讨储能技术的发展历程、不同类型的储能技术以及其在各个领域的应用。

一、发展历程1.传统储能技术阶段:该阶段主要包括泵水蓄能、储气和储热等传统储能技术。

这些技术主要应用于调峰和电力系统备用能力的提供。

2.电化学储能技术阶段:电化学储能技术包括铅酸电池、锂离子电池和钠硫电池等。

这些技术具有高能量密度、良好的可调度性和环境友好等优点,被广泛应用于电力系统领域。

3.超级电容器和超导储能技术阶段:超级电容器具有高功率密度、快充快放的特点,被广泛应用于储能闪光灯、起动器和新能源汽车等领域。

超导储能技术具有极高的能量密度,但目前仍处于实验室研究阶段。

4.化学储能技术阶段:化学储能技术包括氢燃料电池、氢气储能和氨储能等。

这些技术具有高能量密度和长期储存的优势,正在成为储能技术的研究热点。

二、储能技术的类型及特点根据能量转化形式和储存介质的不同,储能技术可以分为各种类型,包括但不限于泵水蓄能、储气、储热、电化学储能、超级电容器和化学储能等。

这些储能技术各有特点,适用于不同的应用场景。

1.泵水蓄能:将水从低水位的地方抽到高水位的储水池中,储能过程中产生的电力通过水轮机发电。

具有可调度性强和寿命长的特点,主要应用于电力系统的调峰和备用能力的提供。

2.储气:通过空气压缩机将空气压缩储存,需要时再释放出来驱动涡轮机发电。

具有响应速度快和寿命长的特点,广泛应用于规模较大的能源储备项目。

3.储热:通过热泵、储热水箱等设备将电能或其他形式的能量转化为热能并储存起来,需要时再转化为电能。

具有高效储能和良好的可调度性的特点,主要应用于太阳能、风能等可再生能源的储存和利用。

4.电化学储能:电化学储能技术包括铅酸电池、锂离子电池和钠硫电池等。

具有高能量密度、长寿命和可调度性强的特点,广泛应用于电力系统调频、储能和新能源汽车等领域。

新能源储存技术的发展与趋势分析

新能源储存技术的发展与趋势分析

新能源储存技术的发展与趋势分析一、引言随着能源消耗量的不断增加,新能源储存技术已成为当前发展的热点。

新能源储存技术能够有效地解决能源储存、现场储存和供电等能源应用中的难题。

本文将探讨新能源储存技术的发展与趋势分析。

二、新能源储存技术的发展概况1. 传统的储能技术传统能源储存技术主要有电化学,机械,热力学和化学等技术。

其中,电化学技术包括蓄电池,超级电容器和燃料电池等。

机械技术包括压缩空气储能,飞轮储能和重物储能等。

热力学技术包括蓄热和蓄冷等技术。

化学技术包括合成氨、合成甲醇等技术。

这些技术被广泛应用在能源转换、储存等领域中,但随着新型储存技术的介入,这些技术逐渐面临被取代的危机。

2. 新兴的储能技术新兴的储能技术主要包括钠硫电池、锂离子电池、纳米氧化铝电池、超级电容器和压缩空气储能等。

其中,钠硫电池由于具有储存能量大、成本低、寿命长、材料丰富等特点,备受关注。

纳米氧化铝电池则有较高的安全性和可靠性。

锂离子电池与纳米氧化铝电池相比,具有更高的电化学性能,被广泛应用于电动汽车等领域。

超级电容器储存能量更高,寿命更长。

压缩空气储能具有潜在的高储存密度。

三、新能源储存技术的趋势1. 提升储能效率新能源储存技术的趋势之一是提升储能效率。

随着技术的不断进步,储能技术的效率也在不断提高。

提高储能效率的方法包括提高电池的能量密度、降低电池内部的能量损耗等。

2. 降低成本新能源储存技术的另一个趋势是降低成本。

目前,新能源储存技术的成本仍然较高,需要通过技术创新和规模化生产等方法降低成本。

此外,政府对新能源储存技术的补贴也可以降低成本。

3. 规模化生产规模化生产是新能源储存技术发展的关键。

目前,市场上的新能源储存设备大多是通过定制生产的,造成成本上升,规模化生产可以降低成本,提高产品品质和效率。

4. 多元化应用新能源储存技术的应用也在不断扩展。

例如,储能系统可以用于电动汽车、储能电站、分布式电源、大型工业盐浴炉等领域,未来将有更多新的应用场景出现。

储能技术的发展与应用前景分析

储能技术的发展与应用前景分析

储能技术的发展与应用前景分析储能技术是指将电能等形式的能量在需要时储存起来,再在需要时进行释放的技术手段。

随着能源需求的不断增长和可再生能源的快速发展,储能技术的发展已经成为人们关注的焦点。

本文将从储能技术的发展历程、不同类型储能技术的应用以及未来的发展前景等方面进行分析。

一、储能技术的发展历程储能技术的发展可以追溯到很早以前,人们最早采用的是电池储能技术。

然而,随着科技的进步和各种新能源的涌现,储能技术也得到了长足的发展。

充电储能技术是其中的一个重要方向。

随着电动汽车的普及和充电设施的完善,充电储能技术得到了广泛应用。

此外,太阳能和风能等可再生能源的快速发展也推动了储能技术的进一步发展。

目前,市场上已经涌现出多种储能设备,如锂电池、超级电容器和氢能等。

二、不同类型储能技术的应用1. 锂电池技术锂电池技术是目前应用最广泛的储能技术之一。

锂电池在电动汽车、便携式电子设备以及大型电网应用中发挥着重要作用。

锂电池具有能量密度高、寿命长、环保等优势,因此备受青睐。

2. 超级电容技术超级电容技术是一种新型储能技术,其具有快速充电、高效率和长寿命等优势。

超级电容器广泛应用于储能系统、电动车辆以及工业设备等领域。

虽然超级电容技术的能量密度较低,但其高功率输出和长寿命使其在一些特定领域有着广阔的应用前景。

3. 氢能储能技术氢能储能技术是一种未来有着巨大潜力的储能技术。

氢能可以通过电解水得到,再在需要时通过燃料电池进行发电或者供应其他能量需求。

氢能储能技术具有储能密度高、便于长时间储存、灵活性好等优势,被广泛应用于能源互联网、电动汽车、航空航天等领域。

三、储能技术的应用前景储能技术的快速发展给能源行业带来了巨大的变革。

随着可再生能源的高比例接入电力系统,储能技术可以平衡能源供需,提高电网的稳定性和可靠性。

因此,储能技术的应用前景非常广阔。

首先,储能技术能够帮助解决可再生能源的波动性和间歇性问题。

通过储能设备将能量储存起来,再在需求高峰时释放,可以确保可再生能源的稳定供应。

储能技术的现状及未来发展趋势

储能技术的现状及未来发展趋势

储能技术的现状及未来发展趋势近年来,随着环保问题和可再生能源的使用越来越受到重视,储能技术逐渐成为了新能源领域的热点,成为了能源领域的重要组成部分。

储能技术可将电能转化为其他形式的能量,储存在设备中,以备后续使用,可以有效缓解电网峰谷差异,提高能源利用率。

本文将对储能技术的现状和未来发展进行分析。

一、储能技术的现状1. 常见的储能技术目前常见的储能技术主要包括化学储能技术、机械储能技术、电磁储能技术等。

其中,常见的化学储能技术有铅酸蓄电池、锂离子电池、钠离子电池等;机械储能技术中有压缩空气储能、液流储能等;电磁储能技术主要是超级电容器和超导磁储能等。

这些技术各有特点,可以为不同场景提供最佳解决方案。

2. 储能市场的现状储能市场的需求量正与可再生能源的使用量飞速增长。

在全球范围内,储能市场从2013年的22.3亿美元增长到2018年的101.9亿美元。

特别是在2017年,美国国家电力公司发布了8.8GW的储能项目招标计划,开启了储能技术的爆发时代,这催生了全球的储能市场迅速发展。

二、储能技术的未来发展趋势1. 技术改进当前储能技术存在的问题主要是成本较高、能量密度不够等。

以锂离子电池为例,其能量密度已经达到了150-250Wh/kg,但对于目前的绝大多数能源存储应用来说,能源密度仍无法满足市场需求。

未来,储能产业需要不断改进电池的结构、材料和制造工艺,提升能量密度,从而大幅降低电池成本和储能费用。

2. 国际合作据统计,全球最大的储能项目——澳大利亚的闪电峰储能项目,是美国特斯拉公司和法国能源公司皮维提供电池和储能技术支持的合作项目。

未来,国际间合作将成为储能产业的趋势,各国可以分享技术、资金、市场以及政策经验,推进全球化、多元化的储能产业,共同推动储能市场的发展。

3. 多能互补和多储备技术的应用未来,储能技术的一个重要趋势将是改装和增强现有电网、电池系统和太阳能板等,从而实现多能互补和多储备的应用。

储能技术现状与发展

储能技术现状与发展

储能技术现状与发展在当今能源领域,储能技术正扮演着越来越重要的角色。

随着全球对清洁能源的需求不断增长,以及可再生能源如太阳能和风能的广泛应用,储能技术成为了平衡能源供需、提高能源利用效率和保障能源供应稳定性的关键。

目前,储能技术主要包括机械储能、电化学储能、电磁储能和热储能等多种类型。

机械储能中的抽水蓄能是最为成熟和广泛应用的技术之一。

它利用电力负荷低谷时的电能将水抽到高处,在电力负荷高峰时放水发电。

抽水蓄能具有储能容量大、技术成熟、运行可靠等优点,但受到地理条件的限制,选址和建设难度较大。

压缩空气储能也是机械储能的一种重要形式,它通过压缩空气来储存能量,在需要时释放推动涡轮机发电。

不过,压缩空气储能的效率相对较低,且需要特定的地质条件来储存压缩空气。

电化学储能近年来发展迅速,其中锂离子电池储能占据了主导地位。

锂离子电池具有能量密度高、循环寿命长、响应速度快等优点,被广泛应用于电动汽车和储能电站等领域。

然而,锂离子电池的成本较高,且存在安全隐患。

铅酸电池是一种传统的电化学储能技术,成本较低,但能量密度和循环寿命相对较差。

液流电池,如全钒液流电池,具有寿命长、安全性高的特点,但其能量密度较低,系统复杂度较高。

电磁储能主要包括超级电容器和超导储能。

超级电容器具有功率密度高、充放电速度快的优点,但能量密度较低,适用于短时间、大功率的储能需求。

超导储能则利用超导材料在低温下的零电阻特性储存电能,具有响应速度极快、效率高的优点,但成本高昂,技术尚不成熟。

热储能通过储存热能来实现能量的存储和释放,包括显热储能和潜热储能。

显热储能利用物质的温度变化来储存能量,如热水、热油等;潜热储能则利用物质的相变过程,如熔化或凝固,来储存能量,如相变材料。

热储能技术适用于与热能相关的应用场景,如太阳能热发电等,但储能密度相对较低。

在储能技术的发展过程中,面临着一些挑战。

首先是成本问题,许多储能技术的成本仍然较高,限制了其大规模应用。

储能发展现状与趋势

储能发展现状与趋势

储能发展现状与趋势储能技术是指将能量储存起来,以供需要时释放出来的技术。

在当前能源紧缺的背景下,储能技术的发展备受关注。

本文将从储能发展现状和趋势两个方面来探讨储能技术的现状及未来发展。

一、储能技术发展现状1. 锂离子电池储能技术:锂离子电池由于其高能量密度、长循环寿命和较低自放电率等优点,成为目前储能市场的主流技术。

锂离子电池已广泛应用于电动汽车、电子产品以及家庭和工业储能系统中。

2. 储水式水泵储能技术:储水式水泵储能技术是将电能转化为水能,将水抬升到高处时储存能量,需要时通过释放水能来发电。

这种技术具有储能容量大、响应速度快和寿命长等优势,被广泛应用于电网调峰和备用电源等领域。

3. 储热技术:储热技术通过将电能转化为热能,将热能储存起来,需要时通过释放热能来供暖或发电。

储热技术具有高效稳定、环保节能的特点,适用于太阳能、风能等不稳定能源的储能。

4. 氢能储能技术:氢能储能技术是将电能转化为氢能,通过压缩或液化的方式将氢气储存起来,需要时通过燃烧氢气来发电。

氢能储能技术具有能量密度高、储能时间长和零排放等优势,被认为是未来储能领域的重要发展方向。

二、储能技术发展趋势1. 提高储能效率:当前储能技术仍存在能量转化损耗较大的问题,未来的发展趋势是提高储能效率,降低能量转化损耗,提高能源利用率。

2. 发展新型储能材料:目前锂离子电池作为主流储能技术,但是其材料稀缺和成本高昂,未来的发展趋势是发展新型储能材料,如钠离子电池、钙离子电池等,以满足不同领域的需求。

3. 降低储能成本:储能技术的成本是制约其大规模应用的关键因素,未来的发展趋势是降低储能成本,推动储能技术的商业化和普及化。

4. 实现储能与能源互联网的结合:随着能源互联网的发展,储能技术将与能源互联网相结合,形成一个可靠、高效、智能的能源系统。

储能技术将发挥关键作用,平衡能源供需,提高能源利用效率。

5. 强调储能的可持续性和环境友好性:未来储能技术的发展将更加注重可持续性和环境友好性。

中国长时储能行业发展现状及趋势分析

中国长时储能行业发展现状及趋势分析

中国长时储能行业发展现状及趋势分析一、行业综述1、定义及分类长时储能指的是4小时以上的储能技术,由于这一系统可以实现跨天、跨月,乃至跨季节充放电循环,因此能够满足电力系统的长期稳定,在可再生能源发电领域运用广泛。

长时储能方式分类情况长时储能方式分类情况资料来源:公开资料,产业研究院整理2、发展历程2017年到2020年是长时储能发展的萌芽期,首先是国内第一个关于储能的指导性文件提出,推动了整个储能行业的发展,进而为长期储能的发展奠定了基础。

2020年到2023年是长时储能发展的启动期,储能的市场化发展对于储能行业的发展起到了极大的激励作用,新兴储能装机规模在2022年实现了19.5%的同比增长,传统储能技术不断完善,新兴储能技术不断进步。

2026年以后是长时储能的高速发展期,抽水蓄能发展受限,需要依靠新型长时储能技术提供增量的灵活性资源,而新型储能技术经过多年研究将更加成熟。

长时储能行业发展历程长时储能行业发展历程资料来源:公开资料,产业研究院整理二、行业背景1、政策环境储能是产业升级最重要的核心行业之一,近年来,受疫情和俄乌冲突的影响,能源危机日渐成为国际重点关注的问题。

中国作为世界工厂,能源需求巨大。

储能行业已是中国关注对象,为了提高储能效率,规范行业发展,政府出台了一系列相关政策,旨在减少能源紧缺问题,为产业升级提供充足的保障。

中国长时储能行业相关政策梳理中国长时储能行业相关政策梳理资料来源:政府公开报告,产业研究院整理2、社会环境如今新能源汽车越来越受到人们的青睐,中国新能源汽车的销量逐年攀升,据统计,由2019年的121万辆增长至2021年的352万辆,增长幅度接近300%,2021年年同比增长156.93%,预计截至2022年销量将达到590万辆。

新能源汽车的热销,将导致充电桩功率器件驱动器的需求增加。

2019-2022年中国新能源汽车行业销量及增速情况2019-2022年中国新能源汽车行业销量及增速情况资料来源:公开资料,产业研究院整理相关报告:产业研究院发布的《2023-2029年中国长时储能行业市场深度研究及投资战略咨询报告》三、产业链1、产业链分析长时储能的产业链上游为电池原材料,包括容百科技、当升材料、贝特瑞等企业;产业链中游为设备供应商及储能系统集成和安装,包括宁德时代、派能科技、阳关电源、永福股份、派能科技等企业;产业链下游为以发电侧、电网侧为代表的终端用户,包括华能电网、国家电网、许继电气等企业。

储能技术发展方向和前景分析

储能技术发展方向和前景分析

储能技术发展方向和前景分析储能技术是指将能量储存起来,在需要的时候再释放出来供能的技术。

随着可再生能源和电动汽车等新兴产业的快速发展,储能技术的需求也越来越大。

储能技术的发展方向主要包括提高储能效率、降低成本、延长储能时间和增加储能容量等。

未来,储能技术有着广阔的发展前景,将在能源领域、交通领域和工业领域等多个领域发挥重要作用。

首先,储能技术的发展方向之一是提高储能效率。

目前,各种储能技术的效率还存在一定的局限性。

未来的研究方向之一是提高能量转换效率,减少能量的损耗和浪费。

比如,太阳能光伏电池的能量转化效率可以通过改进光伏材料和器件结构来提高,以提高太阳能的利用率。

同时,研究和开发更高效的电池和超级电容器等储能设备,也是提高储能效率的重要途径。

其次,降低储能技术的成本是另一个重要的发展方向。

目前,一些储能技术的成本还比较高,限制了其在大规模应用中的推广。

研究人员正在努力降低储能设备的制造成本和运营成本。

例如,通过改进材料的制备工艺、探索新的材料和技术,可以降低电池和超级电容器等储能设备的成本。

此外,通过提高生产效率、减少能源消耗和延长设备寿命等措施,也能够降低储能系统的运营成本。

第三,延长储能时间也是储能技术的一个发展方向。

目前,一些储能技术的储能时间还比较短,无法满足长时间储能的需求。

为了延长储能时间,研究人员正在研究和开发新的储能材料和储能技术。

例如,研发更高容量的锂离子电池和钠离子电池等技术,可以提供更长时间的储能能力,满足能源供需的平衡。

最后,增加储能容量也是储能技术的一个重要方向。

随着可再生能源和电动汽车等需求的增大,储能容量的需求也越来越大。

为了增加储能容量,研究人员正在探索多种方法。

例如,通过提高电池和超级电容器的储能密度,可以增加储能容量。

此外,开展高效利用储能技术的研究和应用,实现能量的跨季节、跨地域的储存和传输,也是增加储能容量的重要途径。

总之,储能技术在能源领域、交通领域和工业领域等多个领域具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【摘要】储能技术已被视为电网运行过程中中的重要组成部分。

系统中引入储能环节后可以有效地利用电力设备,降低供电成本,提高系统运行稳定性、调整频率、补偿负荷波动。

储能技术的应用将在电力系统设计、规划、调度、控制等方面带来重大变革。

【关键词】储能技术;现状;前景;应用
1 储能技术在电力系统中的应用
储能技术已被视为电网运行过程中“采――发――输――配――用――储”六大环节中的重要组成部分。

系统中引入储能环节后,可以有效地实现需求侧管理,消除昼夜间峰谷差,平滑负荷,可以更有效地利用电力设备,降低供电成本,也可作为提高系统运行稳定性、调整频率、补偿负荷波动的一种手段。

储能技术的应用必将在传统的电力系统设计、规划、调度、控制等方面带来重大变革。

2 储能技术原理及特点
储能系统一般由两大部分组成:由储能元件(部件)组成的储能装置;由电力电子器件组成的电网接入系统。

主要实现能量的储存、释放或快速功率交换。

储能系统的容量范围宽,从几十千瓦到几百兆瓦;放电时间跨度大,从毫秒级到小时级;应用范围广,贯穿发输变配用电系统。

储能系统的主要作用如下:(1)用于电力调峰,解决用电矛盾;(2)用于用户侧,提高供电可靠性;(3)用于可再生能源优化,推动可再生能源开发应用;(4)用于电力系统稳定控制,提高电网安全性。

大规模储能技术是对传统“即发即用”的电力模式的革命性突破,它可以减少用于发电设备的投资,提高电力设备的利用率,安装在用电设备附近可以降低线损,安装在大城市附近可以提高供电可靠性。

3 储能技术研究现状
电能储存的形式可分为四类:机械储能(如抽水蓄能、压缩空气储能、飞轮储能等)、化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)、电磁储能(如超导电磁储能等)和相变储能(如冰蓄冷等)。

长久以来,电力系统中储能技术的研究集中于大规模储能技术以解决系统调峰问题。

近来,储能电池、超级电容器、超导电磁储能和高效率飞轮等中小规模储能技术取得长足的进步,有力拓展了储能技术的应用范围。

凭借这些不同规模的储能技术,其应用可贯穿电力系统发输变配用电各个环节,以全面提升电力系统的运行效率、可靠性、电能质量和资产价值。

4 电力储能方式和发展现状
4.1 压缩空气储能电站
4.2 超导磁储能系统
超导磁储能系统(superconducting magnetic energy storage,smes)利用超导体制成的线圈储存磁场能量,功率输送时无需能源形式的转换,具有响应速度快,转换效率高、比容量/比功率大等优点,可以实现与电力系统的实时大容量能量交换和功率补偿。

smes可以充分满足输配电网电压支撑、功率补偿、频率调节、提高系统稳定性和功率输送能力的要求。

4.3 飞轮储能
飞轮储能系统由高速飞轮、轴承支撑系统、电动机/发电机、功率变换器、电子控制系统和真空泵、紧急备用轴承等附加设备组成。

谷值负荷时,飞轮储能系统由工频电网提供电能,带动飞轮高速旋转,以动能的形式储存能量;出现峰值负荷时,高速旋转的飞轮作为原动机拖动电机发电,经功率变换器输出电流和电压。

飞轮储能功率密度大,效率高,循环使用寿命长,无污染,维护简单,可连续工作,主要用于不间断电源/ 应急电源、电网调峰和频率控制。

4.4 电池储能系统
电池储能系统主要是利用电池正负极的氧化还原反应进行充放电。

铅酸电池在高温下寿命缩短,比能量和比功率较低,但价格便宜,构造成本低,可靠性好,技术成熟,已广泛应用于电力系统。

然而,其循环寿命较短,且在制造过程中存在一定的环境污染。

钠硫和液流电池被视为新兴的、高效的且具广阔发展前景的大容量电力储能电池。

钠硫电池储能密度高,体积小,系统效率高,单体寿命长,可根据用途和建设规模分期安装,很适用于城市变电站和特殊负荷。

液流电池电化学极化小,能够 100%深度放电,储存寿命长,额定功率和容量相互独立,并可根据设置场所的情况自由设计储藏形式及随意选择形状。

4.5 抽水蓄能电站
抽水储能电站投入运行时必须配备上、下游两个水库,负荷低谷时段抽水储能设备工作在电动机状态,将下游水库的水抽到上游水库保存,负荷高峰时抽水储能设备工作于发电机的状态,利用储存在上游水库中的水发电。

抽水储能主要应用于调峰填谷、调频、调相、紧急事故备用、黑启动和提供系统的备用容量,还可以提高系统中火电站和核电站的运行效率。

4.6 超级电容器储能
超级电容器根据电化学双电层理论研制而成,可提供强大的脉冲功率,充电时处于理想极化状态的电极表面,电荷将吸引周围电解质溶液中的异性离子,使其附于电极表面,形成双电荷层,构成双电层电容。

由于电荷层间距非常小,加之采用特殊电极结构,电极表面积成万倍增加,从而产生极大的电容量。

5 储能技术发展前景
随着新能源(风能、太阳能、燃料电池等)的日益普及,,以及电网调峰、提高电网可靠性和改善电能质量的迫切需求,电力储能系统的重要性日益凸显。

因此,电力储能技术的应用前景非常广阔。

采用大规模储能装置,可以减少和延缓用于发、输、变、配电设备的投资,提高现有电力设备的利用率和供电可靠性,降低发电煤耗、供电线损。

储能系统一旦形成规模效应,将从以下几个方面产生经济效益:
5.1 有效提高现有发输配用电设备的利用率,改变电力建设的增长模式
以上海为例,目前上海的发电系统和输配电系统均按照每年的最高用电负荷对发电容量和输配电容量进行规划和建设。

同时,上海的负荷特性呈现明显的大都市特性,昼夜峰谷差日益扩大,目前日负荷率约50%~60%。

储能系统一旦形成规模效应,可以通过储能系统提高发电和输配电环节的设备利用率,减少相应的电源和电网建设费用。

这将彻底改变现有电力系统的建设模式,促进其从外延扩张型向内涵增效型转变。

5.2 降低发电企业和电网企业的运行成本,减少用户的用电费用
储能系统的运行维护相对简单,投入后可大量节约电厂和电网的运行维护费用,无论是电厂还是电网,运行维护都相对(下转第186页)(上接第153页)复杂,而储能系统可大量节省运行维护的费用。

为保证低谷负荷时候的电力平衡,大型火电机组大多要减至最低出力,小型机组更是需要日开夜停,“两班制”运行。

储能系统大规模应用后,低谷负荷情况下,可以启动储能装置进行储能,机组可以运行在比较经济的出力区间,从而获得较高的经济效益。

5.3 减少停电损失
实现分布式储能后,电网发生故障和检修的部分情况下,用户可以通过储能系统保证供电,用户用电的安全可靠性大大提高,停电次数(时间)和停电损失大幅减少,经济效应和社会效应明显。

目前,电力储能系统推广应用的最大障碍在于国外少数企业的技术垄断,由此造成其价格高企。

要推动电力储能系统在电网中的规模化应用:一靠,掌握自主知识产权,使其价格大幅下降;二靠,政府的政策鼓励和资金推动。

如果能实现电力储能系统国产化,使其成本
达到或接近应用水平,那么随着峰谷电价差的逐步加大和对电能质量要求的日益提高,被压抑的电网对电力储能系统的需求将迅速得到强劲释放。

相关文档
最新文档